Search results for: compressible%20flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87

Search results for: compressible%20flow

57 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD

Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil

Abstract:

In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.

Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories

Procedia PDF Downloads 363
56 2D RF ICP Torch Modelling with Fluid Plasma

Authors: Mokhtar Labiod, Nabil Ikhlef, Keltoum Bouherine, Olivier Leroy

Abstract:

A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

Keywords: direct-coupled model, magnetohydrodynamic, modelling, plasma torch simulation

Procedia PDF Downloads 403
55 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling

Authors: Vishnu Asokan, Zaid M. Paloba

Abstract:

Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.

Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution

Procedia PDF Downloads 111
54 Far-Field Acoustic Prediction of a Supersonic Expanding Jet Using Large Eddy Simulation

Authors: Jesus Ruano, Asensi Oliva

Abstract:

The hydrodynamic field generated by a jet expansion is computed via three dimensional compressible Large Eddy Simulation (LES). Finite Volume Method (FVM) will be the discretization used during this simulation as well as hybrid schemes based on Kinetic Energy Preserving (KEP) schemes and up-winding Godunov based schemes with instabilities detectors. Velocity and pressure fields will be stored at different surfaces near the jet, but far enough to enclose all the fluctuations, in order to use them as input for the acoustic solver. The acoustic field is obtained in the far-field region at several locations by means of a hybrid method based on Ffowcs-Williams and Hawkings (FWH) equation. This equation will be formulated in the spectral domain, via Fourier Transform of the acoustic sources, which are modeled from the results of the initial simulation. The obtained results will allow the study of the broadband noise generated as well as sound directivities.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, jet noise

Procedia PDF Downloads 274
53 Desktop High-Speed Aerodynamics by Shallow Water Analogy in a Tin Box for Engineering Students

Authors: Etsuo Morishita

Abstract:

In this paper, we show shallow water in a tin box as an analogous simulation tool for high-speed aerodynamics education and research. It is customary that we use a water tank to create shallow water flow. While a flow in a water tank is not necessarily uniform and is sometimes wavy, we can visualize a clear supercritical flow even when we move a body manually in stationary water in a simple shallow tin box. We can visualize a blunt shock wave around a moving circular cylinder together with a shock pattern around a diamond airfoil. Another interesting analogous experiment is a hydrodynamic shock tube with water and tea. We observe the contact surface clearly due to color difference of the two liquids those are invisible in the real gas dynamics experiment. We first revisit the similarities between high-speed aerodynamics and shallow water hydraulics. Several educational and research experiments are then introduced for engineering students. Shallow water experiments in a tin box simulate properly the high-speed flows.

Keywords: aerodynamics compressible flow, gas dynamics, hydraulics, shock wave

Procedia PDF Downloads 271
52 3D Numerical Studies on External Aerodynamics of a Flying Car

Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar

Abstract:

The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.

Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane

Procedia PDF Downloads 392
51 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle-based method, hyper-elasticity, analysis of stability

Procedia PDF Downloads 312
50 Unsteadiness Effects on Variable Thrust Nozzle Performance

Authors: A. M. Tahsini, S. Tadayon Mousavi

Abstract:

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design.

Keywords: nozzle, numerical study, unsteady, variable thrust

Procedia PDF Downloads 321
49 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia PDF Downloads 368
48 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm

Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot

Abstract:

The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.

Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump

Procedia PDF Downloads 122
47 Interaction between Unsteady Supersonic Jet and Vortex Rings

Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya

Abstract:

The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.

Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring

Procedia PDF Downloads 443
46 Resolution and Experimental Validation of the Asymptotic Model of a Viscous Laminar Supersonic Flow around a Thin Airfoil

Authors: Eddegdag Nasser, Naamane Azzeddine, Radouani Mohammed, Ensam Meknes

Abstract:

In this study, we are interested in the asymptotic modeling of the two-dimensional stationary supersonic flow of a viscous compressible fluid around wing airfoil. The aim of this article is to solve the partial differential equations of the flow far from the leading edge and near the wall using the triple-deck technique is what brought again in precision according to the principle of least degeneration. In order to validate our theoretical model, these obtained results will be compared with the experimental results. The comparison of the results of our model with experimentation has shown that they are quantitatively acceptable compared to the obtained experimental results. The experimental study was conducted using the AF300 supersonic wind tunnel and a NACA Reduced airfoil model with two pressure Taps on extrados. In this experiment, we have considered the incident upstream supersonic Mach number over a dissymmetric NACA airfoil wing. The validation and the accuracy of the results support our model.

