Search results for: cold spray
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1141

Search results for: cold spray

1111 Survival of Four Probiotic Strains in Acid, Bile Salt and After Spray Drying

Authors: Rawichar Chaipojjana, Suttipong Phosuksirikul, Arunsri Leejeerajumnean

Abstract:

The objective of the study was to select the survival of probiotic strains when exposed to acidic and bile salts condition. Four probiotic strains (Lactobacillus casei subsp. rhamnosus TISTR 047, Lactobacillus casei TISTR 1500, Lactobacillus acidophilus TISTR 1338 and Lactobacillus plantarum TISTR 1465) were cultured in MRS broth and incubated at 35ºC for 15 hours before being inoculated into acidic condition (5 M HCl, pH 2) for 2 hours and bile salt (0.3%, pH 5.8) for 8 hour. The survived probiotics were counted in MRS agar. Among four stains, Lactobacillus casei subsp. rhamnosus TISTR 047 was the highest tolerance specie. Lactobacillus casei subsp. rhamnosus TISTR 047 reduced 6.74±0.07 log CFU/ml after growing in acid and 5.52±0.05 log CFU/ml after growing in bile salt. Then, double emulsion of microorganisms was chosen to encapsulate before spray drying. Spray drying was done with the inlet temperature 170ºC and outlet temperature 80ºC. The results showed that the survival of encapsulated Lactobacillus casei subsp. rhamnosus TISTR 047 after spray drying decreased from 9.63 ± 0.32 to 8.31 ± 0.11 log CFU/ml comparing with non-encapsulated, 9.63 ± 0.32 to 4.06 ± 0.08 log CFU/ml. Therefore, Lactobacillus casei subsp. rhamnosus TISTR 047 would be able to survive in gastrointestinal and spray drying condition.

Keywords: probiotic, acid, bile salt, spray drying

Procedia PDF Downloads 334
1110 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 378
1109 A Comparative Analysis of Traditional and Advanced Methods in Evaluating Anti-corrosion Performance of Sacrificial and Barrier Coatings

Authors: Kazem Sabet-Bokati, Ilia Rodionov, Marciel Gaier, Kevin Plucknett

Abstract:

Protective coatings play a pivotal role in mitigating corrosion and preserving the integrity of metallic structures exposed to harsh environmental conditions. The diversity of corrosive environments necessitates the development of protective coatings suitable for various conditions. Accurately selecting and interpreting analysis methods is crucial in identifying the most suitable protective coatings for the various corrosive environments. This study conducted a comprehensive comparative analysis of traditional and advanced methods to assess the anti-corrosion performance of sacrificial and barrier coatings. The protective performance of pure epoxy, zinc-rich epoxy, and cold galvanizing coatings was evaluated using salt spray tests, together with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The performance of each coating was thoroughly differentiated under both atmospheric and immersion conditions. The distinct protective performance of each coating against atmospheric corrosion was assessed using traditional standard methods. Additionally, the electrochemical responses of these coatings in immersion conditions were systematically studied, and a detailed discussion on interpreting the electrochemical responses is provided. Zinc-rich epoxy and cold galvanizing coatings offer superior anti-corrosion performance against atmospheric corrosion, while the pure epoxy coating excels in immersion conditions.

Keywords: corrosion, barrier coatings, sacrificial coatings, salt-spray, EIS, polarization

Procedia PDF Downloads 26
1108 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75 mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: flow visualization, pressure measurement, reverse flow, vortex tube

Procedia PDF Downloads 487
1107 Improvement of Spray Retention on Barley

Authors: Hassina Hafida Boukhalfa, Mohamed Belhamra

Abstract:

Adjuvants contribute to change the types of impact and thus the amount of spray retained by the leaves of the treated plant. We have performed tests of retention on barley plants on BBCH 12 stage and small pieces of barley leaves at the same stage of growth. Spraying was done in three ways: water without adjuvant, water with Break-Thru® S240 and water with Li700®. The three slurries of fluorescein contained in an amount of 0.2 g/l. Fluorescein retained by the leaves in both cases is then measured by a spectrofluoremeter. The retention tests on whole plants show that it is tripled by the first adjuvant and doubled by the second. By cons on small pieces of barley leaves, the amount was increased by the use of surfactants but not to the same scale. This study concluded that the use of adjuvants in spray pesticides may increase the amount of retention as a function of leaf area and the type of adjuvant.

