Search results for: clean room
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2040

Search results for: clean room

1830 Calculation of Effective Masses and Curie Temperature of (Ga, Mn) as Diluted Magnetic Semiconductor from the Eight-band k.p Model

Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari

Abstract:

The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a major step toward the implementation of spintronic devices for processing, transferring, and storing of information. Among the many types of DMS materials which have been investigated, Mn-doped GaAs has become one of the best candidates for technological application. However, despite major developments over the last few decades, the maximum Curie temperature (~200 K) remains well below room temperature. In this work, we have studied the effect of Mn content and strain on the GaMnAs effective masses of electron, heavy and light holes calculated in the different crystallographic direction. Also, the Curie temperature in the DMS GaMnAs alloy is determined. Compilation of GaMnAs band parameters have been carried out using the 8-band k.p model based on Lowdin perturbation theory where spin orbit, sp-d exchange interaction, and biaxial strain are taken into account. Our results show that effective masses, calculated along the different crystallographic directions, have a strong dependence on strain, ranging from -2% (tensile strain) to 2% (compressive strain), and Mn content increased from 1 to 5%. The Curie temperature is determined within the mean-field approach based on the Zener model.

Keywords: diluted magnetic semiconductors, k.p method, effective masses, curie temperature, strain

Procedia PDF Downloads 59
1829 Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth

Authors: Elham Soltani Dehnavi

Abstract:

In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process.

Keywords: occupant experience, office buildings, space depth, thermal comfort, visual comfort

Procedia PDF Downloads 153
1828 Enhanced High-Temperature Strength of HfNbTaTiZrV Refractory High-Entropy Alloy via Al₂O₃ Reinforcement

Authors: Bingjie Wang, Qianqian Qang, Nan Lu, Xiubing Liang, Baolong Shen

Abstract:

Novel composites of HfNbTaTiZrV refractory high-entropy alloy (RHEA) reinforced with 0-5 vol.% Al₂O₃ particles have been synthesized by vacuum arc melting. The microstructure evolution, compressive mechanical properties at room and elevated temperatures, as well as strengthening mechanism of the composites, are analyzed. The HfNbTaTiZrV RHEA reinforced with 4 vol.% Al₂O₃ displays excellent phase stability at elevated temperatures. A superior compressive yield strength of 2700 MPa at room temperature, 1392 MPa at 800 °C, and 693 MPa at 1000 °C has been obtained for this composite. The improved yield strength results from multiple strengthening mechanisms caused by Al₂O₃ addition, including interstitial strengthening, grain boundary strengthening, and dispersion strengthening. Besides, the effects of interstitial strengthening increase with the temperature and is the main strengthening mechanism at elevated temperatures. These findings not only promote the development of oxide-reinforced RHEAs for challenging engineering applications but also provide guidelines for the design of light refractory materials with multiple strengthening mechanisms.

Keywords: Al₂O₃-reinforcement, HfNbTaTiZrV, refractory high-entropy alloy, interstitial strengthening

Procedia PDF Downloads 83
1827 A quantitative Analysis of Impact of Potential Variables on the Energy Performance of Old and New Buildings in China

Authors: Yao Meng, Mahroo Eftekhari, Dennis Loveday

Abstract:

Currently, there are two types of heating systems in Chinese residential buildings, with respect to the controllability of the heating system, one is an old heating system without any possibility of controlling room temperature and another is a new heating system that provides temperature control of individual rooms. This paper is aiming to evaluate the impact of potential variables on the energy performance of old and new buildings respectively in China, and to explore how the use of individual room temperature control would change occupants’ heating behaviour and thermal comfort in Chinese residential buildings and its impact on the building energy performance. In the study, two types of residential buildings have been chosen, the new building install personal control on the heating system, together with ‘pay for what you use’ tariffs. The old building comprised uncontrolled heating with payment based on floor area. The studies were carried out in each building, with a longitudinal monitoring of indoor air temperature, outdoor air temperature, window position. The occupants’ behaviour and thermal sensation were evaluated by questionnaires. Finally, use the simulated analytic method to identify the impact of influence variables on energy use for both types of buildings.

Keywords: residential buildings, China, design parameters, energy efficiency, simulation analytics method

Procedia PDF Downloads 525
1826 Identification of the Interior Noise Sources of Rail Vehicles

Authors: Hyo-In Koh, Anders Nordborg, Alex Sievi, Chun-Kwon Park

Abstract:

The noise source for the interior room of the high speed train is constituted by the rolling contact between the wheel and the rail, aerodynamic noise and structure-borne sound generated through the vibrations of bogie, connection points to the carbody. Air-borne sound is radiated through the panels and structures into the interior room of the trains. The high-speed lines are constructed with slab track systems and many tunnels. The interior noise level and the frequency characteristics vary according to types of the track structure and the infrastructure. In this paper the main sound sources and the transfer paths are studied to find out the contribution characteristics of the sources to the interior noise of a high-speed rail vehicle. For the identification of the acoustic power of each parts of the rolling noise sources a calculation model of wheel/rail noise is developed and used. For the analysis of the transmission of the sources to the interior noise noise and vibration are measured during the operation of the vehicle. According to operation speeds, the mainly contributed sources and the paths could be analyzed. Results of the calculations on the source generation and the results of the measurement with a high-speed train are shown and discussed.