Keywords: supersonic, viscous, triple deck technique, asymptotic methods, AF300 supersonic wind tunnel, reduced airfoil model

Procedia PDF Downloads 201
45 CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers

Authors: Nader Pourmahmoud, Amir Hassanzadeh

Abstract:

This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment.

Keywords: energy separation, inlet pressure, numerical simulation, vortex chamber, vortex tube

Procedia PDF Downloads 344
44 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan

Abstract:

Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 215
43 Hybrid Direct Numerical Simulation and Large Eddy Simulating Wall Models Approach for the Analysis of Turbulence Entropy

Authors: Samuel Ahamefula

Abstract:

Turbulent motion is a highly nonlinear and complex phenomenon, and its modelling is still very challenging. In this study, we developed a hybrid computational approach to accurately simulate fluid turbulence phenomenon. The focus is coupling and transitioning between Direct Numerical Simulation (DNS) and Large Eddy Simulating Wall Models (LES-WM) regions. In the framework, high-order fidelity fluid dynamical methods are utilized to simulate the unsteady compressible Navier-Stokes equations in the Eulerian format on the unstructured moving grids. The coupling and transitioning of DNS and LES-WM are conducted through the linearly staggered Dirichlet-Neumann coupling scheme. The high-fidelity framework is verified and validated based on namely, DNS ability for capture full range of turbulent scales, giving accurate results and LES-WM efficiency in simulating near-wall turbulent boundary layer by using wall models.

Keywords: computational methods, turbulence modelling, turbulence entropy, navier-stokes equations

Procedia PDF Downloads 63
42 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 129
41 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding

Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen

Abstract:

Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.

Keywords: boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control

Procedia PDF Downloads 334
40 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: unsteady flow, axial turbine, wake, aerodynamic force, loss

Procedia PDF Downloads 271
39 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju

Abstract:

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Keywords: bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns

Procedia PDF Downloads 332
38 Aerodynamic Design Optimization of Ferrari F430 Flying Car with Enhanced Takeoff Performance

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, Abhimanyu Pugazhandhi, V. R. Sanal Kumar

Abstract:

The designer of any flying car has the major concern on the creation of upward force with low takeoff velocity, with minimum drag, coupled with better stability and control warranting its overall high performance both in road and air. In this paper, 3D numerical simulations of external flow of a Ferrari F430 fitted with different NACA series rectangular wings have been carried out for finding the best aerodynamic design option in road and air. The principle that allows a car to rise off the ground by creating lift using deployable wings with desirable lifting characteristics is the main theme of our paper. Additionally, the car body is streamlined in accordance with the speed range. Further, the rounded and tapered shape of the top of the car is designed to slice through the air and minimize the wind resistance. The 3D SST k-ω turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies, we have conjectured that Ferrari F430 can be converted into a lucrative flying car with best fit NACA wing through a proper aerodynamic design optimization.

Keywords: aerodynamics of flying car, air taxi, Ferrari F430, roadable airplane

Procedia PDF Downloads 182
37 Computational Aerodynamic Shape Optimisation Using a Concept of Control Nodes and Modified Cuckoo Search

Authors: D. S. Naumann, B. J. Evans, O. Hassan

Abstract:

This paper outlines the development of an automated aerodynamic optimisation algorithm using a novel method of parameterising a computational mesh by employing user–defined control nodes. The shape boundary movement is coupled to the movement of the novel concept of the control nodes via a quasi-1D-linear deformation. Additionally, a second order smoothing step has been integrated to act on the boundary during the mesh movement based on the change in its second derivative. This allows for both linear and non-linear shape transformations dependent on the preference of the user. The domain mesh movement is then coupled to the shape boundary movement via a Delaunay graph mapping. A Modified Cuckoo Search (MCS) algorithm is used for optimisation within the prescribed design space defined by the allowed range of control node displacement. A finite volume compressible NavierStokes solver is used for aerodynamic modelling to predict aerodynamic design fitness. The resulting coupled algorithm is applied to a range of test cases in two dimensions including the design of a subsonic, transonic and supersonic intake and the optimisation approach is compared with more conventional optimisation strategies. Ultimately, the algorithm is tested on a three dimensional wing optimisation case.