Keywords: Barley, adjuvant, spray retention, fluorometry

Procedia PDF Downloads 273
1106 Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction

Authors: Nasser Ghassembaglou, Armin Rahmatfam, Faramarz Ranjbar

Abstract:

Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized.

Keywords: cold EGR, NOX, cooler, gas oil

Procedia PDF Downloads 462
1105 Production of Banana Milk Powder Using Spray and Freeze Dryer

Authors: Siti Noor Suzila Maqsood-Ul-Haque, Ummi Kalthum Ibrahim, Norekanadirah Abdul Rahman

Abstract:

Banana are rich in vitamins, potassium and carbohydrate.The objective for this research work is to produce banana milk powder that can help children that suffers from constipation. Two types of the most common dryers used for this purpose are the spray and freeze dryer. The effects of the type of dryers, pump feed speed in the spray dryer and the ratio proportion of the banana milk powder were investigated in the study. The result indicate that increasing proportion ratio of the banana milk powder produce lower yield of the powder.From the result it is also concluded that speed 2 is more suitable in the production of the banana milk powder since the value of the moisture content is lower.

Keywords: freeze dryer, spray dryer, moisture content, dissolution, banana, milk

Procedia PDF Downloads 462
1104 Comparative Survival Rates of Yeasts during Freeze-Drying, Traditional Drying and Spray Drying

Authors: Latifa Hamoudi-Belarbi, L'Hadi Nouri, Khaled Belkacemi

Abstract:

The effect of three methods of drying (traditional drying, freeze-drying and spray-drying) on the survival of concentrated cultures of Geotrichum fragrans and Wickerhamomyces anomalus was studied. The survival of yeast cultures was initially compared immediately after freeze-drying using HES 12%(w/v)+Sucrose 7% (w/v) as protectant, traditional drying in dry rice cakes and finally spray-drying with whey proteins. The survival of G. fragrans and W. anomalus was studied during 4 months of storage at 4°C and 25°C, in the darkness, under vacuum and at 0% relative humidity. The results demonstrated that high survival was obtained using traditional method of preservation in rice cakes (60% for G. fragrans and 65% for W. anomalus) and freeze-drying in (68% for G. fragrans and 74% for W. anomalus). However, poor survival was obtained by spray-drying method in whey protein with 20% for G. fragrans and 29% for W. anomalus. During storage at 25°C, yeast cultures of G. fragrans and W. anomalus preserved by traditional and freeze-drying methods showed no significant loss of viable cells up to 3 months of storage. Spray-dried yeast cultures had the greatest loss of viable count during the 4 months of storage at 25°C. During storage at 4°C, preservation of yeasts cultures using traditional method of preservation provided better survival than freeze-drying. This study demonstrated the effectiveness of the traditional method to preserve yeasts cultures compared to the high cost methods like freeze-drying and spray-drying.

Keywords: freeze-drying, traditional drying, spray drying, yeasts

Procedia PDF Downloads 458
1103 RFID Logistic Management with Cold Chain Monitoring: Cold Store Case Study

Authors: Mira Trebar

Abstract:

Logistics processes of perishable food in the supply chain include the distribution activities and the real time temperature monitoring to fulfil the cold chain requirements. The paper presents the use of RFID (Radio Frequency Identification) technology as an identification tool of receiving and shipping activities in the cold store. At the same time, the use of RFID data loggers with temperature sensors is presented to observe and store the temperatures for the purpose of analyzing the processes and having the history data available for traceability purposes and efficient recall management.

Keywords: logistics, warehouse, RFID device, cold chain

Procedia PDF Downloads 595
1102 Characterization the Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf A., I. Bouhaf Kharkhachi

Abstract:

Spray ultrasonic deposition technique of tin disulfide (SnS2) thin films know wide application due to their adequate physicochemical properties for microelectronic applications and especially for solar cells. SnS2 film was deposited by spray ultrasonic technique, on pretreated glass substrates at well-determined conditions.The effect of SnS2 concentration on different optical properties of SnS2 Thin films, such us MEB, XRD, and UV spectroscopy visible spectrum was investigated. MEB characterization technique shows that the morphology of this films is uniform, compact and granular. x-ray diffraction study detects the best growth crystallinity in hexagonal structure with preferential plan (001). The results of UV spectroscopy visible spectrum show that films deposited at 0.1 mol/l is large transmittance greater than 25% in the visible region.The band gap energy is 2.54 Ev for molarity 0.1 mol/l.

