Search results for: cover crop
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2271

Search results for: cover crop

21 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis

Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam

Abstract:

Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.

Keywords: chlorophyll, gene expression, genetic variation, stomata

Procedia PDF Downloads 213
20 Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam

Authors: Azeem Tariq, Stephane De Tourdonnet, Lars Stoumann Jensen, Reiner Wassmann, Bjoern Ole Sander, Quynh Duong Vu, Trinh Van Mai, Andreas De Neergaard

Abstract:

Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers.

Keywords: adaptation, climate smart agriculture, constrainsts, smallholders

Procedia PDF Downloads 241
19 Implications of Agricultural Subsidies Since Green Revolution: A Case Study of Indian Punjab

Authors: Kriti Jain, Sucha Singh Gill

Abstract:

Subsidies have been a major part of agricultural policies around the world, and more extensively since the green revolution in developing countries, for the sake of attaining higher agricultural productivity and achieving food security. But entrenched subsidies lead to distorted incentives and promote inefficiencies in the agricultural sector, threatening the viability of these very subsidies and sustainability of the agricultural production systems, posing a threat to the livelihood of farmers and laborers dependent on it. This paper analyzes the economic and ecological sustainability implications of prolonged input and output subsidies in agriculture by studying the case of Indian Punjab, an agriculturally developed state responsible for ensuring food security in the country when it was facing a major food crisis. The paper focuses specifically on the environmentally unsustainable cropping pattern changes as a result of Minimum Support Price (MSP) and assured procurement and on the resource use efficiency and cost implications of power subsidy for irrigation in Punjab. The study is based on an analysis of both secondary and primary data sources. Using secondary data, a time series analysis was done to capture the changes in Punjab’s cropping pattern, water table depth, fertilizer consumption, and electrification of agriculture. This has been done to examine the role of price and output support adopted to encourage the adoption of green revolution technology in changing the cropping structure of the state, resulting in increased input use intensities (especially groundwater and fertilizers), which harms the ecological balance and decreases factor productivity. Evaluation of electrification of Punjab agriculture helped evaluate the trend in electricity productivity of agriculture and how free power imposed further pressure on the extant agricultural ecosystem. Using data collected from a primary survey of 320 farmers in Punjab, the extent of wasteful application of groundwater irrigation, water productivity of output, electricity usage, and cost of irrigation driven electricity subsidy to the exchequer were estimated for the dominant cropping pattern amongst farmers. The main findings of the study revealed how because of a subsidy has driven agricultural framework, Punjab has lost area under agro climatically suitable and staple crops and moved towards a paddy-wheat cropping system, that is gnawing away the state’s natural resources like water table has been declining at a significant rate of 25 cms per year since 1975-76, and excessive and imbalanced fertilizer usage has led to declining soil fertility in the state. With electricity-driven tubewells as the major source of irrigation within a regime of free electricity and water-intensive crop cultivation, there is both wasteful application of irrigation water and electricity in the cultivation of paddy crops, burning an unproductive hole in the exchequer’s pocket. There is limited access to both agricultural extension services and water-conserving technology, along with policy imbalance, keeping farmers in an intensive and unsustainable production system. Punjab agriculture is witnessing diminishing returns to factor, which under the business-as-usual scenario, will soon enter the phase of negative returns to factor.

Keywords: cropping pattern, electrification, subsidy, sustainability

Procedia PDF Downloads 158
18 Biochemical and Antiviral Study of Peptides Isolated from Amaranthus hypochondriacus on Tomato Yellow Leaf Curl Virus Replication

Authors: José Silvestre Mendoza Figueroa, Anders Kvarnheden, Jesús Méndez Lozano, Edgar Antonio Rodríguez Negrete, Manuel Soriano García

Abstract:

Agroindustrial plants such as cereals and pseudo cereals offer a substantial source of biomacromolecules, as they contain large amounts per tissue-gram of proteins, polysaccharides and lipids in comparison with other plants. In particular, Amaranthus hypochondriacus seeds have high levels of proteins in comparison with other cereal and pseudo cereal species, which makes the plant a good source of bioactive molecules such as peptides. Geminiviruses are one principal class of pathogens that causes important economic losses in crops, affecting directly the development and production of the plant. One such virus is the Tomato yellow leaf curl virus (TYLCV), which affects mainly Solanacea family plants such as tomato species. The symptoms of the disease are curling of leaves, chlorosis, dwarfing and floral abortion. The aim of this work was to get peptides derived from enzymatic hydrolysis of globulins and albumins from amaranth seeds with specific recognition of the replication origin in the TYLCV genome, and to test the antiviral activity on host plants with the idea to generate a direct control of this viral infection. Globulins and albumins from amaranth were extracted, the fraction was enzymatically digested with papain, and the aromatic peptides fraction was selected for further purification. Six peptides were tested against the replication origin (OR) using affinity assays, surface resonance plasmon and fluorescent titration, and two of these peptides showed high affinity values to the replication origin of the virus, dissociation constant values were calculated and showed specific interaction between the peptide Ampep1 and the OR. An in vitro replication test of the total TYLCV DNA was performed, in which the peptide AmPep1 was added in different concentrations to the system reaction, which resulted in a decrease of viral DNA synthesis when the peptide concentration increased. Also, we showed that the peptide can decrease the complementary DNA chain of the virus in Nicotiana benthamiana leaves, confirming that the peptide binds to the OR and that its expected mechanism of action is to decrease the replication rate of the viral genome. In an infection assay, N. benthamiana plants were agroinfected with TYLCV-Israel and TYLCV-Guasave. After confirming systemic infection, the peptide was infiltrated in new infected leaves, and the plants treated with the peptide showed a decrease of virus symptoms and viral titer. In order to confirm the antiviral activity in a commercial crop, tomato plants were infected with TYLCV. After confirming systemic infection, plants were infiltrated with peptide solution as above, and the symptom development was monitored 21 days after treatment, showing that tomato plants treated with peptides had lower symptom rates and viral titer. The peptide was also tested against other begomovirus such as Pepper huasteco yellow vein virus (PHYVV-Guasave), showing a decrease of symptoms in N. benthamiana infected plants. The model of direct biochemical control of TYLCV infection shown in this work can be extrapolated to other begomovirus infections, and the methods reported here can be used for design of antiviral agrochemicals for other plant virus infections.

