Search results for: control and optimization techniques
19065 Ant Lion Optimization in a Fuzzy System for Benchmark Control Problem
Authors: Leticia Cervantes, Edith Garcia, Oscar Castillo
Abstract:
At today, there are several control problems where the main objective is to obtain the best control in the study to decrease the error in the application. Many techniques can use to control these problems such as Neural Networks, PID control, Fuzzy Logic, Optimization techniques and many more. In this case, fuzzy logic with fuzzy system and an optimization technique are used to control the case of study. In this case, Ant Lion Optimization is used to optimize a fuzzy system to control the velocity of a simple treadmill. The main objective is to achieve the control of the velocity in the control problem using the ALO optimization. First, a simple fuzzy system was used to control the velocity of the treadmill it has two inputs (error and error change) and one output (desired speed), then results were obtained but to decrease the error the ALO optimization was developed to optimize the fuzzy system of the treadmill. Having the optimization, the simulation was performed, and results can prove that using the ALO optimization the control of the velocity was better than a conventional fuzzy system. This paper describes some basic concepts to help to understand the idea in this work, the methodology of the investigation (control problem, fuzzy system design, optimization), the results are presented and the optimization is used for the fuzzy system. A comparison between the simple fuzzy system and the optimized fuzzy systems are presented where it can be proving the optimization improved the control with good results the major findings of the study is that ALO optimization is a good alternative to improve the control because it helped to decrease the error in control applications even using any control technique to optimized, As a final statement is important to mentioned that the selected methodology was good because the control of the treadmill was improve using the optimization technique.Keywords: ant lion optimization, control problem, fuzzy control, fuzzy system
Procedia PDF Downloads 39819064 Speed Control of DC Motor Using Optimization Techniques Based PID Controller
Authors: Santosh Kumar Suman, Vinod Kumar Giri
Abstract:
The goal of this paper is to outline a speed controller of a DC motor by choice of a PID parameters utilizing genetic algorithms (GAs), the DC motor is extensively utilized as a part of numerous applications such as steel plants, electric trains, cranes and a great deal more. DC motor could be represented by a nonlinear model when nonlinearities such as attractive dissemination are considered. To provide effective control, nonlinearities and uncertainties in the model must be taken into account in the control design. The DC motor is considered as third order system. Objective of this paper three type of tuning techniques for PID parameter. In this paper, an independently energized DC motor utilizing MATLAB displaying, has been outlined whose velocity might be examined utilizing the Proportional, Integral, Derivative (KP, KI , KD) addition of the PID controller. Since, established controllers PID are neglecting to control the drive when weight parameters be likewise changed. The principle point of this paper is to dissect the execution of optimization techniques viz. The Genetic Algorithm (GA) for improve PID controllers parameters for velocity control of DC motor and list their points of interest over the traditional tuning strategies. The outcomes got from GA calculations were contrasted and that got from traditional technique. It was found that the optimization techniques beat customary tuning practices of ordinary PID controllers.Keywords: DC motor, PID controller, optimization techniques, genetic algorithm (GA), objective function, IAE
Procedia PDF Downloads 41819063 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review
Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari
Abstract:
In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)
Procedia PDF Downloads 39719062 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research
Authors: R. Gupta, P. Jain, S. Das
Abstract:
One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.Keywords: construction planning techniques, time scheduling, resource planning, cost control
Procedia PDF Downloads 48619061 Enhancing the Dynamic Performance of Grid-Tied Inverters Using Manta Ray Foraging Algorithm
Authors: H. E. Keshta, A. A. Ali
Abstract:
Three phase grid-tied inverters are widely employed in micro-grids (MGs) as interphase between DC and AC systems. These inverters are usually controlled through standard decoupled d–q vector control strategy based on proportional integral (PI) controllers. Recently, advanced meta-heuristic optimization techniques have been used instead of deterministic methods to obtain optimum PI controller parameters. This paper provides a comparative study between the performance of the global Porcellio Scaber algorithm (GPSA) based PI controller and Manta Ray foraging optimization (MRFO) based PI controller.Keywords: micro-grids, optimization techniques, grid-tied inverter control, PI controller
Procedia PDF Downloads 13119060 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems
Authors: Zahid Ullah, Atlas Khan
Abstract:
This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms
Procedia PDF Downloads 11119059 Mathematical Programming Models for Portfolio Optimization Problem: A Review
Authors: Mazura Mokhtar, Adibah Shuib, Daud Mohamad
Abstract:
Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.Keywords: portfolio optimization, mathematical programming, multi-objective programming, solution approaches
Procedia PDF Downloads 34619058 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks
Procedia PDF Downloads 40019057 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing
Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane
Abstract:
Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing
Procedia PDF Downloads 29419056 Global Optimization Techniques for Optimal Placement of HF Antennas on a Shipboard
Authors: Mustafa Ural, Can Bayseferogulari
Abstract:
In this work, radio frequency (RF) coupling between two HF antennas on a shipboard platform is minimized by determining an optimal antenna placement. Unlike the other works, the coupling is minimized not only at single frequency but over the whole frequency band of operation. Similarly, GAO and PSO, are used in order to determine optimal antenna placement. Throughout this work, outputs of two optimization techniques are compared with each other in terms of antenna placements and coupling results. At the end of the work, far-field radiation pattern performances of the antennas at their optimal places are analyzed in terms of directivity and coverage in order to see that.Keywords: electromagnetic compatibility, antenna placement, optimization, genetic algorithm optimization, particle swarm optimization
Procedia PDF Downloads 23519055 An Improved Cuckoo Search Algorithm for Voltage Stability Enhancement in Power Transmission Networks
Authors: Reza Sirjani, Nobosse Tafem Bolan
Abstract:
Many optimization techniques available in the literature have been developed in order to solve the problem of voltage stability enhancement in power systems. However, there are a number of drawbacks in the use of previous techniques aimed at determining the optimal location and size of reactive compensators in a network. In this paper, an Improved Cuckoo Search algorithm is applied as an appropriate optimization algorithm to determine the optimum location and size of a Static Var Compensator (SVC) in a transmission network. The main objectives are voltage stability improvement and total cost minimization. The results of the presented technique are then compared with other available optimization techniques.Keywords: cuckoo search algorithm, optimization, power system, var compensators, voltage stability
Procedia PDF Downloads 55019054 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 1419053 An Enhanced Harmony Search (ENHS) Algorithm for Solving Optimization Problems
Authors: Talha A. Taj, Talha A. Khan, M. Imran Khalid
Abstract:
Optimization techniques attract researchers to formulate a problem and determine its optimum solution. This paper presents an Enhanced Harmony Search (ENHS) algorithm for solving optimization problems. The proposed algorithm increases the convergence and is more efficient than the standard Harmony Search (HS) algorithm. The paper discusses the novel techniques in detail and also provides the strategy for tuning the decisive parameters that affects the efficiency of the ENHS algorithm. The algorithm is tested on various benchmark functions, a real world optimization problem and a constrained objective function. Also, the results of ENHS are compared to standard HS, and various other optimization algorithms. The ENHS algorithms prove to be significantly better and more efficient than other algorithms. The simulation and testing of the algorithms is performed in MATLAB.Keywords: optimization, harmony search algorithm, MATLAB, electronic
Procedia PDF Downloads 46219052 Digital Control Techniques for Power Electronic Devices
Authors: Rakesh Krishna, Abhishek Poddar
Abstract:
The paper discusses the work carried out on the implementation of control techniques like Digital Pulse Width Modulation (PWM) and Digital Pulse Fired control(PFC). These techniques are often used in devices like inverters, battery chargers, DC-to-DC converters can also be implemented on household devices like heaters. The advantage being the control and improved life span of device. In case of batteries using these techniques are known to increase the life span of battery in mobiles and other hand-held devices. 8051 microcontroller is used to implement these methods.Thyristors are used for switching operations.Keywords: PWM, SVM, PFC, bidirectional inverters, snubber
Procedia PDF Downloads 57019051 A Comparative Study between Different Techniques of Off-Page and On-Page Search Engine Optimization
Authors: Ahmed Ishtiaq, Maeeda Khalid, Umair Sajjad
Abstract:
In the fast-moving world, information is the key to success. If information is easily available, then it makes work easy. The Internet is the biggest collection and source of information nowadays, and with every single day, the data on internet increases, and it becomes difficult to find required data. Everyone wants to make his/her website at the top of search results. This can be possible when you have applied some techniques of SEO inside your application or outside your application, which are two types of SEO, onsite and offsite SEO. SEO is an abbreviation of Search Engine Optimization, and it is a set of techniques, methods to increase users of a website on World Wide Web or to rank up your website in search engine indexing. In this paper, we have compared different techniques of Onpage and Offpage SEO, and we have suggested many things that should be changed inside webpage, outside web page and mentioned some most powerful and search engine considerable elements and techniques in both types of SEO in order to gain high ranking on Search Engine.Keywords: auto-suggestion, search engine optimization, SEO, query, web mining, web crawler