Keywords: MEB, thin disulfide, thin films, ultrasonic spray, X-Ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 581
1101 Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System

Authors: J. B. G. Ibarra, J. M. A. Gagui, E. J. T. Jonson, J. A. V. Lim

Abstract:

This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day.

Keywords: solar panel efficiency, solar panel efficiency technique, solar tracking system, water-spray cooling system

Procedia PDF Downloads 135
1100 Residual Life Estimation of K-out-of-N Cold Standby System

Authors: Qian Zhao, Shi-Qi Liu, Bo Guo, Zhi-Jun Cheng, Xiao-Yue Wu

Abstract:

Cold standby redundancy is considered to be an effective mechanism for improving system reliability and is widely used in industrial engineering. However, because of the complexity of the reliability structure, there is little literature studying on the residual life of cold standby system consisting of complex components. In this paper, a simulation method is presented to predict the residual life of k-out-of-n cold standby system. In practical cases, failure information of a system is either unknown, partly unknown or completely known. Our proposed method is designed to deal with the three scenarios, respectively. Differences between the procedures are analyzed. Finally, numerical examples are used to validate the proposed simulation method.

Keywords: cold standby system, k-out-of-n, residual life, simulation sampling

Procedia PDF Downloads 372
1099 High Temperature Oxidation Behavior of Aluminized Steel by Arc Spray and Cementation Techniques

Authors: Minoo Tavakoli, Alireza Kiani Rashid, Abbas Afrasiabi

Abstract:

An aluminum coating deposited on mild steel substrate by electric arc spray and diffused to the base steel material by diffusion treatment at 800 and 900°C for 1 and 3 hours in a static air. Alloy layers formed by diffusion at both temperatures were investigated, and their features were compared with those of pack cementation aluminized steel. High-temperature oxidation tests were carried out in air at 600 °C for 145 hours. Results indicated that the aluminide coatings obtained from this process have significantly improved the high-temperature oxidation resistance in both methods due to the Al2O3 scale formation. Furthermore, it showed that the isothermal oxidation resistance of arc spray technique is better than pack cementation method. This can be attributed to voids that formed at the intermetallic layer /Al layer interface which is increased in the pack cementation method.

Keywords: electric arc spray, pack cementation, oxidation resistance, aluminized steel

Procedia PDF Downloads 438
1098 The Impact of the “Cold Ambient Color = Healthy” Intuition on Consumer Food Choice

Authors: Yining Yu, Bingjie Li, Miaolei Jia, Lei Wang

Abstract:

Ambient color temperature is one of the most ubiquitous factors in retailing. However, there is limited research regarding the effect of cold versus warm ambient color on consumers’ food consumption. This research investigates an unexplored lay belief named the “cold ambient color = healthy” intuition and its impact on food choice. We demonstrate that consumers have built the “cold ambient color = healthy” intuition, such that they infer that a restaurant with a cold-colored ambiance is more likely to sell healthy food than a warm-colored restaurant. This deep-seated intuition also guides consumers’ food choices. We find that using a cold (vs. warm) ambient color increases the choice of healthy food, which offers insights into healthy diet promotion for retailers and policymakers. Theoretically, our work contributes to the literature on color psychology, sensory marketing, and food consumption.

Keywords: ambient color temperature, cold ambient color, food choice, consumer wellbeing

Procedia PDF Downloads 103
1097 Elaboration and Characterization of Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf, I. Bouhaf Kharkhachi

Abstract:

Hexagonal tin disulfide (SnS2) films were deposited by spray ultrasonic technique on glass substrates at different experimental conditions. The effect of deposition time (2, 4, 6, and 7 min) on different properties of SnS2 thin films was investigated by XRD and UV spectroscopy visible spectrum. X-ray diffraction study detected the preferential orientation growth of SnS2 compound having structure along (001) plane increased with the deposition time. The results of UV spectroscopy visible spectrum showed that films deposited at 4 min have high transmittance, up to 60%, in the visible region.