Keywords: rail vehicle, high-speed, interior noise, noise source

Procedia PDF Downloads 371
1825 Effects of Free-Hanging Horizontal Sound Absorbers on the Cooling Performance of Thermally Activated Building Systems

Authors: L. Marcos Domínguez, Nils Rage, Ongun B. Kazanci, Bjarne W. Olesen

Abstract:

Thermally Activated Building Systems (TABS) have proven to be an energy-efficient solution to provide buildings with an optimal indoor thermal environment. This solution uses the structure of the building to store heat, reduce the peak loads, and decrease the primary energy demand. TABS require the heated or cooled surfaces to be as exposed as possible to the indoor space, but exposing the bare concrete surfaces has a diminishing effect on the acoustic qualities of the spaces in a building. Acoustic solutions capable of providing optimal acoustic comfort and allowing the heat exchange between the TABS and the room are desirable. In this study, the effects of free-hanging units on the cooling performance of TABS and the occupants’ thermal comfort was measured in a full-scale TABS laboratory. Investigations demonstrate that the use of free-hanging sound absorbers are compatible with the performance of TABS and the occupant’s thermal comfort, but an appropriate acoustic design is needed to find the most suitable solution for each case. The results show a reduction of 11% of the cooling performance of the TABS when 43% of the ceiling area is covered with free-hanging horizontal sound absorbers, of 23% for 60% ceiling coverage ratio and of 36% for 80% coverage. Measurements in actual buildings showed an increase of the room operative temperature of 0.3 K when 50% of the ceiling surface is covered with horizontal panels and of 0.8 to 1 K for a 70% coverage ratio. According to numerical simulations using a new TRNSYS Type, the use of comfort ventilation has a considerable influence on the thermal conditions in the room; if the ventilation is removed, then the operative temperature increases by 1.8 K for a 60%-covered ceiling.

Keywords: acoustic comfort, concrete core activation, full-scale measurements, thermally activated building systems, TRNSys

Procedia PDF Downloads 305
1824 Urbanization on Green Cover and Groundwater Relationships in Delhi, India

Authors: Kiranmay Sarma

Abstract:

Recent decades have witnessed rapid increase in urbanization, for which, rural-urban migration is stated to be the principal reason. Urban growth throughout the world has already outstripped the capacities of most of the cities to provide basic amenities to the citizens, including clean drinking water and consequently, they are struggling to get fresh and clean water to meet water demands. Delhi, the capital of India, is one of the rapid fast growing metropolitan cities of the country. As a result, there has been large influx of population during the last few decades and pressure exerted to the limited available water resources, mainly on groundwater. Considering this important aspect, the present research has been designed to study the effects of urbanization on the green cover and groundwater and their relationships of Delhi. For the purpose, four different land uses of the study area have been considered, viz., protected forest area, trees outside forest, maintained park and settlement area. Samples for groundwater and vegetation were collected seasonally in post-monsoon (October), winter (February) and summer (June) at each study site for two years during 2012 and 2014. The results were integrated into GIS platform. The spatial distribution of groundwater showed that the concentration of most of the ions is decreasing from northern to southern parts of Delhi, thus groundwater shows an improving trend from north to south. The depth was found to be improving from south to north Delhi, i.e., opposite to the water quality. The study concludes the groundwater properties in Delhi vary spatially with depending on the types of land cover.

Keywords: groundwater, urbanization, GIS, green cover, Delhi

Procedia PDF Downloads 261
1823 Templating Copper on Polymer/DNA Hybrid Nanowires

Authors: Mahdi Almaky, Reda Hassanin, Benjamin Horrocks, Andrew Houlton

Abstract:

DNA-templated poly(N-substituted pyrrole)bipyridinium nanowires were synthesised at room temperature using the chemical oxidation method. The resulting CPs/DNA hybrids have been characterised using electronic and vibrational spectroscopic methods especially Ultraviolet-Visible (UV-Vis) spectroscopy and FTIR spectroscpy. The nanowires morphology was characterised using Atomic Force Microscopy (AFM). The electrical properties of the prepared nanowires were characterised using Electrostatic Force Microscopy (EFM), and measured using conductive AFM (c-AFM) and two terminal I/V technique, where the temperature dependence of the conductivity was probed. The conductivities of the prepared CPs/DNA nanowires are generally lower than PPy/DNA nanowires showingthe large effect on N-alkylation in decreasing the conductivity of the polymer, butthese are higher than the conductivity of their corresponding bulk films.This enhancement in conductivity could be attributed to the ordering of the polymer chains on DNA during the templating process. The prepared CPs/DNA nanowires were used as templates for the growth of copper nanowires at room temperature using aqueous solution of Cu(NO3)2as a source of Cu2+ and ascorbic acid as reducing agent. AFM images showed that these nanowires were uniform and continuous compared to copper nanowires prepared using the templating method directly onto DNA. Electrical characterization of the nanowires by c AFM revealed slight improvement in conductivity of these nanowires (Cu-CPs/DNA) compared to CPs/DNA nanowires before metallisation.