Keywords: agrochemical screening, antiviral, begomovirus, geminivirus, peptides, plasmon, TYLCV

Procedia PDF Downloads 243
17 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation

Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos

Abstract:

Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.

Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies

Procedia PDF Downloads 92
16 Amniotic Fluid Mesenchymal Stem Cells Selected for Neural Specificity Ameliorates Chemotherapy Induced Hearing Loss and Pain Perception

Authors: Jan F. Talts, Amit Saxena, Kåre Engkilde

Abstract:

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequent side effects caused by anti-neoplastic agents, with a prevalence from 19 % to 85 %. Clinically, CIPN is a mostly sensory neuropathy leading to pain and to motor and autonomic changes. Due to its high prevalence among cancer patients, CIPN constitutes a major problem for both cancer patients and survivors, especially because currently, there is no single effective method of preventing CIPN. Hearing loss is the most common form of sensory impairment in humans and can be caused by ototoxic chemical compounds such as chemotherapy (platinum-based antineoplastic agents).In rodents, single or repeated cisplatin injections induce peripheral neuropathy and hearing impairment mimicking human disorder, allowing studying the efficacy of new pharmacological candidates in chemotherapy-induced hearing loss and peripheral neuropathy. RNA sequencing data from full term amniotic fluid (TAF) mesenchymal stemcell (MSC) clones was used to identify neural-specific markers present on TAF-MSC. Several prospective neural markers were tested by flow cytometry on cultured TAF-MSC. One of these markers was used for cell-sorting using Tyto MACSQuant cell sorter, and the neural marker positive cell population was expanded for several passages to the final therapeutic product stage. Peripheral neuropathy and hearing loss was induced in mice by administration of cisplatin in three week-long cycles. The efficacy of neural-specific TAF-MSC in treating hearing loss and pain perception was evaluated by administration of three injections of 3 million cells/kg by intravenous route or three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment. Auditory brainstem responses (ABR) are electric potentials recorded from scalp electrodes, and the first ABR wave represents the summed activity of the auditory nerve fibers contacting the inner hair cells. For ABR studies, mice were anesthetized, then earphones were placed in the left ear of each mouse, an active electrode was placed in the vertex of the skull, a reference electrode under the skin of the mastoid bone, and a ground electrode in the neck skin. The stimuli consisted of tone pips of five frequencies (2, 4, 6, 12, 16, and 24 kHz) at various sound levels (from 0 to 90 dB) ranging to cover the mouse auditory frequency range. The von Frey test was used to assess the onset and maintenance of mechanical allodynia over time. Mice were placed in clear plexiglass cages on an elevated mesh floor and tested after 30 min of habituation. Mechanical paw withdrawal threshold was examined using an electronic von Frey anesthesiometer. Cisplatin groups treated with three injections of 3 million cells/kg by intravenous route and three injections of 3 million cells/kg by intra-arterial route after each cisplatin cycle treatment presented, a significant increase of hearing acuity characterized by a decrease of ABR threshold and a decrease of neuropathic pain characterized by an increase of von Frey paw withdrawal threshold compared to controls only receiving cisplatin. This study shows that treatment with MSCselected for neural specificity presents significant positive efficacy on the chemotherapy-induced neuropathic pain and the chemotherapy-induced hearing loss.

Keywords: mesenchymal stem cell, peripheral neuropathy, amniotic fluid, regenerative medicine

Procedia PDF Downloads 135
15 Utilization of Functionalized Biochar from Water Hyacinth (Eichhornia crassipes) as Green Nano-Fertilizers

Authors: Adewale Tolulope Irewale, Elias Emeka Elemike, Christian O. Dimkpa, Emeka Emmanuel Oguzie

Abstract:

As the global population steadily approaches the 10billion mark, the world is currently faced with two major challenges among others – accessing sustainable and clean energy, and food security. Accessing cleaner and sustainable energy sources to drive global economy and technological advancement, and feeding the teeming human population require sustainable, innovative, and smart solutions. To solve the food production problem, producers have relied on fertilizers as a way of improving crop productivity. Commercial inorganic fertilizers, which is employed to boost agricultural food production, however, pose significant ecological sustainability and economic problems including soil and water pollution, reduced input efficiency, development of highly resistant weeds, micronutrient deficiency, soil degradation, and increased soil toxicity. These ecological and sustainability concerns have raised uncertainties about the continued effectiveness of conventional fertilizers. With the application of nanotechnology, plant biomass upcycling offers several advantages in greener energy production and sustainable agriculture through reduction of environmental pollution, increasing soil microbial activity, recycling carbon thereby reducing GHG emission, and so forth. This innovative technology has the potential for a circular economy and creating a sustainable agricultural practice. Nanomaterials have the potential to greatly enhance the quality and nutrient composition of organic biomass which in turn, allows for the conversion of biomass into nanofertilizers that are potentially more efficient. Water hyacinth plant harvested from an inland water at Warri, Delta State Nigeria were air-dried and milled into powder form. The dry biomass were used to prepare biochar at a pre-determined temperature in an oxygen deficient atmosphere. Physicochemical analysis of the resulting biochar was carried out to determine its porosity and general morphology using the Scanning Transmission Electron Microscopy (STEM). The functional groups (-COOH, -OH, -NH2, -CN, -C=O) were assessed using the Fourier Transform InfraRed Spectroscopy (FTIR) while the heavy metals (Cr, Cu, Fe, Pb, Mg, Mn) were analyzed using Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES). Impregnation of the biochar with nanonutrients were achieved under varied conditions of pH, temperature, nanonutrient concentrations and resident time to achieve optimum adsorption. Adsorption and desorption studies were carried out on the resulting nanofertilizer to determine kinetics for the potential nutrients’ bio-availability to plants when used as green fertilizers. Water hyacinth (Eichhornia crassipes) which is an aggressively invasive aquatic plant known for its rapid growth and profusion is being examined in this research to harness its biomass as a sustainable feedstock to formulate functionalized nano-biochar fertilizers, offering various benefits including water hyacinth biomass upcycling, improved nutrient delivery to crops and aquatic ecosystem remediation. Altogether, this work aims to create output values in the three dimensions of environmental, economic, and social benefits.