Keywords: mesh movement, aerodynamic shape optimization, cuckoo search, shape parameterisation

Procedia PDF Downloads 305
36 Extension-Torsion-Inflation Coupling in Compressible Magnetoelastomeric Tubes with Helical Magnetic Anisotropy

Authors: Darius Diogo Barreto, Ajeet Kumar, Sushma Santapuri

Abstract:

We present an axisymmetric variational formulation for coupled extension-torsion-inflation deformation in magnetoelastomeric thin tubes when both azimuthal and axial magnetic fields are applied. The tube's material is assumed to have a preferred magnetization direction which imparts helical magnetic anisotropy to the tube. We have also derived the expressions of the first derivative of free energy per unit tube's undeformed length with respect to various imposed strain parameters. On applying the thin tube limit, the two nonlinear ordinary differential equations to obtain the in-plane radial displacement and radial component of the Lagrangian magnetic field get converted into a set of three simple algebraic equations. This allows us to obtain simple analytical expressions in terms of the applied magnetic field, magnetization direction, and magnetoelastic constants, which tell us how these parameters can be tuned to generate positive/negative Poisson's effect in such tubes. We consider both torsionally constrained and torsionally relaxed stretching of the tube. The study can be useful in designing magnetoelastic tubular actuators.

Keywords: nonlinear magnetoelasticity, extension-torsion coupling, negative Poisson's effect, helical anisotropy, thin tube

Procedia PDF Downloads 92
35 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method

Procedia PDF Downloads 367
34 Field Tests and Numerical Simulation of Tunis Soft Soil Improvement Using Prefabricated Vertical Drains

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

This paper presents a case study of “Radès la Goulette” bridge project using the technique of prefabricated vertical drains (PVD) associated with step by step construction of preloading embankments with averaged height of about 6 m. These embankments are founded on a highly compressible layer of Tunis soft soil. The construction steps included extensive soil instrumentation such as piezometers and settlement plates for monitoring the dissipation of excess pore water pressures and settlement during the consolidation of Tunis soft soil. An axisymmetric numerical model using the 2D finite difference code FLAC was developed and calibrated using laboratory tests to predict the soil behavior and consolidation settlements. The constitutive model impact for simulating the soft soil behavior is investigated. The results of analyses show that numerical analysis provided satisfactory predictions for the field performance during the construction of Radès la Goulette embankment. The obtained results show the effectiveness of PVD in the acceleration of the consolidation time. A comparison of numerical results with theoretical analysis was presented.

Keywords: tunis soft soil, radès bridge project, prefabricated vertical drains, FLAC, acceleration of consolidation

Procedia PDF Downloads 101
33 Magnetic Field Induced Mechanical Behavior of Fluid Filled Carbon Nanotube Foam

Authors: Siva Kumar Reddy, Anwesha Mukherjee, Abha Misra

Abstract:

Excellent energy absorption capability in carbon nanotubes (CNT) is shown in their bulk structure that behaves like super compressible foam. Furthermore, a tunable mechanical behavior of CNT foam is achieved using several methods like changing the concentration of precursors, polymer impregnation, non covalent functionalization of CNT microstructure etc. Influence of magnetic field on compressive behavior of magnetic CNT demonstrated an enhanced peak stress and energy absorption capability, which does not require any surface and structural modification of the foam. This presentation discusses the mechanical behavior of micro porous CNT foam that is impregnated in magnetic field responsive fluid. Magnetic particles are dispersed in a nonmagnetic fluid so that alignment of both particles and CNT could play a crucial role in controlling the stiffness of the overall structure. It is revealed that the compressive behavior of CNT foam critically depends on the fluid viscosity as well as magnetic field intensity. Both peak Stress and energy absorption in CNT foam followed a power law behavior with the increase in the magnetic field intensity. However, in the absence of magnetic field, both peak stress and energy absorption capability of CNT foam presented a linear dependence on the fluid viscosity. Hence, this work demonstrates the role magnetic filed in controlling the mechanical behavior of the foams prepared at nanoscale.