Keywords: templating, copper nanowires, polymer/DNA hybrid, chemical oxidation method

Procedia PDF Downloads 333
1822 India’s Energy System Transition, Survival of the Greenest

Authors: B. Sudhakara Reddy

Abstract:

The transition to a clean and green energy system is an economic and social transformation that is exciting as well as challenging. The world today faces a formidable challenge in transforming its economy from being driven primarily by fossil fuels, which are non-renewable and a major source of global pollution, to becoming an economy that can function effectively using renewable energy sources and by achieving high energy efficiency levels. In the present study, a green economy scenario is developed for India using a bottom-up approach. The results show that the penetration rate of renewable energy resources will reduce the total primary energy demand by 23% under GE. Improvements in energy efficiency (e.g. households, industrial and commercial sectors) will result in reduced demand to the tune of 318 MTOE. The volume of energy-related CO2 emissions decline to 2,218 Mt in 2030 from 3,440 under the BAU scenario and the per capita emissions will reduce by about 35% (from 2.22 to 1.45) under the GE scenario. The reduction in fossil fuel demand and focus on clean energy will reduce the energy intensity to 0.21 (TOE/US$ of GDP) and carbon intensity to 0.42 (ton/US$ of GDP) under the GE scenario. total import bill (coal and oil) will amount to US$ 334 billion by 2030 (at 2010/11 prices), but as per the GE scenario, it would be US$ 194.2 billion, a saving of about US$ 140 billion. The building of a green energy economy can also serve another purpose: to develop new ‘pathways out of poverty’ by creating more than 10 million jobs and thus raise the standard of living of low-income people. The differences between the baseline and green energy scenarios are not so much the consequence of the diffusion of various technologies. It is the result of the active roles of different actors and the drivers that become dominant.

Keywords: emissions, green energy, fossil fuels, green jobs, renewables, scenario

Procedia PDF Downloads 495
1821 Quality in Healthcare: An Autism-Friendly Hospital Emergency Waiting Room

Authors: Elena Bellini, Daniele Mugnaini, Michele Boschetto

Abstract:

People with an Autistic Spectrum Disorder and an Intellectual Disability who need to attend a Hospital Emergency Waiting Room frequently present high levels of discomfort and challenging behaviors due to stress-related hyperarousal, sensory sensitivity, novelty-anxiety, communication and self-regulation difficulties. Increased agitation and acting out also disturb the diagnostic and therapeutic processes, and the emergency room climate. Architectural design disciplines aimed at reducing distress in hospitals or creating autism-friendly environments are called for to find effective answers to this particular need. A growing number of researchers are considering the physical environment as an important point of intervention for people with autism. It has been shown that providing the right setting can help enhance confidence and self-esteem and can have a profound impact on their health and wellbeing. Environmental psychology has evaluated the perceived quality of care, looking at the design of hospital rooms, paths and circulation, waiting rooms, services and devices. Furthermore, many studies have investigated the influence of the hospital environment on patients, in terms of stress-reduction and therapeutic intervention’ speed, but also on health professionals and their work. Several services around the world are organizing autism-friendly hospital environments which involve the architecture and the specific staff training. In Italy, the association Spes contra spem has promoted and published, in 2013, the ‘Chart of disabled people in the hospital’. It stipulates that disabled people should have equal rights to accessible and high-quality care. There are a few Italian examples of therapeutic programmes for autistic people as the Dama project in Milan and the recent experience of Children and Autism Foundation in Pordenone. Careggi’s Emergency Waiting Room in Florence has been built to satisfy this challenge. This project of research comes from a collaboration between the technical staff of Careggi Hospital, the Center for autism PAMAPI and some architects expert in the sensory environment. The methodology of focus group involved architects, psychologists and professionals through a transdisciplinary research, centered on the links between the spatial characteristics and clinical state of people with ASD. The relationship between architectural space and quality of life is studied to pay maximum attention to users’ needs and to support the medical staff in their work by a specific program of training. The result of this research is a sum of criteria used to design the emergency waiting room, that will be illustrated. A protected room, with a clear space design, maximizes comprehension and predictability. The multisensory environment is thought to help sensory integration and relaxation. Visual communication through Ipad allows an anticipated understanding of medical procedures, and a specific technological system supports requests, choices and self-determination in order to fit sensory stimulation to personal preferences, especially for hypo and hypersensitive people. All these characteristics should ensure a better regulation of the arousal, less behavior problems, improving treatment accessibility, safety, and effectiveness. First results about patient-satisfaction levels will be presented.