Procedia PDF Downloads 14719050 Optimization and Simulation Models Applied in Engineering Planning and Management
Authors: Abiodun Ladanu Ajala, Wuyi Oke
Abstract:
Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.Keywords: linear programming, mutation, optimization, simulation
Procedia PDF Downloads 58819049 Second Order Optimality Conditions in Nonsmooth Analysis on Riemannian Manifolds
Authors: Seyedehsomayeh Hosseini
Abstract:
Much attention has been paid over centuries to understanding and solving the problem of minimization of functions. Compared to linear programming and nonlinear unconstrained optimization problems, nonlinear constrained optimization problems are much more difficult. Since the procedure of finding an optimizer is a search based on the local information of the constraints and the objective function, it is very important to develop techniques using geometric properties of the constraints and the objective function. In fact, differential geometry provides a powerful tool to characterize and analyze these geometric properties. Thus, there is clearly a link between the techniques of optimization on manifolds and standard constrained optimization approaches. Furthermore, there are manifolds that are not defined as constrained sets in R^n an important example is the Grassmann manifolds. Hence, to solve optimization problems on these spaces, intrinsic methods are used. In a nondifferentiable problem, the gradient information of the objective function generally cannot be used to determine the direction in which the function is decreasing. Therefore, techniques of nonsmooth analysis are needed to deal with such a problem. As a manifold, in general, does not have a linear structure, the usual techniques, which are often used in nonsmooth analysis on linear spaces, cannot be applied and new techniques need to be developed. This paper presents necessary and sufficient conditions for a strict local minimum of extended real-valued, nonsmooth functions defined on Riemannian manifolds.Keywords: Riemannian manifolds, nonsmooth optimization, lower semicontinuous functions, subdifferential
Procedia PDF Downloads 35919048 Load Management Using Multiple Sequential Load Shaping Techniques
Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi
Abstract:
Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization
Procedia PDF Downloads 31219047 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 6519046 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine
Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu
Abstract:
Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system
Procedia PDF Downloads 22119045 A Review on Parametric Optimization of Casting Processes Using Optimization Techniques
Authors: Bhrugesh Radadiya, Jaydeep Shah
Abstract:
In Indian foundry industry, there is a need of defect free casting with minimum production cost in short lead time. Casting defect is a very large issue in foundry shop which increases the rejection rate of casting and wastage of materials. The various parameters influences on casting process such as mold machine related parameters, green sand related parameters, cast metal related parameters, mold related parameters and shake out related parameters. The mold related parameters are most influences on casting defects in sand casting process. This paper review the casting produced by foundry with shrinkage and blow holes as a major defects was analyzed and identified that mold related parameters such as mold temperature, pouring temperature and runner size were not properly set in sand casting process. These parameters were optimized using different optimization techniques such as Taguchi method, Response surface methodology, Genetic algorithm and Teaching-learning based optimization algorithm. Finally, concluded that a Teaching-learning based optimization algorithm give better result than other optimization techniques.Keywords: casting defects, genetic algorithm, parametric optimization, Taguchi method, TLBO algorithm
Procedia PDF Downloads 72719044 Optimal Hybrid Linear and Nonlinear Control for a Quadcopter Drone
Authors: Xinhuang Wu, Yousef Sardahi
Abstract:
A hybrid and optimal multi-loop control structure combining linear and nonlinear control algorithms are introduced in this paper to regulate the position of a quadcopter unmanned aerial vehicle (UAV) driven by four brushless DC motors. To this end, a nonlinear mathematical model of the UAV is derived and then linearized around one of its operating points. Using the nonlinear version of the model, a sliding mode control is used to derive the control laws of the motor thrust forces required to drive the UAV to a certain position. The linear model is used to design two controllers, XG-controller and YG-controller, responsible for calculating the required roll and pitch to maneuver the vehicle to the desired X and Y position. Three attitude controllers are designed to calculate the desired angular rates of rotors, assuming that the Euler angles are minimal. After that, a many-objective optimization problem involving 20 design parameters and ten objective functions is formulated and solved by HypE (Hypervolume estimation algorithm), one of the widely used many-objective optimization algorithms approaches. Both stability and performance constraints are imposed on the optimization problem. The optimization results in terms of Pareto sets and fronts are obtained and show that some of the design objectives are competing. That is, when one objective goes down, the other goes up. Also, Numerical simulations conducted on the nonlinear UAV model show that the proposed optimization method is quite effective.Keywords: optimal control, many-objective optimization, sliding mode control, linear control, cascade controllers, UAV, drones