Keywords: structural and optical properties, tin sulfide, thin films, ultrasonic spray

Procedia PDF Downloads 448
1096 The Impact of Ambient Temperature on Consumer Food Choice

Authors: Yining Yu, Miaolei Jia, Bingjie Li

Abstract:

While researchers have begun to investigate how ambient elements affect consumers’ choices between healthy and unhealthy food, the role of ambient temperature is relatively unknown. In this study, we find that ambient coldness increases consumers’ preference for unhealthy food. This effect is driven by the increased need for energy automatically activated in a cold ambiance. Consequently, consumers are more inclined to choose calorie-rich unhealthy food. This effect is diminished when the unhealthy food is cold because cold dish cannot provide the energy consumers need in the cold ambiance. We conclude with a discussion of our theoretical contributions to the literature of temperature effects and food consumption. We also offer practical takeaways for restaurant managers.

Keywords: ambient temperature, cold ambiance, food choice, need for energy

Procedia PDF Downloads 134
1095 Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic

Authors: I. Bouhaf Kharkhachi, A. Attaf

Abstract:

Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region.

Keywords: SnS, thin films, ultrasonic spray, X-ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 495
1094 Performance of an Absorption Refrigerator Using a Solar Thermal Collector

Authors: Abir Hmida, Nihel Chekir, Ammar Ben Brahim

Abstract:

In the present paper, we investigate the feasibility of a thermal solar driven cold room in Gabes, southern region of Tunisia. The cold room of 109 m3 is refrigerated using an ammonia absorption machine. It is destined to preserve dates during the hot months of the year. A detailed study of the cold room leads previously to the estimation of the cooling load of the proposed storage room in the operating conditions of the region. The next step consists of the estimation of the required heat in the generator of the absorption machine to ensure the desired cold temperature. A thermodynamic analysis was accomplished and complete description of the system is determined. We propose, here, to provide the needed heat thermally from the sun by using vacuum tube collectors. We found that at least 21m² of solar collectors are necessary to accomplish the work of the solar cold room.

Keywords: absorption, ammonia, cold room, solar collector, vacuum tube

Procedia PDF Downloads 135
1093 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 204
1092 Cold Formed Steel Sections: Analysis, Design and Applications

Authors: A. Saha Chaudhuri, D. Sarkar

Abstract:

In steel construction, there are two families of structural members. One is hot rolled steel and another is cold formed steel. Cold formed steel section includes steel sheet, strip, plate or flat bar. Cold formed steel section is manufactured in roll forming machine by press brake or bending operation. Cold formed steel (CFS), also known as Light Gauge Steel (LGS). As cold formed steel is a sustainable material, it is widely used in green building. Cold formed steel can be recycled and reused with no degradation in structural properties. Cold formed steel structures can earn credits for green building ratings such as LEED and similar programs. Cold formed steel construction satisfies international demand for better, more efficient and affordable buildings. Cold formed steel sections are used in building, car body, railway coach, various types of equipment, storage rack, grain bin, highway product, transmission tower, transmission pole, drainage facility, bridge construction etc. Various shapes of cold formed steel sections are available, such as C section, Z section, I section, T section, angle section, hat section, box section, square hollow section (SHS), rectangular hollow section (RHS), circular hollow section (CHS) etc. In building construction cold formed steel is used as eave strut, purlin, girt, stud, header, floor joist, brace, diaphragm and covering for roof, wall and floor. Cold formed steel has high strength to weight ratio and high stiffness. Cold formed steel is non shrinking and non creeping at ambient temperature, it is termite proof and rot proof. CFS is durable, dimensionally stable and non combustible material. CFS is economical in transportation and handling. At present days cold formed steel becomes a competitive building material. In this paper all these applications related present research work are described and how the CFS can be used as blast resistant structural system that is examined.