Keywords: accessibility of care, autism-friendly architecture, personalized therapeutic process, sensory environment

Procedia PDF Downloads 235
1820 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 395
1819 Assessment of Solid Waste Management in General Mohammed Inuwa Wushishi Housing Estate, Minna, Niger State, Nigeria

Authors: Garba Inuwa Kuta, Mohammed, Adamu, Mohammed Ahmed Emigilati, Ibrahim Ishiaku, Kudu Dangana

Abstract:

The study sought to identify the problems of solid waste management in General Mohammed InuwaWushishi Housing Estate. The two broad types of data, the secondary and primary data were used in the study. Questionnaires and personal observations were also used to collect some of the data. Factors impeding the effective and efficient solid waste management were identified. The study revealed that sacks disposal method and open dumping are the most commonly used method of disposal, about 30.0% of the respondent use sacks disposal method in the estate while 24.9% dump their refuse on the floor. Wrong attitudes and perceptions of the people about sanitation issues contributed to solid waste management problems of General Mohammed InuwaWushishi Housing Estate. Majority of the households did not educate their members on the need to clean their surroundings and refuse to buy drum for waste disposal from Niger State Environmental Protection Agency (NISEPA) on the basis that the drums are expensive. Virtually, all the people depended on Niger State Environmental Protection Agency (NISEPA) facilities for the disposal of their household refuse. Solid waste management problems were partly the results of NISEPA’s inability to cope with the situation because of lack of equipment. It was recommended that there should be an increase in enlightenment to the people on domestic waste disposal to keep the surroundings clean.

Keywords: housing estate, assessment, solid waste, disposal, management

Procedia PDF Downloads 603
1818 Determining Fire Resistance of Wooden Construction Elements through Experimental Studies and Artificial Neural Network

Authors: Sakir Tasdemir, Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Ismail Saritas, Selma Tasdemir

Abstract:

Artificial intelligence applications are commonly used in industry in many fields in parallel with the developments in the computer technology. In this study, a fire room was prepared for the resistance of wooden construction elements and with the mechanism here, the experiments of polished materials were carried out. By utilizing from the experimental data, an artificial neural network (ANN) was modeled in order to evaluate the final cross sections of the wooden samples remaining from the fire. In modelling, experimental data obtained from the fire room were used. In the system developed, the first weight of samples (ws-gr), preliminary cross-section (pcs-mm2), fire time (ft-minute), fire temperature (t-oC) as input parameters and final cross-section (fcs-mm2) as output parameter were taken. When the results obtained from ANN and experimental data are compared after making statistical analyses, the data of two groups are determined to be coherent and seen to have no meaning difference between them. As a result, it is seen that ANN can be safely used in determining cross sections of wooden materials after fire and it prevents many disadvantages.

Keywords: artificial neural network, final cross-section, fire retardant polishes, fire safety, wood resistance.

Procedia PDF Downloads 345
1817 The Effect of Music Therapy on Anxiety, Fear and Pain Management in 6-12 Year Old Children Undergoing Surgery

Authors: Özgür Bahadir, Meltem Kurtuncu

Abstract:

The study was designed as quasi-experimental and conducted to determine the effect of music therapy on anxiety, fear and pain management in 6-12-year-old children undergoing surgery. The present study was carried out between 01.01.2016 and 19.08.2016 in BEU. Application and Research Center. The children aged 6 -12 who applied for surgery between the mentioned dates constituted the universe of the study. In the quasi-experimental study that was conducted in the clinics where children received operational treatment, two groups were formed: experimental group (the children who received musical therapy before the surgery) and control group (the children who were administered surveys and the surgery service routines only). Each group consisted of 30 children, and the participants of the study were 60 children in total. Necessary permissions were obtained from the parents of the children hospitalized before the beginning of the implementation. The data was collected through Child Anxiety Sensitivity Index (CASI), “Fear In Medical Treatment Scale”, Face, Legs, Activity, Cry, Consolability Scale (FLACC), Visual Analog Scale (VAS) and Participant Information Form. In the analysis of the data, Kolmogorov-Smirnov distribution scale was used to examine the normality of the distribution along with descriptive statistics methods (Frequency, Percentage, Mean, Standard Deviation). Data was presented in the tables in numbers and percentages. Means were demonstrated along with the standard deviations. The research compared children received; case and control groups include socio-demographic perspective, non-significant difference statistically among similar groups are intertwined. The general level of fear regarding the medical processes before returning to service after the operation and 30 minutes before getting discharged was found to be significantly low in the experimental group compared to control group (p<0.05). No statistically significant difference was found between experimental and control groups in terms of general level of fear regarding the medical processes before the operation, during the operation day and in the recovery room after the operation (p>0.05). Total CASI AD (anxiety sensitivity) levels before the operation, day of the operation and 30 minutes before the discharge for patients in experimental group was found to be significantly higher than the control group (p>0.05). There was no statistically significant difference between the experimental and control groups in the total CASI AD levels for the post-operative recovery room and for returning to the service room after the operation (p>0.05). VAS levels for patients in the experimental group in the post-operative recovery room was significantly higher than the control group (p>0.05). There was no statistically significant difference between the groups in terms of VAS findings in returning to service room after the operation and in 30 minutes before the discharge (p>0.05). As a result of the research; applied children music therapy in the experimental group anxiety, fear, and pain of the scales, their scores average, is lower than the control group children in this situation an increase in the satisfaction of children and parents was observed. In line with this, music therapy preoperative anxiety, fear, and can be used as an effective method of decreasing postoperative pain clinics is suggested.