Procedia PDF Downloads 7119043 Topology and Shape Optimization of Macpherson Control Arm under Fatigue Loading
Authors: Abolfazl Hosseinpour, Javad Marzbanrad
Abstract:
In this research, the topology and shape optimization of a Macpherson control arm has been accomplished to achieve lighter weight. Present automotive market demands low cost and light weight component to meet the need of fuel efficient and cost effective vehicle. This in turn gives the rise to more effective use of materials for automotive parts which can reduce the mass of vehicle. Since automotive components are under dynamic loads which cause fatigue damage, considering fatigue criteria seems to be essential in designing automotive components. At first, in order to create severe loading condition for control arm, some rough roads are generated through power spectral density. Then, the most critical loading conditions are obtained through multibody dynamics analysis of a full vehicle model. Then, the topology optimization is performed based on fatigue life criterion using HyperMesh software, which resulted to 50 percent mass reduction. In the next step a CAD model is created using CATIA software and shape optimization is performed to achieve accurate dimensions with less mass.Keywords: topology optimization, shape optimization, fatigue life, MacPherson control arm
Procedia PDF Downloads 31519042 Optimized Passive Heating for Multifamily Dwellings
Authors: Joseph Bostick
Abstract:
A method of decreasing the heating load of HVAC systems in a single-dwelling model of a multifamily building, by controlling movable insulation through the optimization of flux, time, surface incident solar radiation, and temperature thresholds. Simulations are completed using a co-simulation between EnergyPlus and MATLAB as an optimization tool to find optimal control thresholds. Optimization of the control thresholds leads to a significant decrease in total heating energy expenditure.Keywords: energy plus, MATLAB, simulation, energy efficiency
Procedia PDF Downloads 17319041 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 64519040 Modern Pedagogy Techniques for DC Motor Speed Control
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
Based on a survey conducted for second and third year students of the electrical engineering department at Maharishi Markandeshwar University, India, it was found that around 92% of students felt that it would be better to introduce a virtual environment for laboratory experiments. Hence, a need was felt to perform modern pedagogy techniques for students which consist of a virtual environment using MATLAB/Simulink. In this paper, a virtual environment for the speed control of a DC motor is performed using MATLAB/Simulink. The various speed control methods for the DC motor include the field resistance control method and armature voltage control method. The performance analysis of the DC motor is hence analyzed.Keywords: DC Motor, field control, pedagogy techniques, speed control, virtual environment, voltage control
Procedia PDF Downloads 44119039 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 9319038 Improved Whale Algorithm Based on Information Entropy and Its Application in Truss Structure Optimization Design
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Given the limitations of the original whale optimization algorithm (WAO) in local optimum and low convergence accuracy in truss structure optimization problems, based on the fundamental whale algorithm, an improved whale optimization algorithm (SWAO) based on information entropy is proposed. The information entropy itself is an uncertain measure. It is used to control the range of whale searches in path selection. It can overcome the shortcomings of the basic whale optimization algorithm (WAO) and can improve the global convergence speed of the algorithm. Taking truss structure as the optimization research object, the mathematical model of truss structure optimization is established; the cross-sectional area of truss is taken as the design variable; the objective function is the weight of truss structure; and an improved whale optimization algorithm (SWAO) is used for optimization design, which provides a new idea and means for its application in large and complex engineering structure optimization design.Keywords: information entropy, structural optimization, truss structure, whale algorithm
Procedia PDF Downloads 24719037 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method
Authors: Ibrahim Cicek, Melike Nikbay
Abstract:
Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.Keywords: optimization, e-powertrain, optimal control, electric vehicles
Procedia PDF Downloads 13019036 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 12