Keywords: biochar-based nanofertilizers, eichhornia crassipes, greener agriculture, sustainable ecosystem, water hyacinth

Procedia PDF Downloads 38
14 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 117
13 Farm-Women in Technology Transfer to Foster the Capacity Building of Agriculture: A Forecast from a Draught-Prone Rural Setting in India

Authors: Pradipta Chandra, Titas Bhattacharjee, Bhaskar Bhowmick

Abstract:

The foundation of economy in India is primarily based on agriculture while this is the most neglected in the rural setting. More significantly, household women take part in agriculture with higher involvement. However, because of lower education of women they have limited access towards financial decisions, land ownership and technology but they have vital role towards the individual family level. There are limited studies on the institution-wise training barriers with the focus of gender disparity. The main purpose of this paper is to find out the factors of institution-wise training (non-formal education) barriers in technology transfer with the focus of participation of rural women in agriculture. For this study primary and secondary data were collected in the line of qualitative and quantitative approach. Qualitative data were collected by several field visits in the adjacent areas of Seva-Bharati, Seva Bharati Krishi Vigyan Kendra through semi-structured questionnaires. In the next level detailed field surveys were conducted with close-ended questionnaires scored on the seven-point Likert scale. Sample size was considered as 162. During the data collection the focus was to include women although some biasness from the end of respondents and interviewer might exist due to dissimilarity in observation, views etc. In addition to that the heterogeneity of sample is not very high although female participation is more than fifty percent. Data were analyzed using Exploratory Factor Analysis (EFA) technique with the outcome of three significant factors of training barriers in technology adoption by farmers: (a) Failure of technology transfer training (TTT) comprehension interprets that the technology takers, i.e., farmers can’t understand the technology either language barrier or way of demonstration exhibited by the experts/ trainers. (b) Failure of TTT customization, articulates that the training for individual farmer, gender crop or season-wise is not tailored. (c) Failure of TTT generalization conveys that absence of common training methods for individual trainers for specific crops is more prominent at the community level. The central finding is that the technology transfer training method can’t fulfill the need of the farmers under an economically challenged area. The impact of such study is very high in the area of dry lateritic and resource crunch area of Jangalmahal under Paschim Medinipur district, West Bengal and areas with similar socio-economy. Towards the policy level decision this research may help in framing digital agriculture for implementation of the appropriate information technology for the farming community, effective and timely investment by the government with the selection of beneficiary, formation of farmers club/ farm science club etc. The most important research implication of this study lies upon the contribution towards the knowledge diffusion mechanism of the agricultural sector in India. Farmers may overcome the barriers to achieve higher productivity through adoption of modern farm practices. Corporates will be interested in agro-sector through investment under corporate social responsibility (CSR). The research will help in framing public or industry policy and land use pattern. Consequently, a huge mass of rural farm-women will be empowered and farmer community will be benefitted.

Keywords: dry lateritic zone, institutional barriers, technology transfer in India, farm-women participation

Procedia PDF Downloads 350
12 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 56
11 A Multi-Scale Approach to Space Use: Habitat Disturbance Alters Behavior, Movement and Energy Budgets in Sloths (Bradypus variegatus)

Authors: Heather E. Ewart, Keith Jensen, Rebecca N. Cliffe

Abstract:

Fragmentation and changes in the structural composition of tropical forests – as a result of intensifying anthropogenic disturbance – are increasing pressures on local biodiversity. Species with low dispersal abilities have some of the highest extinction risks in response to environmental change, as even small-scale environmental variation can substantially impact their space use and energetic balance. Understanding the implications of forest disturbance is therefore essential, ultimately allowing for more effective and targeted conservation initiatives. Here, the impact of different levels of forest disturbance on the space use, energetics, movement and behavior of 18 brown-throated sloths (Bradypus variegatus) were assessed in the South Caribbean of Costa Rica. A multi-scale framework was used to measure forest disturbance, including large-scale (landscape-level classifications) and fine-scale (within and surrounding individual home ranges) forest composition. Three landscape-level classifications were identified: primary forests (undisturbed), secondary forests (some disturbance, regenerating) and urban forests (high levels of disturbance and fragmentation). Finer-scale forest composition was determined using measurements of habitat structure and quality within and surrounding individual home ranges for each sloth (home range estimates were calculated using autocorrelated kernel density estimation [AKDE]). Measurements of forest quality included tree connectivity, density, diameter and height, species richness, and percentage of canopy cover. To determine space use, energetics, movement and behavior, six sloths in urban forests, seven sloths in secondary forests and five sloths in primary forests were tracked using a combination of Very High Frequency (VHF) radio transmitters and Global Positioning System (GPS) technology over an average period of 120 days. All sloths were also fitted with micro data-loggers (containing tri-axial accelerometers and pressure loggers) for an average of 30 days to allow for behavior-specific movement analyses (data analysis ongoing for data-loggers and primary forest sloths). Data-loggers included determination of activity budgets, circadian rhythms of activity and energy expenditure (using the vector of the dynamic body acceleration [VeDBA] as a proxy). Analyses to date indicate that home range size significantly increased with the level of forest disturbance. Female sloths inhabiting secondary forests averaged 0.67-hectare home ranges, while female sloths inhabiting urban forests averaged 1.93-hectare home ranges (estimates are represented by median values to account for the individual variation in home range size in sloths). Likewise, home range estimates for male sloths were 2.35 hectares in secondary forests and 4.83 in urban forests. Sloths in urban forests also used nearly double (median = 22.5) the number of trees as sloths in the secondary forest (median = 12). These preliminary data indicate that forest disturbance likely heightens the energetic requirements of sloths, a species already critically limited by low dispersal ability and rates of energy acquisition. Energetic and behavioral analyses from the data-loggers will be considered in the context of fine-scale forest composition measurements (i.e., habitat quality and structure) and are expected to reflect the observed home range and movement constraints. The implications of these results are far-reaching, presenting an opportunity to define a critical index of habitat connectivity for low dispersal species such as sloths.

