Search results for: concentration stresses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5559

Search results for: concentration stresses

5379 Optimization of Process Parameters Affecting Biogas Production from Organic Fraction of Municipal Solid Waste via Anaerobic Digestion

Authors: B. Sajeena Beevi, P. P. Jose, G. Madhu

Abstract:

The aim of this study was to obtain the optimal conditions for biogas production from anaerobic digestion of organic fraction of municipal solid waste (OFMSW) using response surface methodology (RSM). The parameters studied were initial pH, substrate concentration and total organic carbon (TOC). The experimental results showed that the linear model terms of initial pH and substrate concentration and the quadratic model terms of the substrate concentration and TOC had significant individual effect (p < 0.05) on biogas yield. However, there was no interactive effect between these variables (p > 0.05). The highest level of biogas produced was 53.4 L/Kg VS at optimum pH, substrate concentration and total organic carbon of 6.5, 99gTS/L, and 20.32 g/L respectively.

Keywords: anaerobic digestion, biogas, optimization, response surface methodology

Procedia PDF Downloads 398
5378 Theoretical Stress-Strain Model for Confined Concrete by Rectangular Reinforcement

Authors: Mizam Dogan, Hande Gökdemir

Abstract:

In reinforced concrete elements, reinforcement steel bars are placed in concrete both longitudinal and lateral directions. The lateral reinforcement (called as confinement) which is used for confining circular RC elements is in a spiral shape. If the cross section of RC element is rectangular, stirrups should be rectangular too. At very high compressive stresses concrete will reach its limit strain value and therefore concrete outside the lateral reinforcement, which is not confined, will crush and start to spell. At this stage, concrete core of the RC element tries to expand laterally as a reason of high Poisson’s ratio value of concrete. Such a deformation is prevented by the lateral reinforcement which applies lateral passive pressure on concrete. At very high compressive stresses, the strength of reinforced column member rises to four times σ 2. This increase in strength of member is related to the properties of rectangular stirrups. In this paper, effect of stirrup step spacing to column behavior is calculated and presented confined concrete model is proved by numerical solutions.

Keywords: confined concrete, concrete column, stress-strain, stirrup, solid, frame

Procedia PDF Downloads 420
5377 Effect of Nanoparticles Concentration, pH and Agitation on Bioethanol Production by Saccharomyces cerevisiae BY4743: An Optimization Study

Authors: Adeyemi Isaac Sanusi, Gueguim E. B. Kana

Abstract:

Nanoparticles have received attention of the scientific community due to their biotechnological potentials. They exhibit advantageous size, shape and concentration-dependent catalytic, stabilizing, immunoassays and immobilization properties. This study investigates the impact of metallic oxide nanoparticles (NPs) on ethanol production by Saccharomyces cerevisiae BY4743. Nine different nanoparticles were synthesized using precipitation method and microwave treatment. The nanoparticles synthesized were characterized by Fourier Transform Infra-Red spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fermentation processes were carried out at varied NPs concentrations (0 – 0.08 wt%). Highest ethanol concentrations were achieved after 24 h using Cobalt NPs (5.07 g/l), Copper NPs (4.86 g/l) and Manganese NPs (4.74 g/l) at 0.01 wt% NPs concentrations, which represent 13%, 8.7% and 5.4% increase respectively over the control (4.47 g/l). The lowest ethanol concentration (0.17 g/l) was obtained when 0.08 wt% of Silver NPs was used. And lower ethanol concentrations were observed at higher NPs concentration. Ethanol concentration decrease after 24 h for all the processes. In all set up with NPs, the pH was observed to be stable and the stability was directly proportional to nanoparticles concentrations. These findings suggest that the presence of some of the NPs in the bioprocesses has catalytic and pH stabilizing potential. Ethanol production by Saccharomyces cerevisiae BY4743 was enhanced in the presence of Cobalt NPs, Copper NPs and Manganese NPs. Optimization study using response surface methodology (RSM) will further elucidate the impact of these nanoparticles on bioethanol production.

Keywords: agitation, bioethanol, nanoparticles concentration, optimization, pH value

Procedia PDF Downloads 156
5376 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: vacuum glazing, stress, vacuum insulation, support pillars

Procedia PDF Downloads 158
5375 Analysis of Stress Concentration of a Hybrid Composite Material with Centre Circular Hole Subjected to Tensile Loading

Authors: C. Shalini Devi

Abstract:

This work describes the stress concentration in a rectangular specimen with a circular hole made up of hybrid composite material with the combination of glass/carbon with epoxy. The arrangements of cross ply lamina in the sequence of alternative carbon and glass, using carbon fiber in panel, gives more strength to the structure as the carbon properties are higher when compared to glass. Typical aircraft and automobile components are with cut-outs, and such cut-outs reduce the weight of the aircraft according to the weight reduction law and also they reduce the bulking load carrying capacity. Experimental investigations were carried out using three specimens as per ASTM D5766 and three specimens as per ASTM D3039 in the Universal Testing Machine. Stress concentration in the rectangular specimen with a hole is also analysed using FEA and comparing the results.