Keywords: anxiety, children, fear, music therapy, pain

Procedia PDF Downloads 206
1816 Low Field Microwave Absorption and Magnetic Anisotropy in TM Co-Doped ZnO System

Authors: J. Das, T. S. Mahule, V. V. Srinivasu

Abstract:

Electron spin resonance (ESR) study at 9.45 GHz and a field modulation frequency of 100Hz was performed on bulk polycrystalline samples of Mn:TM (Fe/Ni) and Mn:RE (Gd/Sm) co doped ZnO samples with composition Zn1-xMn:TM/RE)xO synthesised by solid state reaction route and sintered at 500 0C temperature. The room temperature microwave absorption data collected by sweeping the DC magnetic field from -500 to 9500 G for the Mn:Fe and Mn:Ni co doped ZnO samples exhibit a rarely reported non resonant low field absorption (NRLFA) in addition to a strong absorption at around 3350G, usually associated with ferromagnetic resonance (FMR) satisfying Larmor’s relation due to absorption in the full saturation state. Observed low field absorption is distinct to ferromagnetic resonance even at low temperature and shows hysteresis. Interestingly, it shows a phase opposite with respect to the main ESR signal of the samples, which indicates that the low field absorption has a minimum value at zero magnetic field whereas the ESR signal has a maximum value. The major resonance peak as well as the peak corresponding to low field absorption exhibit asymmetric nature indicating magnetic anisotropy in the sample normally associated with intrinsic ferromagnetism. Anisotropy parameter for Mn:Ni codoped ZnO sample is noticed to be quite higher. The g values also support the presence of oxygen vacancies and clusters in the samples. These samples have shown room temperature ferromagnetism in the SQUID measurement. However, in rare earth (RE) co doped samples (Zn1-x (Mn: Gd/Sm)xO), which show paramagnetic behavior at room temperature, the low field microwave signals are not observed. As microwave currents due to itinerary electrons can lead to ohmic losses inside the sample, we speculate that more delocalized 3d electrons contributed from the TM dopants facilitate such microwave currents leading to the loss and hence absorption at the low field which is also supported by the increase in current with increased micro wave power. Besides, since Fe and Ni has intrinsic spin polarization with polarisability of around 45%, doping of Fe and Ni is expected to enhance the spin polarization related effect in ZnO. We emphasize that in this case Fe and Ni doping contribute to polarized current which interacts with the magnetization (spin) vector and get scattered giving rise to the absorption loss.

Keywords: co-doping, electron spin resonance, hysteresis, non-resonant microwave absorption

Procedia PDF Downloads 287
1815 Diabetic Striatopathy as an Initial Presentation of Type 2 Diabetes Mellitus in an 80 Year Old Filipina: A Case Report

Authors: Michelangelo Liban, Debbie Liquete

Abstract:

A case of a 93-year-old Filipina who experienced a sudden onset of left-sided hemichorea hemiballismus after falling from a standing height due to dizziness and then sought consult at the Emergency Room. She was not known to have diabetes mellitus nor experienced any symptoms of diabetes aside from its rare neurological manifestation of hemichorea-hemiballismus prior to this consult. On further workup, her baseline laboratory tests at the Emergency Room Department showed a CBG of 340mg/dL, an HbA1c of 15%, no ketones were detected in her urine but a hyperdensity with a Hounsfeld unit of 38 on CT, and hyperintensity on T1 weighted MRI on her right striatum with an incidental finding of a subdural hematoma measured as a 0.7cm hyperdensity on her right temporoparietal area with no midline shift. She was then treated with Clonazepam 2mg ¼ tab twice a day before bedtime and insulin 70/30 16 units in the morning and eight units in the evening, which provided good glycemic control maintained at 140-180 mg/dL, complete cessation of the left-sided hemichorea hemiballismus was also observed. The subdural hematoma was deemed non-surgical, and she refused admission into our institution; hence observation on an outpatient basis was done. This is a case of a rare neurological manifestation of diabetes mellitus but with good treatment response to anti-chorea medications combined with diabetes medications.

Keywords: hemichorea, hemiballismus, striatopathy, diabetes

Procedia PDF Downloads 39
1814 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization

Authors: J. Tirano, H. Zea, C. Luhrs

Abstract:

Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.

Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes

Procedia PDF Downloads 124
1813 Water-Energy-Food Nexus Model for India: A Way Forward for Achieving Sustainable Development Goals

Authors: Rajendra Singh, Krishna Mondal, Chandranath Chatterjee

Abstract:

The water, energy, and food (WEF) nexus describes the interconnectedness of these three essential elements of human life. Each of these three sectors depends on the others. India's expanding population, urbanization, and industrialization make WEF nexus management difficult. Coupling and coordination degrees can be used as indicators of a complex system's level of sustainable development. Thus, coupling and coordination of WEF sectors in India are essential for achieving Sustainable Development Goals (SDGs) 2 (zero hunger), 6 (clean water and sanitation), and 7 (affordable and clean energy). This study used a newly developed WEF nexus model and the concept of coupling coordination degree model to examine the coupling and coordination degrees of the WEF nexus at India's sub-national scale (States/Union Territories (UTs)) for the years 2011 and 2021. Results indicate that the WEF nexus coupling degree was reasonably stable among the Indian States/UTs in both years, with all having a coupling degree above 0.90, indicating high-quality coupling. However, the degree of coordination varied spatially and temporally from ‘primary development’ to ‘quality development’ for the Indian States/UTs. In 2021, it went from 53% to 14% intermediate development and 44% to 83% good development compared to 2011. Most Indian States/UTs developed SDG2 more than SDG6 and SDG7. This study also suggests that most States/UTs must implement WEF-related policies and programmes effectively to achieve quality coordinated WEF nexus development. This study may help administrators and policymakers identify States/UTs that need more attention to implement existing or new policies for achieving SDGs 2, 6, and 7.