Keywords: cold form steel sections, applications, present research review, blast resistant design

Procedia PDF Downloads 112
1091 Development of a Testing Rig for a Cold Formed-Hot Rolled Steel Hybrid Wall Panel System

Authors: Mina Mortazavi, Hamid Ronagh, Pezhman Sharafi

Abstract:

The new concept of a cold formed-hot rolled hybrid steel wall panel system is introduced to overcome the deficiency in lateral load resisting capacity of cold-formed steel structures. The hybrid system is composed of a cold-formed steel part laterally connected to hot rolled part. The hot rolled steel part is responsible for carrying the whole lateral load; while the cold formed steel part is only required to transfer the lateral load to the hot rolled part without any local failure. The vertical load is beared by both hot rolled, and cold formed steel part, proportionally. In order to investigate the lateral performance of the proposed system, it should be tested under simultaneous lateral and vertical load. The main concern is to deliver the loads to each part during the test to simulate the real load distribution in the structure. In this paper, a detailed description of the proposed wall panel system and the designed testing rig is provided.

Keywords: cold-formed steel, hybrid system, wall panel system, testing rig design

Procedia PDF Downloads 389
1090 Assessment of Relationships between Agro-Morphological Traits and Cold Tolerance in Faba Bean (vicia faba l.) and Wild Relatives

Authors: Nisa Ertoy Inci, Cengiz Toker

Abstract:

Winter or autumn-sown faba bean (Vicia faba L.) is one the most efficient ways to overcome drought since faba bean is usually grown under rainfed where drought and high-temperature stresses are the main growth constraints. The objectives of this study were assessment of (i) relationships between cold tolerance and agro-morphological traits, and (ii) the most suitable agro-morphological trait(s) under cold conditions. Three species of the genus Vicia L. includes 109 genotypes of faba bean (Vicia faba L.), three genotypes of narbon bean (V. narbonensis L.) and two genotypes of V. montbretii Fisch. & C.A. Mey. Davis and Plitmann were sown in autumn at highland of Mediterranean region of Turkey. All relatives of faba bean were more cold-tolerant than the faba bean genotypes. Three faba bean genotypes, ACV-42, ACV-84 and ACV-88, were selected as sources of cold tolerance under field conditions. Path and correlation coefficients and factor and principal component analyses indicated that biological yield should be evaluated in selection for cold tolerance under cold conditions ahead of many agro-morphological traits. The seed weight should be considered for selection in early breeding generations because they had the highest heritability.

Keywords: cold tolerance, faba bean, narbon bean, selection

Procedia PDF Downloads 363
1089 Physicochemical Characterization of Coastal Aerosols over the Mediterranean Comparison with Weather Research and Forecasting-Chem Simulations

Authors: Stephane Laussac, Jacques Piazzola, Gilles Tedeschi

Abstract:

Estimation of the impact of atmospheric aerosols on the climate evolution is an important scientific challenge. One of a major source of particles is constituted by the oceans through the generation of sea-spray aerosols. In coastal areas, marine aerosols can affect air quality through their ability to interact chemically and physically with other aerosol species and gases. The integration of accurate sea-spray emission terms in modeling studies is then required. However, it was found that sea-spray concentrations are not represented with the necessary accuracy in some situations, more particularly at short fetch. In this study, the WRF-Chem model was implemented on a North-Western Mediterranean coastal region. WRF-Chem is the Weather Research and Forecasting (WRF) model online-coupled with chemistry for investigation of regional-scale air quality which simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. One of the objectives was to test the ability of the WRF-Chem model to represent the fine details of the coastal geography to provide accurate predictions of sea spray evolution for different fetches and the anthropogenic aerosols. To assess the performance of the model, a comparison between the model predictions using a local emission inventory and the physicochemical analysis of aerosol concentrations measured for different wind direction on the island of Porquerolles located 10 km south of the French Riviera is proposed.