Keywords: biodiversity conservation, forest disturbance, movement ecology, sloths

Procedia PDF Downloads 78
10 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 226
9 [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors

Authors: Sajeli A. Begum, Ameer Basha, Kirti Hira, Rukaiyya Khan

Abstract:

Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases.

Keywords: cyclic dipeptides, cytokines, Fusarium moniliforme, Pseudomonas, TNF-alpha

Procedia PDF Downloads 185
8 An Exploration of Health Promotion Approach to Increase Optimal Complementary Feeding among Pastoral Mothers Having Children between 6 and 23 Months in Dikhil, Djibouti

Authors: Haruka Ando

Abstract:

Undernutrition of children is a critical issue, especially for people in the remote areas of the Republic of Djibouti, since household food insecurity, inadequate child caring and feeding, unhealthy environment and lack of clean water, as well as insufficient maternal and child healthcare, are underlying causes which affect. Nomadic pastoralists living in the Dikhil region (Dikhil) are socio-economically and geographically more vulnerable due to displacement, which in turn worsens the situation of child stunting. A high prevalence of inappropriate complementary feeding among pastoral mothers might be a significant barrier to child growth. This study aims to identify health promotion intervention strategies that would support an increase in optimal complementary feeding among pastoral mothers of children aged 6-23 months in Dikhil. There are four objectives; to explore and to understand the existing practice of complementary feeding among pastoral mothers in Dikhil; to identify the barriers in appropriate complementary feeding among the mothers; to critically explore and analyse the strategies for an increase in complementary feeding among the mothers; to make pragmatic recommendations to address the barriers in Djibouti. This is an in-depth study utilizing a conceptual framework, the behaviour change wheel, to analyse the determinants of complementary feeding and categorize health promotion interventions for increasing optimal complementary feeding among pastoral mothers living in Dikhil. The analytical tool was utilized to appraise the strategies to mitigate the selected barriers against optimal complementary feeding. The data sources were secondary literature from both published and unpublished sources. The literature was systematically collected. The findings of the determinants including the barriers of optimal complementary feeding were identified: heavy household workload, caring for multiple children under five, lack of education, cultural norms and traditional eating habits, lack of husbands' support, poverty and food insecurity, lack of clean water, low media coverage, insufficient health services on complementary feeding, fear, poor personal hygiene, and mothers' low decision-making ability and lack of motivation for food choice. To mitigate selected barriers of optimal complementary feeding, four intervention strategies based on interpersonal communication at the community-level were chosen: scaling up mothers' support groups, nutrition education, grandmother-inclusive approach, and training for complementary feeding counseling. The strategies were appraised through the criteria of effectiveness and feasibility. Scaling up mothers' support groups could be the best approach. Mid-term and long-term recommendations are suggested based on the situation analysis and appraisal of intervention strategies. Mid-term recommendations include complementary feeding promotion interventions are integrated into the healthcare service providing system in Dikhil, and donor agencies advocate and lobby the Ministry of Health Djibouti (MoHD) to increase budgetary allocation on complementary feeding promotion to implement interventions at a community level. Moreover, the recommendations include a community health management team in Dikhil training healthcare workers and mother support groups by using complementary feeding communication guidelines and monitors behaviour change of pastoral mothers and health outcome of their children. Long-term recommendations are the MoHD develops complementary feeding guidelines to cover sector-wide collaboration for multi-sectoral related barriers.

Keywords: Afar, child food, child nutrition, complementary feeding, complementary food, developing countries, Djibouti, East Africa, hard-to-reach areas, Horn of Africa, nomad, pastoral, rural area, Somali, Sub-Saharan Africa

Procedia PDF Downloads 100
7 Introducing Global Navigation Satellite System Capabilities into IoT Field-Sensing Infrastructures for Advanced Precision Agriculture Services

Authors: Savvas Rogotis, Nikolaos Kalatzis, Stergios Dimou-Sakellariou, Nikolaos Marianos

Abstract:

As precision holds the key for the introduction of distinct benefits in agriculture (e.g., energy savings, reduced labor costs, optimal application of inputs, improved products, and yields), it steadily becomes evident that new initiatives should focus on rendering Precision Agriculture (PA) more accessible to the average farmer. PA leverages on technologies such as the Internet of Things (IoT), earth observation, robotics and positioning systems (e.g., the Global Navigation Satellite System – GNSS - as well as individual positioning systems like GPS, Glonass, Galileo) that allow: from simple data georeferencing to optimal navigation of agricultural machinery to even more complex tasks like Variable Rate Applications. An identified customer pain point is that, from one hand, typical triangulation-based positioning systems are not accurate enough (with errors up to several meters), while on the other hand, high precision positioning systems reaching centimeter-level accuracy, are very costly (up to thousands of euros). Within this paper, a Ground-Based Augmentation System (GBAS) is introduced, that can be adapted to any existing IoT field-sensing station infrastructure. The latter should cover a minimum set of requirements, and in particular, each station should operate as a fixed, obstruction-free towards the sky, energy supplying unit. Station augmentation will allow them to function in pairs with GNSS rovers following the differential GNSS base-rover paradigm. This constitutes a key innovation element for the proposed solution that encompasses differential GNSS capabilities into an IoT field-sensing infrastructure. Integrating this kind of information supports the provision of several additional PA beneficial services such as spatial mapping, route planning, and automatic field navigation of unmanned vehicles (UVs). Right at the heart of the designed system, there is a high-end GNSS toolkit with base-rover variants and Real-Time Kinematic (RTK) capabilities. The GNSS toolkit had to tackle all availability, performance, interfacing, and energy-related challenges that are faced for a real-time, low-power, and reliable in the field operation. Specifically, in terms of performance, preliminary findings exhibit a high rover positioning precision that can even reach less than 10-centimeters. As this precision is propagated to the full dataset collection, it enables tractors, UVs, Android-powered devices, and measuring units to deal with challenging real-world scenarios. The system is validated with the help of Gaiatrons, a mature network of agro-climatic telemetry stations with presence all over Greece and beyond ( > 60.000ha of agricultural land covered) that constitutes part of “gaiasense” (www.gaiasense.gr) smart farming (SF) solution. Gaiatrons constantly monitor atmospheric and soil parameters, thus, providing exact fit to operational requirements asked from modern SF infrastructures. Gaiatrons are ultra-low-cost, compact, and energy-autonomous stations with a modular design that enables the integration of advanced GNSS base station capabilities on top of them. A set of demanding pilot demonstrations has been initiated in Stimagka, Greece, an area with a diverse geomorphological landscape where grape cultivation is particularly popular. Pilot demonstrations are in the course of validating the preliminary system findings in its intended environment, tackle all technical challenges, and effectively highlight the added-value offered by the system in action.

Keywords: GNSS, GBAS, precision agriculture, RTK, smart farming

Procedia PDF Downloads 89
6 The Development of the Geological Structure of the Bengkulu Fore Arc Basin, Western Edge of Sundaland, Sumatra, and Its Relationship to Hydrocarbon Trapping Mechanism

Authors: Lauti Dwita Santy, Hermes Panggabean, Syahrir Andi Mangga

Abstract:

The Bengkulu Basin is part of the Sunda Arc system, which is a classic convergent type margin that occur around the southern rim of the Eurasian continental (Sundaland) plate. The basin is located between deep sea trench (Mentawai Outer Arc high) and the volvanic/ magmatic Arc of the Barisan Mountains Range. To the northwest it is bounded by Padang High, to the northest by Barisan Mountains (Sumatra Fault Zone) to the southwest by Mentawai Fault Zone and to the southeast by Semangko High/ Sunda Strait. The stratigraphic succession and tectonic development can be broadly divided into four stage/ periods, i.e Late Jurassic- Early Cretaceous, Late Eocene-Early Oligocene, Late Oligocene-Early Miocene, Middle Miocene-Late Miocene and Pliocene-Plistocene, which are mainly controlled by the development of subduction activities. The Pre Tertiary Basement consist of sedimentary and shallow water limestone, calcareous mudstone, cherts and tholeiitic volcanic rocks, with Late Jurassic to Early Cretaceous in age. The sedimentation in this basin is depend on the relief of the Pre Tertiary Basement (Woyla Terrane) and occured into two stages, i.e. transgressive stage during the Latest Oligocene-Early Middle Miocene Seblat Formation, and the regressive stage during the Latest Middle Miocene-Pleistocene (Lemau, Simpangaur and Bintunan Formations). The Pre-Tertiary Faults were more intensive than the overlying cover, The Tertiary Rocks. There are two main fault trends can be distinguished, Northwest–Southwest Faults and Northeast-Southwest Faults. The NW-SE fault (Ketaun) are commonly laterally persistent, are interpreted to the part of Sumatran Fault Systems. They commonly form the boundaries to the Pre Tertiary basement highs and therefore are one of the faults elements controlling the geometry and development of the Tertiary sedimentary basins.The Northeast-Southwest faults was formed a conjugate set to the Northwest–Southeast Faults. In the earliest Tertiary and reactivated during the Plio-Pleistocene in a compressive mode with subsequent dextral displacement. The Block Faulting accross these two sets of faults related to approximate North–South compression in Paleogene time and produced a series of elongate basins separated by basement highs in the backarc and forearc region. The Bengkulu basin is interpreted having evolved from pull apart feature in the area southwest of the main Sumatra Fault System related to NW-SE trending in dextral shear.Based on Pyrolysis Yield (PY) vs Total Organic Carbon (TOC) diagram show that Seblat and Lemau Formation belongs to oil and Gas Prone with the quality of the source rocks includes into excellent and good (Lemau Formation), Fair and Poor (Seblat Formation). The fine-grained carbonaceous sediment of the Seblat dan Lemau Formations as source rocks, the coarse grained and carbonate sediments of the Seblat and Lemau Formations as reservoir rocks, claystone bed in Seblat and Lemau Formation as caprock. The source rocks maturation are late immature to early mature, with kerogen type II and III (Seblat Formation), and late immature to post mature with kerogen type I and III (Lemau Formation). The burial history show to 2500 m in depthh with paleo temperature reached 80oC. Trapping mechanism occur during Oligo–Miocene and Middle Miocene, mainly in block faulting system.