Keywords: composite, stress concentration, finite element analysis, tensile strength

Procedia PDF Downloads 423
5374 Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane

Authors: Aimad Oulebsir, Toufik Chaabane, Sivasankar Venkatramann, Andre Darchen, Rachida Maachi

Abstract:

The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature.

Keywords: nanofiltration, concentration polarisation, chromium salts, mass transfer

Procedia PDF Downloads 258
5373 Buckling Analysis of Laminated Composite Plates with Central Holes

Authors: Pratyasha Patnaik, A. V. Asha

Abstract:

Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load

Keywords: buckling, composite plates, cut-out, stress

Procedia PDF Downloads 305
5372 The Effect of Salinity and Bentonite on the Hydrous Behaviors and Sodium Content of the Broad Bean Vicia faba var. Semilla violeta

Authors: T. Nouri, Y. H. A. Reguieg, A. Latigui, A. Ouaini

Abstract:

Salinity is considered as the most important abiotic factor. It limits growth and productivity of plants and degrades agricultural soils and ecosystem in arid and semi arid area. The study was conducted on Vicia faba L.’Semilla violeta’. Sowing was realized in plastic pots containing sandy substrates of bentonite 0, 3, 5, 7, and 10% associated with abiotic stresses of salinity corresponding to doses of NaCl, MgCl2 and MgSO4 20, 40, and 60 mmol/l respectively. The purpose of this work is to study the combined effect of salinity and of bentonite on a plant commonly cultivated in Algeria the broad bean Vicia faba has through the chemical and hydrous parameter. The results show that the combined action of strong concentration salt (40 and 60 mmol/l) and of bentonite a reduction of the relative content water reveals, against an increase in the content of hydrous deficit and of sodium. The growth of broad bean is significant in the substrate amended to 5 % of bentonite.

Keywords: salinity, bentonite, Vicia faba L, sodium content, hydrous parameters

Procedia PDF Downloads 333
5371 Enhancement of Dissolved Oxygen Concentration during the Electrocoagulation Process Using an Innovative Flow Column: Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar

Abstract:

Dissolved oxygen (DO) plays a key role in the electrocoagulation process (EC) as it oxidizes the heavy metals, ammonia, and cyanide into other forms that can be removed easily from water. Hence, many of the previous investigations used external aerators to provide the required DO inside EC reactors, especially when the water being treated had a low DO (such as leachate and high organic content waters), or when the DO depleted during the EC treatment. Although the external aeration process effectively enhances the DO concentration, it has a significant impact on energy consumption. Thus, the present project aims to fill a part of this gap in the literature by an innovative use of perforated flow columns in the design of an EC reactor (ECR1). In order to investigate the performance of ECR1, water samples with a controlled DO concentration were pumped at different flow rates (110, 220, and 440 ml/min) to the ECR1 for 10 min. The obtained results demonstrated that the ECR1 increased the DO concentration from 5.0 to 9.54, 10.53, and 11.0 mg/L, which is equivalent to 90.8%, 110.6%, and 120% at flow rates of 110, 220, and 440 mL/min respectively.

Keywords: flow column, electrocoagulation, dissolved oxygen, water treatment

Procedia PDF Downloads 313
5370 Effectiveness of Control Measures for Ambient Fine Particulate Matters Concentration Improvement in Taiwan

Authors: Jiun-Horng Tsai, Shi-Jie, Nieh

Abstract:

Fine particulate matter (PM₂.₅) has become an important issue all over the world over the last decade. Annual mean PM₂.₅ concentration has been over the ambient air quality standard of PM₂.₅ (annual average concentration as 15μg/m³) which adapted by Taiwan Environmental Protection Administration (TEPA). TEPA, therefore, has developed a number of air pollution control measures to improve the ambient concentration by reducing the emissions of primary fine particulate matter and the precursors of secondary PM₂.₅. This study investigated the potential improvement of ambient PM₂.₅ concentration by the TEPA program and the other scenario for further emission reduction on various sources. Four scenarios had been evaluated in this study, including a basic case and three reduction scenarios (A to C). The ambient PM₂.₅ concentration was evaluated by Community Multi-scale Air Quality modelling system (CMAQ) ver. 4.7.1 along with the Weather Research and Forecasting Model (WRF) ver. 3.4.1. The grid resolutions in the modelling work are 81 km × 81 km for domain 1 (covers East Asia), 27 km × 27 km for domain 2 (covers Southeast China and Taiwan), and 9 km × 9 km for domain 3 (covers Taiwan). The result of PM₂.₅ concentration simulation in different regions of Taiwan shows that the annual average concentration of basic case is 24.9 μg/m³, and are 22.6, 18.8, and 11.3 μg/m³, respectively, for scenarios A to C. The annual average concentration of PM₂.₅ would be reduced by 9-55 % for those control scenarios. The result of scenario C (the emissions of precursors reduce to allowance levels) could improve effectively the airborne PM₂.₅ concentration to attain the air quality standard. According to the results of unit precursor reduction contribution, the allowance emissions of PM₂.₅, SOₓ, and NOₓ are 16.8, 39, and 62 thousand tons per year, respectively. In the Kao-Ping air basin, the priority for reducing precursor emissions is PM₂.₅ > NOₓ > SOₓ, whereas the priority for reducing precursor emissions is PM₂.₅ > SOₓ > NOₓ in others area. The result indicates that the target pollutants that need to be reduced in different air basin are different, and the control measures need to be adapted to local conditions.

Keywords: airborne PM₂.₅, community multi-scale air quality modelling system, control measures, weather research and forecasting model

Procedia PDF Downloads 113
5369 Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass

Authors: Martin Botz, Michael Kraus, Geralt Siebert

Abstract:

The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass.

Keywords: glass breakage, laminated glass, relaxation test, viscoelasticity

Procedia PDF Downloads 96
5368 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor

Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan

Abstract:

This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.

Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production

Procedia PDF Downloads 149
5367 Effect of Sodium Chloride Concentration and Degree of Neutralization on the Structure and Dynamics of Poly(Methacrylic Acid) (PMA) in Dilute Aqueous Solutions – a Molecular Dynamics Simulations Study

Authors: Abhishek Kumar Gupta

Abstract:

Atomistic Molecular Dynamics (MD) Simulations have been performed to study the effect of monovalent salt i.e. NaCl concentration (Cs) and chain degree of neutralization (f) on the structure and dynamics of anionic poly(methacrylic acid) (PMA) in dilute aqueous solutions. In the present study, the attention is to unveil the conformational structure, hydrogen-bonding, local polyion-counterion structure, h-bond dynamics, chain dynamics and thermodynamic enthalpy of solvation of a-PMA in dilute aqueous solutions as a function of salt concentration, Cs and f. The results have revealed that at low salt concentration, the conformational radius of gyration (Rg) increases and then decreases reaching a maximum in agreement with the reported light scattering experimental results. The Rg at f = 1 shows a continual decrease and acquire a plateau value at higher salt concentration in agreement with results obtained by light scattering experiments. The radial distribution functions between PMA, salt and water atoms has been computed with respect to atom and centre-of-mass to understand the intermolecular structure in detail. The results pertaining to PMA chain conformations and hydrogen bond autocorrelation function showcasing the h-bond dynamics will be presented. The results pertaining to chain dynamics will be presented. The results pertaining to counterion condensation on the PMA chain shows greater condensation of Na+ ions on to the carboxylate ions with increase in salt concentration. Moreover, the solvation enthalpy of the system as a function of salt concentration will be presented.

Keywords: conformations, molecular dynamics simulations, NaCl concentration, radial distribution functions

Procedia PDF Downloads 78
5366 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 140
5365 Finite Element Modeling of Aortic Intramural Haematoma Shows Size Matters

Authors: Aihong Zhao, Priya Sastry, Mark L Field, Mohamad Bashir, Arvind Singh, David Richens

Abstract:

Objectives: Intramural haematoma (IMH) is one of the pathologies, along with acute aortic dissection, that present as Acute Aortic Syndrome (AAS). Evidence suggests that unlike aortic dissection, some intramural haematomas may regress with medical management. However, intramural haematomas have been traditionally managed like acute aortic dissections. Given that some of these pathologies may regress with conservative management, it would be useful to be able to identify which of these may not need high risk emergency intervention. A computational aortic model was used in this study to try and identify intramural haematomas with risk of progression to aortic dissection. Methods: We created a computational model of the aorta with luminal blood flow. Reports in the literature have identified 11 mm as the radial clot thickness that is associated with heightened risk of progression of intramural haematoma. Accordingly, haematomas of varying sizes were implanted in the modeled aortic wall to test this hypothesis. The model was exposed to physiological blood flows and the stresses and strains in each layer of the aortic wall were recorded. Results: Size and shape of clot were seen to affect the magnitude of aortic stresses. The greatest stresses and strains were recorded in the intima of the model. When the haematoma exceeded 10 mm in all dimensions, the stress on the intima reached breaking point. Conclusion: Intramural clot size appears to be a contributory factor affecting aortic wall stress. Our computer simulation corroborates clinical evidence in the literature proposing that IMH diameter greater than 11 mm may be predictive of progression. This preliminary report suggests finite element modelling of the aortic wall may be a useful process by which to examine putative variables important in predicting progression or regression of intramural haematoma.