Keywords: WEF nexus model, Pardee-RAND WEF nexus, sustainable development, policy

Procedia PDF Downloads 35
1812 Dirty Martini vs Martini: The Contrasting Duality Between Big Bang and BTS Public Image and Their Latest MVs Analysis

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

Big Bang is like a dirty martini embroiled in a stew of personal individual scandals that have rocked the group’s image and perception, from G-Dragon’s and T.O.P. marijuana episodes in 2011 and 2016, respectively, to Daesung’s building illicit entertainment activities in 2018to the Burning Sun shebang that led to the Titanic sink of Big Bang’s youngest member Seungri in 2019 and the positive sentiment migration to the antithetical side. BTS, on the other hand, are like a martini, clear, clean, attracting as many crowds to their performances and online content as the Pope attracts believers to Sunday Mass in the Vatican, as exemplified by their latest MVs. Big Bang’s 2022 Still Life achieved 16.4 million views on Youtube in 24hours, whilst BTS Permission to Dance achieved 68.5 million in the same period of time. The difference is significant when added Big Bang’s and BTS overall award wins, a total of 117 in contrast to 460. Both groups are uniquely talented and exceptional performers that have been contributing greatly to the dissemination of Korean Pop Music on a global scale in their own inimitable ways. Both are exceptional in their own right and while the artists cannot, ought not, should not be compared for the grave injustice made in comparing one individual planet with one solar system, a contrast is merited and hence done. The reality, nonetheless, is about disengagement from a group that lives life humanly, learning and evolving with each challenge and mistake without a clean, perfect tag attached to it, demonstrating not only an inability to disassociate the person from the artist and the music but also an inability to understand the difference between a private and public life.

Keywords: K-Pop, big bang, BTS, music, public image, entertainment, korean entertainment

Procedia PDF Downloads 72
1811 Multifunctional 1D α-Fe2O3/ZnO Core/Shell Semiconductor Nano-Heterostructures: Heterojunction Engineering

Authors: Gobinda Gopal Khan, Ashutosh K. Singh, Debasish Sarkar

Abstract:

This study reports the facile fabrication of 1D ZnO/α-Fe2O3 semiconductor nano-heterostructures (SNHs), and we investigate the strong interfacial interactions at the heterojunction, resulting in novel multifunctionality in the hybrid structure. ZnO-coated α-Fe2O3 nanowires (NWs) have been prepared by combining electrodeposition and wet chemical methods. Significant improvement in electrical conductivity, photoluminescence, and room temperature magnetic properties have been observed for the ZnO/α-Fe2O3 SNHs over the pristine α-Fe2O3 NWs because of the contribution of the ZnO nanolayer. The increase in electrical conductivity in ZnO/α-Fe2O3 SNHs is because of the increase in free electrons in the conduction band of the SNHs due to the formation of type-II n-n band configuration at the heterojunction. The SNHs are found to exhibit enhanced visible green photoluminescence along with the UV emission at room temperature. The band-gap emission of the α-Fe2O3 NWs coupled to the defect emissions of the ZnO in SNHs can be attributed to the profound enhancement of the visible green luminescence. Ferromagnetism of the SNHs is found to be increased nearly five times in magnitude over the primeval α-Fe2O3 NWs, which can be ascribed to the exchange coupling of the interfacial spin at ZnO/α-Fe2O3 interface, the surface spin of ZnO nanolayer, along with the structural defects like the cation vacancies (VZn) and the singly ionized oxygen vacancies (Vo•) present in SNHs.

Keywords: nano-heterostructures, photoluminescence, electrical property, magnetism

Procedia PDF Downloads 228
1810 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 103
1809 Study of Tribological Behavior of Zirconium Alloy Against SS-410 at High Temperature

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys exhibit low neutron absorption cross-section and excellent mechanical properties. Due to these unique characteristics, these materials are widely used in designing core components of pressurized heavy water reactors (PHWRs). Another material that is widely used in the design of reactor core is stainless steel. Under operating conditions of the reactor, there are possibilities for mechanical and tribological interaction between the components made of zirconium alloy (Zr-2.5 Nb) and stainless steel (SS-410). This may result in wear of the material. To study the tribological characteristics of Zr-2.5 Nb and SS-410, low amplitude reciprocating wear tests are conducted at room temperature and at high temperatures (260 degrees Celsius). The tests are conducted at frequencies ranging from 5 Hz to 25 Hz. The displacement amplitude is varied from 200 µm to 600 µm. The responses are recorded, analyzed and correlated with damage observed using scanning electron microscopy (SEM) and an optical profilometer. Energy dispersive spectroscopy (EDS) is used to study the damage mechanism prevailing at the contact interface. A higher coefficient of friction (COF) is observed at higher temperatures as compared to the one at room temperature. Tests carried out at high temperature reveals adhesive wear as the dominant mechanism resulting in significant material transfer.