Keywords: sea-spray aerosols, coastal areas, sea-spray concentrations, short fetch, WRF-Chem model

Procedia PDF Downloads 169
1088 Efficacy of Eutectic Mixture of Local Anaesthetics and Diclofenac Spray in Attenuating Intravenous Cannulation Pain- Paeallel Randomized Trial

Authors: Anju Rani, Geeta, Sudha Rani, Choudhary, Puhal

Abstract:

Method- A total of 300 patients were studied, with 100 patients in each group. Patients aged 16-60 years, ASA grade I and II undergoing elective general surgical, urology and orthopedic procedures were included in the study. The patients were randomly allocated to any of the three groups by Using Sealed envelopes. 1. Group A: EMLA (eutectic mixture of 2.5% lidocaine with 2.5% prilocaine) - Patients receiving eutectic Lidocaine/ Prilocaine cream (2gm/10cm2) of Prilox cream), for 60- 70 min under occlusive dressing. 2. Group B - Patients receiving topical diclofenac 4 % spray gel for 60- 70 min, covering an absorption area of 50 cm2 3. Group C: control – Direct cannulation was done without any intervention. Results - Group B showed significantly least number of patients complaining pain on IV cannulation in comparison to group A and group C. The Mean VAS scores were found to be maximum in GROUP C: control-8.76 ± 4.14, then in GROUP A: EMLA- 2.54 ± 4.21.and least in GROUP B: Diclofenac 4% spray-1.13 ± 3.05. Erythema, induration and edema were significantly reported to be higher for the control group. Also group A patients reported adverse skin reactions more than patients in group B. Conclusion - It can be concluded that diclofenac spray 4 % and EMLA cream are effective in reducing the incidence and severity of venous cannulation pain as compared to the control group. However, a higher incidence of skin blanching, erythema, and oedema associated with EMLA cream and a lower incidence of these adverse effects favours the use of diclofenac spray 4%. They are promising agents for the treatment of venous cannulation pain.

Keywords: diclofenac spray, EMLA, intravenous, pain

Procedia PDF Downloads 128
1087 Simulation Study on Particle Fluidization and Drying in a Spray Fluidized Bed

Authors: Jinnan Guo, Daoyin Liu

Abstract:

The quality of final products in the coating process significantly depends on particle fluidization and drying in the spray-fluidized bed. In this study, fluidizing gas temperature and velocity are changed, and their effects on particle flow, moisture content, and heat transfer in a spray fluidized bed are investigated by the CFD – Discrete Element Model (DEM). The gas flow velocity distribution of the fluidized bed is symmetrical, with high velocity in the middle and low velocity on both sides. During the heating process, the particles inside the central tube and at the bottom of the bed are rapidly heated. The particle circulation in the annular area is heated slowly and the temperature is low. The inconsistency of particle circulation results in two peaks in the probability density distribution of the particle temperature during the heating process, and the overall temperature of the particles increases uniformly. During the drying process, the distribution of particle moisture transitions from initial uniform moisture to two peaks, and then the number of completely dried (moisture content of 0) particles gradually increases. Increasing the fluidizing gas temperature and velocity improves particle circulation, drying and heat transfer in the bed. The current study provides an effective method for studying the hydrodynamics of spray fluidized beds with simultaneous processes of heating and particle fluidization.

Keywords: heat transfer, CFD-DEM, spray fluidized bed, drying

Procedia PDF Downloads 24
1086 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir

Abstract:

Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.

Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid

Procedia PDF Downloads 561
1085 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 139
1084 Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell

Authors: Hamed Ahari, Sepideh Farokhi, Mohamad Reza Abedini

Abstract:

This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study.

Keywords: nano particle, composite film, eggshell, bacteria

Procedia PDF Downloads 368
1083 Compare Hot Forming and Cold Forming in Rolling Process

Authors: Ali Moarrefzadeh

Abstract:

In metalworking, rolling is a metal forming process in which metal stock is passed through a pair of rolls. Rolling is classified according to the temperature of the metal rolled. If the temperature of the metal is above its recrystallization temperature, then the process is termed as hot rolling. If the temperature of the metal is below its recrystallization temperature, the process is termed as cold rolling. In terms of usage, hot rolling processes more tonnage than any other manufacturing process, and cold rolling processes the most tonnage out of all cold working processes. This article describes the use of advanced tubing inspection NDT methods for boiler and heat exchanger equipment in the petrochemical industry to supplement major turnaround inspections. The methods presented include remote field eddy current, magnetic flux leakage, internal rotary inspection system and eddy current.

Keywords: hot forming, cold forming, metal, rolling, simulation

Procedia PDF Downloads 495
1082 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 493