Keywords: intramural haematoma, acute aortic syndrome, finite element analysis,

Procedia PDF Downloads 409
5364 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates

Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria

Abstract:

An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.

Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model

Procedia PDF Downloads 82
5363 Plasma Selenium Concentration and Polymorphism of Selenoprotein and Prostate Cancer

Authors: Yu-Mei Hsueh, Cheng-Shiuan Tsai, Chao-Yuan Huang

Abstract:

Prostate Cancer (PC) is a malignant tumor originated in prostate and is a second common male’s cancer in the world. Incidence of PC in Asia countries, have still been rising over the past few decades. As an antioxidant, selenium can slow down prostate cancer tumor progression, but the association between plasma selenium levels and risk of aggressive prostate cancer may be modified by different genotype of selenoprotein. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinaty total arsenic, and prostate cancer. Two hundred ninety five pathologically-confirmed cases of PC and 295 cancer-free controls were individually matched to case subjects by age (± 5 years) were recruited from Department of Urology of National Taiwan University Hospital, Taipei Municipal Wan Fang Hospital and Taipei Medical University Hospital. Personal interview and biospeciment of urine and blood collection from participants were conducted by well-trained interviewers after participants’ informed consent was obtained. Plasma selenium was measured by an inductively coupled plasma mass. Urinary arsenic concentration was detected using high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of SEPP1rs3797310 and SEP15 rs5859 were determined using polymerase chain reaction-restriction fragment length polymorphism method. The higher plasma selenium was the lower OR of PC with a dose-response relationship. Prostate cancer patients with high plasma selenium had low tumor stage and grade. Participants carried SEPP1rs3797310 CT+TT genotype compared to those with CC genotype had a lower OR of PC in crude model; then this relationship was disappeared after confounder was adjusted. Prostate cancer patients with high urinary total arsenic concentration had high tumor stage and grade. Urinary total arsenic concentration was significantly positively related with plasma selenium and prostate specific antigen concentration. Participants with lower plasma selenium concentration and higher urinary total arsenic concentration compared to those with higher plasma selenium concentration and lower urinary total arsenic concentration had a higher OR of PC with a dose-response relationship.

Keywords: prostate cancer, plasma selenium concentration, urinary arsenic concentration, prostate specific antigen

Procedia PDF Downloads 434
5362 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato

Authors: M. J. Falade

Abstract:

Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.

Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity

Procedia PDF Downloads 249
5361 Determination of Stresses in Vlasov Beam Sections

Authors: Semih Erdogan

Abstract:

In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.

Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties

Procedia PDF Downloads 22
5360 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods

Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass

Abstract:

In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.

Keywords: photoelasticity, stress, load, finite element

Procedia PDF Downloads 256
5359 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: pollution, printing industry, simple linear regression analysis, wastewater

Procedia PDF Downloads 210
5358 Stress Variation around a Circular Hole in Functionally Graded Plate under Bending

Authors: Parveen K. Saini, Mayank Kushwaha

Abstract:

The influence of material property variation on stress concentration factor (SCF) due to the presence of a circular hole in a functionally graded material (FGM) plate is studied in this paper. A numerical method based on complex variable theory of elasticity is used to investigate the problem. To achieve the material property, variation plate is decomposed into a number of rings. In this research work, Young's modulus is assumed to be varying exponentially and it is found that stress concentration factor can be reduced by increasing Young’s modulus progressively away from the hole.