Keywords: fore arc, bengkulu, sumatra, sundaland, hydrocarbon, trapping mechanism

Procedia PDF Downloads 538
5 Human Behaviour During an Earthquake: Descriptive Analysis on Indoor Video Recordings

Authors: Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan

Abstract:

The earthquake research literature generally examines emotional, cognitive, and behavioral responses after an earthquake. Studies concerning the behavioral responses to earthquakes reveal that after the earthquake, people either flee in a panic or do not act according to the stereotype that they act irrationally and anti-socially and sometimes give rational and adaptive reactions. However, the rareness of research dealing with human behavior experiencing the earthquake moment makes it necessary to pay particular attention to these behavior patterns. In this direction, this study aims to examine human behavior indoors in case of rising earthquake intensity. In Turkey, located on geography in the earthquake zone, devastating earthquakes took place, such as in "Istanbul" with a magnitude of 7.4 in 1999 and in "Elazığ" with a magnitude of 6.8 in 2020. Occurred recently, the "Kahramanmaraş" earthquake affected 11 provinces, with a magnitude of 7.7 and 7.6 in 2023. In addition, there is expected to be a devastating earthquake in Istanbul, experts warn. For this reason, it is essential to understand human behavior for disaster risk. Management and pre-disaster preparedness to be effective and efficient and to take realistic measures to protect human life. Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan. In this study, which is currently part of a project supported by The Scientific and Technological Council of Turkey (TUBITAK), the indoor recordings during the earthquakes in Elazig on January 24, 2020, and in İzmir on October 30, 2020, are examined, and the people's behavior during the earthquake is analyzed. In this direction, video recordings taken from the YouTube archives of İzmir and Elazığ Disaster and Emergency Management Presidency (AFAD) Directorates and metropolitan municipalities are examined. The researchers have created an observation form in line with the information in the relevant literature to classify people's behavior during an earthquake. It is intended to determine the behavioral patterns by classifying according to the form and video analysis of the people heading toward the door, remaining stable, taking protective measures, turning to people, and engaging in "other" behaviors outside of these behaviors during the earthquake. A total of 60 video analyzes are carried out from Elazığ and İzmir. The descriptive statistic has been used with the SPSS 23.0 package program in the data analysis. It is found that in the event of an increase in the severity of the earthquake, unlike Elazığ, in İzmir, protective action is preferred to the act of remaining stable. In addition, it is observed that with the increase in the earthquake's intensity, women attempt to take more protective action while men head toward the door. In contrast, a rise is observed in the behavior of young people heading toward the door and taking protective actions, while there is a decrease in their behavior directing to people. These findings, unlike the literature, reveal that human behavior during earthquakes cannot be reduced to a single behavior pattern, such as drop-cover-hold-on. The results show that it is necessary to understand the behaviors of individuals during the earthquake and to develop practical policy proposals for combating earthquakes by considering sociocultural, geographical, and demographic variables.

Keywords: descriptive analysis, earthquake, human behaviour, disaster policy.

Procedia PDF Downloads 67
4 An Integrated Multisensor/Modeling Approach Addressing Climate Related Extreme Events

Authors: H. M. El-Askary, S. A. Abd El-Mawla, M. Allali, M. M. El-Hattab, M. El-Raey, A. M. Farahat, M. Kafatos, S. Nickovic, S. K. Park, A. K. Prasad, C. Rakovski, W. Sprigg, D. Struppa, A. Vukovic

Abstract:

A clear distinction between weather and climate is a necessity because while they are closely related, there are still important differences. Climate change is identified when we compute the statistics of the observed changes in weather over space and time. In this work we will show how the changing climate contribute to the frequency, magnitude and extent of different extreme events using a multi sensor approach with some synergistic modeling activities. We are exploring satellite observations of dust over North Africa, Gulf Region and the Indo Gangetic basin as well as dust versus anthropogenic pollution events over the Delta region in Egypt and Seoul through remote sensing and utilize the behavior of the dust and haze on the aerosol optical properties. Dust impact on the retreat of the glaciers in the Himalayas is also presented. In this study we also focus on the identification and monitoring of a massive dust plume that blew off the western coast of Africa towards the Atlantic on October 8th, 2012 right before the development of Hurricane Sandy. There is evidence that dust aerosols played a non-trivial role in the cyclogenesis process of Sandy. Moreover, a special dust event "An American Haboob" in Arizona is discussed as it was predicted hours in advance because of the great improvement we have in numerical, land–atmosphere modeling, computing power and remote sensing of dust events. Therefore we performed a full numerical simulation to that event using the coupled atmospheric-dust model NMME–DREAM after generating a mask of the potentially dust productive regions using land cover and vegetation data obtained from satellites. Climate change also contributes to the deterioration of different marine habitats. In that regard we are also presenting some work dealing with change detection analysis of Marine Habitats over the city of Hurghada, Red Sea, Egypt. The motivation for this work came from the fact that coral reefs at Hurghada have undergone significant decline. They are damaged, displaced, polluted, stepped on, and blasted off, in addition to the effects of climate change on the reefs. One of the most pressing issues affecting reef health is mass coral bleaching that result from an interaction between human activities and climatic changes. Over another location, namely California, we have observed that it exhibits highly-variable amounts of precipitation across many timescales, from the hourly to the climate timescale. Frequently, heavy precipitation occurs, causing damage to property and life (floods, landslides, etc.). These extreme events, variability, and the lack of good, medium to long-range predictability of precipitation are already a challenge to those who manage wetlands, coastal infrastructure, agriculture and fresh water supply. Adding on to the current challenges for long-range planning is climate change issue. It is known that La Niña and El Niño affect precipitation patterns, which in turn are entwined with global climate patterns. We have studied ENSO impact on precipitation variability over different climate divisions in California. On the other hand the Nile Delta has experienced lately an increase in the underground water table as well as water logging, bogging and soil salinization. Those impacts would pose a major threat to the Delta region inheritance and existing communities. There has been an undergoing effort to address those vulnerabilities by looking into many adaptation strategies.