Keywords: carbon nanotubes, magnetic field, energy absorption capability and viscosity

Procedia PDF Downloads 271
32 Facial Infiltrating Lipomatosis, a Rare Cause of Facial Asymmetry to Be Known: Case Report and Literature Review

Authors: Shantanu Vyas, Neerja Meena

Abstract:

Facial infiltrating lipomatosis is a rare lipomatous lesion, first described by Slavin in 1983. It is a benign pseudotumor pathology. It corresponds to a non-encapsulated collection of mature adipocytes infiltrating the local tissue and hyperplasia of underlying bone leading to a craniofacial deformity. Very few cases have been reported in the literature. We report the case of a 19-year-old female patient, who was consulted for a swelling of the right hemiface progressively evolving since birth. Physical examination revealed facial asymmetry. On palpation, the mass was soft, painless, not compressible, not pulsatile, not fluctuating. In view of the asymptomatic nature and slow progression of the lesion, a lipomatous tumour, namely lipoma, was suggested. CT scan image shows a hyperplastic subcutaneous fat on the right hemiface. On the right jugal and temporal areas, there is a subcutaneous formation of fatty density, poorly limited, with no detectable peripheral capsule. It merges with the adjacent fat. In the bone window, there was a hyperplasia of underlying bone. Facial lipomatosis infiltration of the face is a benign pseudotumor pathology. As a result, it can be confused with other disorders, in particular, hemifacial hyperplasia. Combination of physical and radiological findings can establish the diagnosis. Surgical treatment is done for cosmetic purposes.

Keywords: cosmetic correction and facial assemetry, aesthetic results, facial infiltration, surgery

Procedia PDF Downloads 44
31 Numerical Simulation of Unsteady Cases of Fluid Flow Using Modified Dynamic Boundary Condition (mDBC) in Smoothed Particle Hydrodynamics Models

Authors: Exa Heydemans, Jessica Sjah, Dwinanti Rika Marthanty

Abstract:

This paper presents numerical simulations using an open boundary algorithm with modified dynamic boundary condition (mDBC) for weakly compressible smoothed particle hydrodynamics models from particle-based code Dualsphysics. The problems of piping erosion in dams and dikes are aimed for studying the algorithm. The case 2D model of unsteady fluid flow past around a fixed cylinder is simulated, where various values of Reynold’s numbers (Re40, Re60, Re80, and Re100) and different model’s resolution are considered. A constant velocity with different values of viscosity for generating various Reynold’s numbers and different numbers of particles over a cylinder for the resolution are modeled. The interaction between solid particles of the cylinder and fluid particles is concerned. The cylinder is affected by the hydrodynamics force caused by the flow of fluid particles. The solid particles of the cylinder are the observation points to obtain force and pressure due to the hydrodynamics forces. As results of the simulation, which is to show the capability to model 2D unsteady with various Reynold’s numbers, the pressure coefficient, drag coefficient, lift coefficient, and Strouhal number are compared to the previous work from literature.

Keywords: hydrodynamics, internal erosion, dualsphysics, viscous fluid flow

Procedia PDF Downloads 131
30 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 109
29 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube

Authors: Shinji Sato, M. M. A. Alam, Manabu Takao

Abstract:

In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0d

Keywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave

Procedia PDF Downloads 124
28 Design Optimization of Chevron Nozzles for Jet Noise Reduction

Authors: E. Manikandan, C. Chilambarasan, M. Sulthan Ariff Rahman, S. Kanagaraj, V. R. Sanal Kumar

Abstract:

The noise regulations around the major airports and rocket launching stations due to the environmental concern have made jet noise a crucial problem in the present day aero-acoustics research. The three main acoustic sources in jet nozzles are aerodynamics noise, noise from craft systems and engine and mechanical noise. Note that the majority of engine noise is due to the jet noise coming out from the exhaust nozzle. The previous studies reveal that the potential of chevron nozzles for aircraft engines noise reduction is promising owing to the fact that the jet noise continues to be the dominant noise component, especially during take-off. In this paper parametric analytical studies have been carried out for optimizing the number of chevron lobes, the lobe length and tip shape, and the level of penetration of the chevrons into the flow over a variety of flow conditions for various aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, SST k-ω turbulence model with enhanced wall functions. In the numerical study, a fully implicit finite volume scheme of the compressible, Navier–Stokes equations is employed. We inferred that the geometry optimization of an environmental friendly chevron nozzle with a suitable number of chevron lobes with aerodynamically efficient tip contours for facilitating silent exit flow will enable a commendable sound reduction without much thrust penalty while comparing with the conventional supersonic nozzles with same area ratio.

Keywords: chevron nozzle, jet acoustic level, jet noise suppression, shape optimization of chevron nozzles

Procedia PDF Downloads 287