Keywords: stress concentration, circular hole, FGM plate, bending

Procedia PDF Downloads 274
5357 Analysis of Determinate and Indeterminate Structures: Applications of Non-Economic Structure

Authors: Toral Khalpada, Kanhai Joshi

Abstract:

Generally, constructions of structures built in India are indeterminate structures. The purpose of this study is to investigate the application of a structure that is proved to be non-economical. The testing practice involves the application of different types of loads on both, determinate and indeterminate structure by computing it on a software system named Staad and also inspecting them practically on the construction site, analyzing the most efficient structure and diagnosing the utilization of the structure which is not so beneficial as compared to other. Redundant structures (indeterminate structure) are found to be more reasonable. All types of loads were applied on the beams of both determinate and indeterminate structures parallelly on the software and the same was done on the site practically which proved that maximum stresses in statically indeterminate structures are generally lower than those in comparable determinate structures. These structures are found to have higher stiffness resulting in lesser deformations so indeterminate structures are economical and are better than determinate structures to use for construction. On the other hand, statically determinate structures have the benefit of not producing stresses because of temperature changes. Therefore, our study tells that indeterminate structure is more beneficial but determinate structure also has used as it can be used in many areas; it can be used for the construction of two hinged arch bridges where two supports are sufficient and where there is no need for expensive indeterminate structure. Further investigation is needed to contrive more implementation of the determinate structure.

Keywords: construction, determinate structure, indeterminate structure, stress

Procedia PDF Downloads 187
5356 Removal of Maxilon Red Dye by Adsorption and Photocatalysis: Optimum Conditions, Equilibrium, and Kinetic Studies

Authors: Aid Asma, Dahdouh Nadjib, Amokrane Samira, Ladjali Samir, Nibou Djamel

Abstract:

The present work has for main objective the elimination of the textile dye Maxilon Red (MR) by two processes, adsorption on activated clay followed by photocatalysis in presence of ZnO as a photocatalyst. The influence of the physical parameters like the initial pH, adsorbent dose of the activated clay, the MR concentration and temperature has been studied. The best adsorption yield occurs at neutral pH ~ 7 within 60 min with an uptake percentage of 97% for a concentration of 25 mg L⁻¹ and a dose of 0.5 g L⁻¹. The adsorption data were suitably fitted by the Langmuir model with a maximum capacity of 176 mg g⁻¹. The MR adsorption is well described by the pseudo second order kinetic. The second part of this work was dedicated to the photocatalytic degradation onto ZnO under solar irradiation of the residual MR concentration, remained after adsorption. The effect of ZnO dose and MR concentration has also been investigated. The parametric study showed that the elimination is very effective by this process, based essentially on the in situ generation of free radicals *OH which are non-selective and very reactive. The photodegradation process follows a first order kinetic model according to the Langmuir-Hinshelwood model.

Keywords: maxilon red, adsorption, photodegradation, ZnO, coupling

Procedia PDF Downloads 155
5355 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield stress of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigate that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 240
5354 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process

Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei

Abstract:

Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, emulsifying salt, rheology, texture

Procedia PDF Downloads 409
5353 Effect of the Aluminium Concentration on the Laser Wavelength of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Samir Bentata, Fatima Bendahma

Abstract:

We have numerically investigated the effect of Aluminium concentration on the the laser wavelength of random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) with intentional correlated disorder. The method is based on Airy function formalism and the transfer-matrix technique. We discuss the impact of the Aluminium concentration associate to the structure profile on the laser wavelengths.

Keywords: superlattices, correlated disorder, transmission coefficient, laser wavelength

Procedia PDF Downloads 308
5352 A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification

Authors: Guilherme F. Guimaraes, Alfredo R. De Faria, Ronnie R. Rego, Andre L. R. D'Oliveira

Abstract:

The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed.

Keywords: plasticity, residual stress, finite element method, manufacturing

Procedia PDF Downloads 176
5351 Concentration of Some Hazardous Metals (Cd, Pb and Ni) in Egg Samples Analysed from Poultry Farms Located near Automechanics Workshops, Industrial Areas and Roadsides in Kano and Kaduna

Authors: M. I. Mohammed, A. M. Sani, A. S. Bayero

Abstract:

The aim of this work is to study the effect of farm site location by determining the levels of hazardous metals in poultry eggs samples collected near auto mechanics, industrial areas and roadsides in Kaduna and Kano States of Nigeria. Atomic absorption spectrophotometer was used for the analysis of the metals. The mean concentration ranges of the metals analysed in egg white and egg yolk were Pb: 0.05-0.10mgkg⁻¹, Ni: 0.10-0.30mgkg⁻¹ and Cd: not detected -0.03mgkg⁻¹. It was concluded that farm site locations has very low significant effect on the concentration of hazardous metals level.

Keywords: albumen, Egg, hazardous metals, poultry farms

Procedia PDF Downloads 233
5350 Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant

Authors: Eyyüp Murat Karakurt, Yan Huang, Mehmet Kaya, Hüseyin Demirtaş, Alper İncesu

Abstract:

In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys.

Keywords: Nb concentration, porosity level, powder metallurgy, The β phase

Procedia PDF Downloads 229