Keywords: remote sensing, modeling, long range transport, dust storms, North Africa, Gulf Region, India, California, climate extremes, sea level rise, coral reefs

Procedia PDF Downloads 459
3 Utilization of Developed Single Sequence Repeats Markers for Dalmatian Pyrethrum (Tanacetum cinerariifolium) in Preliminary Genetic Diversity Study on Natural Populations

Authors: F. Varga, Z. Liber, J. Jakše, A. Turudić, Z. Šatović, I. Radosavljević, N. Jeran, M. Grdiša

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.; Asteraceae), a source of the commercially dominant plant insecticide pyrethrin, is a species endemic to the eastern Adriatic. Genetic diversity of T. cinerariifolium was previously studied using amplified fragment length polymorphism (AFLP) markers. However, microsatellite markers (single sequence repeats - SSRs) are more informative because they are codominant, highly polymorphic, locus-specific, and more reproducible, and thus are most often used to assess the genetic diversity of plant species. Dalmatian pyrethrum is an outcrossing diploid (2n = 18) whose large genome size and high repeatability have prevented the success of the traditional approach to SSR markers development. The advent of next-generation sequencing combined with the specifically developed method recently enabled the development of, to the author's best knowledge, the first set of SSRs for genomic characterization of Dalmatian pyrethrum, which is essential from the perspective of plant genetic resources conservation. To evaluate the effectiveness of the developed SSR markers in genetic differentiation of Dalmatian pyrethrum populations, a preliminary genetic diversity study was conducted on 30 individuals from three geographically distinct natural populations in Croatia (northern Adriatic island of Mali Lošinj, southern Adriatic island of Čiovo, and Mount Biokovo) based on 12 SSR loci. Analysis of molecular variance (AMOVA) by randomization test with 10,000 permutations was performed in Arlequin 3.5. The average number of alleles per locus, observed and expected heterozygosity, probability of deviations from Hardy-Weinberg equilibrium, and inbreeding coefficient was calculated using GENEPOP 4.4. Genetic distance based on the proportion of common alleles (DPSA) was calculated using MICROSAT. Cluster analysis using the neighbor-joining method with 1,000 bootstraps was performed with PHYLIP to generate a dendrogram. The results of the AMOVA analysis showed that the total SSR diversity was 23% within and 77% between the three populations. A slight deviation from Hardy-Weinberg equilibrium was observed in the Mali Lošinj population. Allele richness ranged from 2.92 to 3.92, with the highest number of private alleles observed in the Mali Lošinj population (17). The average observed DPSA between 30 individuals was 0.557. The highest DPSA (0.875) was observed between several pairs of Dalmatian pyrethrum individuals from the Mali Lošinj and Mt. Biokovo populations, and the lowest between two individuals from the Čiovo population. Neighbor-joining trees, based on DPSA, grouped individuals into clusters according to their population affiliation. The separation of Mt. Biokovo clade was supported (bootstrap value 58%), which is consistent with the previous study on AFLP markers, where isolated populations from Mt. Biokovo differed from the rest of the populations. The developed SSR markers are an effective tool for assessing the genetic diversity and structure of natural Dalmatian pyrethrum populations. These preliminary results are encouraging for a future comprehensive study with a larger sample size across the species' range. Combined with the biochemical data, these highly informative markers could help identify potential genotypes of interest for future development of breeding lines and cultivars that are both resistant to environmental stress and high in pyrethrins. Acknowledgment: This work has been supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.) insecticidal potential’- (PyrDiv) (IP-06-2016-9034) and by project KK.01.1.1.01.0005, Biodiversity and Molecular Plant Breeding, at the Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

Keywords: Asteraceae, genetic diversity, genomic SSRs, NGS, pyrethrum, Tanacetum cinerariifolium

Procedia PDF Downloads 91
2 Understanding Patterns of Hard Coral Demographics in Kenyan Reefs to Inform Restoration

Authors: Swaleh Aboud, Mishal Gudka, David Obura

Abstract:

Background: Coral reefs are becoming increasingly vulnerable due to several threats ranging from climate change to overfishing. This has resulted in increased management and conservation efforts to protect reefs from degradation and facilitate recovery. Recruitmentof new individuals are isimportant in the recovery process and critical for the persistence of coral reef ecosystems. Local coral community structure can be influenced by successful recruit settlement, survival, and growth Understanding coral recruitment patterns can help quantify reef resilience and connectivity, establish baselines and track changes and evaluate the effectiveness of reef restoration and conservation efforts. This study will examine the abundance and spatial pattern of coral recruits and how this relates to adult community structure, including the distribution of thermal resistance and sensitive genera and their distribution in different management regimes. Methods: Coral recruit and demography surveys were conducted from 2020 to 2022, covering 35 sites in 19coral reef locations along the Kenyan coast. These included marine parks, reserves, community conservation areas (CMAs), and open access areas from the north (Marereni) to the south (Kisite) coast of Kenya and across different reef habitats. The data was collected through the underwater visual census (UVC) technique. We counted adult corals (>10 cm diameter)of23 selected genera using belt transects (25 by 1 m) and sampling of 1 m2 quadrat (at an interval of 5m) for all coloniesless than 10 cm diameter. The benthic cover was collected using photo quadrats. The surveys were only done during the northeast monsoon season. The data wereanalyzed using the R program to see the distribution patterns and the Kruskal Wallis test to see whether there was a significant difference. Spearman correlation was also applied to assess the relationship between the distribution of coral genera in recruits and adults. Results: A total of 44 different coral genera were recorded for recruits, ranging from 3at Marereni to 30at Watamu Marine Reserve. Recruit densities ranged from 1.2±1.5recruit m-2 (mean±SD) at Likoni to 10.3± 8.4 recruit m-2 at Kisite Marine Park. The overall densityof recruitssignificantly differed between reef locations, with Kisite Marine Park and Reserve and Likonihaving significantly large differences from all the other locations, while Vuma, Watamu, Malindi, and Kilifi had significantly lower differences from all the other locations. The recruit generadensity along the Kenya coastwas divided into two clusters, one of which only included sites inKisite Marine Park. Adult colonies were dominated by Porites massive, Acropora, Platygyra, and Favites, whereas recruits were dominated by Porites branching, Porites massive, Galaxea, and Acropora. However, correlation analysis revealed a statistically significant positive correlation (r=0.81, p<0.05) between recruit and adult coral densities across the 23 coral genera. Marereni, which had the lowest densityof recruits, has only thermallyresistant coral genera, while Kisite Marine Park, with the highest recruit densities, has over 90% thermal sensitive coral genera. A weak positive correlation was found between recruit density and coralline algae, dead standing corals, and turf algae, whereas a weak negative correlation was found between recruit density and bare substrate and macroalgae. Between management regimes, marine reserves were found to have more recruits than no-take zones (marine parks and CMAs) and open access areas, although the difference was not significant. Conclusion: There was a statistically significant difference in the density of recruits between different reef locations along the Kenyan coast. Although the dominating genera of adults and recruits were different, there was a strong positive correlation between their coral communities, which could indicate self-recruitment processes or consistent distance seedings (of the same recruit genera). Sites such as Kisite Marine Park, with high recruit densities but dominated by thermally sensitive genera, will, on the other hand, be adversely affected by future thermal stress. This could imply that reducing the threats to coral reefs such as overfishingcould allow for their natural regeneration and recovery.

Keywords: coral recruits, coral adult size-class, cora demography, resilience

Procedia PDF Downloads 95
1 Sustainable Agricultural and Soil Water Management Practices in Relation to Climate Change and Disaster: A Himalayan Country Experience

Authors: Krishna Raj Regmi

Abstract:

A “Climate change adaptation and disaster risk management for sustainable agriculture” project was implemented in Nepal, a Himalayan country during 2008 to 2013 sponsored jointly by Food and Agriculture Organization (FAO) and United Nations Development Programme (UNDP), Nepal. The paper is based on the results and findings of this joint pilot project. The climate change events such as increased intensity of erratic rains in short spells, trend of prolonged drought, gradual rise in temperature in the higher elevations and occurrence of cold and hot waves in Terai (lower plains) has led to flash floods, massive erosion in the hills particularly in Churia range and drying of water sources. These recurring natural and climate-induced disasters are causing heavy damages through sedimentation and inundation of agricultural lands, crops, livestock, infrastructures and rural settlements in the downstream plains and thus reducing agriculture productivity and food security in the country. About 65% of the cultivated land in Nepal is rainfed with drought-prone characteristics and stabilization of agricultural production and productivity in these tracts will be possible through adoption of rainfed and drought-tolerant technologies as well as efficient soil-water management by the local communities. The adaptation and mitigation technologies and options identified by the project for soil erosion, flash floods and landslide control are on-farm watershed management, sloping land agriculture technologies (SALT), agro-forestry practices, agri-silvi-pastoral management, hedge-row contour planting, bio-engineering along slopes and river banks, plantation of multi-purpose trees and management of degraded waste land including sandy river-bed flood plains. The stress tolerant technologies with respect to drought, floods and temperature stress for efficient utilization of nutrient, soil, water and other resources for increased productivity are adoption of stress tolerant crop varieties and breeds of animals, indigenous proven technologies, mixed and inter-cropping systems, system of rice/wheat intensification (SRI), direct rice seeding, double transplanting of rice, off-season vegetable production and regular management of nurseries, orchards and animal sheds. The alternate energy use options and resource conservation practices for use by local communities are installation of bio-gas plants and clean stoves (Chulla range) for mitigation of green house gas (GHG) emissions, use of organic manures and bio-pesticides, jatropha cultivation, green manuring in rice fields and minimum/zero tillage practices for marshy lands. The efficient water management practices for increasing productivity of crops and livestock are use of micro-irrigation practices, construction of water conservation and water harvesting ponds, use of overhead water tanks and Thai jars for rain water harvesting and rehabilitation of on-farm irrigation systems. Initiation of some works on community-based early warning system, strengthening of met stations and disaster database management has made genuine efforts in providing disaster-tailored early warning, meteorological and insurance services to the local communities. Contingent planning is recommended to develop coping strategies and capacities of local communities to adopt necessary changes in the cropping patterns and practices in relation to adverse climatic and disaster risk conditions. At the end, adoption of awareness raising and capacity development activities (technical and institutional) and networking on climate-induced disaster and risks through training, visits and knowledge sharing workshops, dissemination of technical know-how and technologies, conduct of farmers' field schools, development of extension materials and their displays are being promoted. However, there is still need of strong coordination and linkage between agriculture, environment, forestry, meteorology, irrigation, climate-induced pro-active disaster preparedness and research at the ministry, department and district level for up-scaling, implementation and institutionalization of climate change and disaster risk management activities and adaptation mitigation options in agriculture for sustainable livelihoods of the communities.

Keywords: climate change adaptation, disaster risk management, soil-water management practices, sustainable agriculture

Procedia PDF Downloads 481