Keywords: PHWRs, Zr-2.5Nb, SS-410, wear

Procedia PDF Downloads 57
1808 Reservoir Potential, Net Pay Zone and 3D Modeling of Cretaceous Clastic Reservoir in Eastern Sulieman Belt Pakistan

Authors: Hadayat Ullah, Pervez Khalid, Saad Ahmed Mashwani, Zaheer Abbasi, Mubashir Mehmood, Muhammad Jahangir, Ehsan ul Haq

Abstract:

The aim of the study is to explore subsurface structures through data that is acquired from the seismic survey to delineate the characteristics of the reservoir through petrophysical analysis. Ghazij Shale of Eocene age is regional seal rock in this field. In this research work, 3D property models of subsurface were prepared by applying Petrel software to identify various lithologies and reservoir fluids distribution throughout the field. The 3D static modeling shows a better distribution of the discrete and continuous properties in the field. This model helped to understand the reservoir properties and enhance production by selecting the best location for future drilling. A complete workflow is proposed for formation evaluation, electrofacies modeling, and structural interpretation of the subsurface geology. Based on the wireline logs, it is interpreted that the thickness of the Pab Sandstone varies from 250 m to 350 m in the entire study area. The sandstone is massive with high porosity and intercalated layers of shales. Faulted anticlinal structures are present in the study area, which are favorable for the accumulation of hydrocarbon. 3D structural models and various seismic attribute models were prepared to analyze the reservoir character of this clastic reservoir. Based on wireline logs and seismic data, clean sand, shaly sand, and shale are marked as dominant facies in the study area. However, clean sand facies are more favorable to act as a potential net pay zone.

Keywords: cretaceous, pab sandstone, petrophysics, electrofacies, hydrocarbon

Procedia PDF Downloads 116
1807 Performance of the Photovoltaic Module under Different Shading Patterns

Authors: E. T. El Shenawy, O. N. A. Esmail, Adel A. Elbaset, Hesham F. A. Hamed

Abstract:

Generation of the electrical energy based on photovoltaic (PV) technology has been increased over the world due to either the continuous reduction in the traditional energy sources in addition to the pollution problems related to their usage, or the clean nature and safe usage of the PV technology. Also, PV systems can generate clean electricity in the site of use without any transmission, which can be considered cost effective than other generation systems. The performance of the PV system is highly affected by the amount of solar radiation incident on it. Completely or partially shaded PV systems can affect its output. The PV system can be shaded by trees, buildings, dust, incorrect system configuration, or other obstacles. The present paper studies the effect of the partial shading on the performance of a thin film PV module under climatic conditions of Cairo, Egypt. This effect was measured and evaluated according to practical measurement of the characteristic curves such as current-voltage and power-voltage for two identical PV modules (with and without shading) placed at the same time on one mechanical structure for comparison. The measurements have been carried out for the following shading patterns; half cell (bottom, middle, and top of the PV module); complete cell; and two adjacent cells. The results showed that partially shading the PV module changes the shapes of the I-V and P-V curves and produces more than one maximum power point, that can disturb the traditional maximum power point trackers. Also, the output power from the module decreased according to the incomplete solar radiation reaching the PV module due to shadow patterns. The power loss due shading was 7%, 22%, and 41% for shading of half-cell, one cell, and two adjacent cells of the PV module, respectively.

Keywords: I-V measurements, PV module characteristics, PV module power loss, PV module shading

Procedia PDF Downloads 107
1806 Autopsy-Based Study of Abdominal Traffic Trauma Death after Emergency Room Arrival

Authors: Satoshi Furukawa, Satomu Morita, Katsuji Nishi, Masahito Hitosugi

Abstract:

We experience the autopsy cases that the deceased was alive in emergency room on arrival. Bleeding is the leading cause of preventable death after injury. This retrospective study aimed to characterize opportunities for performance improvement identified in patients who died from traffic trauma and were considered by the quality improvement of education system. The Japan Advanced Trauma Evaluation and Care (JATEC) education program was introduced in 2002. We focused the abdominal traffic trauma injury. An autopsy-based cross-sectional study conducted. A purposive sampling technique was applied to select the study sample of 41 post-mortems of road traffic accident between April 1999 and March 2014 subjected to medico-legal autopsy at the department of Forensic Medicine, Shiga University of Medical Science. 16 patients (39.0%) were abdominal trauma injury. The mean period of survival after meet with accident was 13.5 hours, compared abdominal trauma death was 27.4 hours longer. In road traffic accidents, the most injured abdominal organs were liver followed by mesentery. We thought delayed treatment was associated with immediate diagnostic imaging, and so expected to expand trauma management examination.

Keywords: abdominal traffic trauma, preventable death, autopsy, emergency medicine

Procedia PDF Downloads 419
1805 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation

Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar

Abstract:

Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.

Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination

Procedia PDF Downloads 53
1804 Flammability and Smoke Toxicity of Rainscreen Façades

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

Four façade systems were tested using a reduced height BS 8414-2 (5 m) test rig. An L-shaped masonry test wall was clad with three types of insulation and an aluminum composite panel with a non-combustible filling (meeting Euroclass A2). A large (3 MW) wooden crib was ignited in a recess at the base of the L, and the fire was allowed to burn for 30 minutes. Air velocity measurements and gas samples were taken from the main ventilation duct and also a small additional ventilation duct, like those in an apartment bathroom or kitchen. This provided a direct route of travel for smoke from the building façade to a theoretical room using a similar design to many high-rise buildings where the vent is connected to (approximately) 30 m³ rooms. The times to incapacitation and lethality of the effluent were calculated for both the main exhaust vent and for a vent connected to a theoretical 30 m³ room. The rainscreen façade systems tested were the common combinations seen in many tower blocks across the UK. Three tests using ACM A2 with Stonewool, Phenolic foam, and Polyisocyanurate (PIR) foam. A fourth test was conducted with PIR and ACM-PE (polyethylene core). Measurements in the main exhaust duct were representative of the effluent from the burning wood crib. FEDs showed incapacitation could occur up to 30 times quicker with combustible insulation than non-combustible insulation, with lethal gas concentrations accumulating up to 2.7 times faster than other combinations. The PE-cored ACM/PIR combination produced a ferocious fire, resulting in the termination of the test after 13.5 minutes for safety reasons. Occupants of the theoretical room in the PIR/ACM A2 test reached a FED of 1 after 22 minutes; for PF/ACM A2, this took 25 minutes, and for stone wool, a lethal dose measurement of 0.6 was reached at the end of the 30-minute test. In conclusion, when measuring smoke toxicity in the exhaust duct, there is little difference between smoke toxicity measurements between façade systems. Toxicity measured in the main exhaust is largely a result of the wood crib used to ignite the façade system. The addition of a vent allowed smoke toxicity to be quantified in the cavity of the façade, providing a realistic way of measuring the toxicity of smoke that could enter an apartment from a façade fire.

Keywords: smoke toxicity, large-scale testing, BS8414, FED

Procedia PDF Downloads 33
1803 Clean Sky 2 Project LiBAT: Light Battery Pack for High Power Applications in Aviation – Simulation Methods in Early Stage Design

Authors: Jan Dahlhaus, Alejandro Cardenas Miranda, Frederik Scholer, Maximilian Leonhardt, Matthias Moullion, Frank Beutenmuller, Julia Eckhardt, Josef Wasner, Frank Nittel, Sebastian Stoll, Devin Atukalp, Daniel Folgmann, Tobias Mayer, Obrad Dordevic, Paul Riley, Jean-Marc Le Peuvedic

Abstract:

Electrical and hybrid aerospace technologies pose very challenging demands on the battery pack – especially with respect to weight and power. In the Clean Sky 2 research project LiBAT (funded by the EU), the consortium is currently building an ambitious prototype with state-of-the art cells that shows the potential of an intelligent pack design with a high level of integration, especially with respect to thermal management and power electronics. For the latter, innovative multi-level-inverter technology is used to realize the required power converting functions with reduced equipment. In this talk the key approaches and methods of the LiBat project will be presented and central results shown. Special focus will be set on the simulative methods used to support the early design and development stages from an overall system perspective. The applied methods can efficiently handle multiple domains and deal with different time and length scales, thus allowing the analysis and optimization of overall- or sub-system behavior. It will be shown how these simulations provide valuable information and insights for the efficient evaluation of concepts. As a result, the construction and iteration of hardware prototypes has been reduced and development cycles shortened.

Keywords: electric aircraft, battery, Li-ion, multi-level-inverter, Novec

Procedia PDF Downloads 132
1802 Traditional Role of Women and Its Implication in Solid Waste Management in Bauchi Metropolis

Authors: Bogoro Audu Gani, Tobi Nzelibe Ajiji Haruna

Abstract:

Women have both knowledge and expertise, whose recognition can lead to more efficient, effective, sustainable, and fair waste management operations. Studies have shown that the failure to take cognizance of the traditional role of women in the management of urban environments results in a serious loss of efficiency and productivity. However, urban managers in developing countries are yet to identify and integrate those critical roles of women into urban environmental management. This research is motivated not only due the poor solid waste management but also by the total neglect of the role of women in solid waste management in the Bauchi metropolis. Systematic random sampling technique was adopted for the selection of the samples and 4% of the study population was taken as the sample size. The major instruments used for data collection were questionnaires, interviews and direct measurement of household solid waste at source and the data is presented in tables and charts. It is found that over 95% of sweeping, cooking and food preparation are exclusively reserved for women in the study area. Women dominate the generation, storage and collection of household solid waste with 81%, 96% and 91%, respectively, within the study area. It is also discovered that segregation can be 95% effectively carried out by women that have free time. However, urban managers in the Bauchi metropolis are yet to identify the role of women with a view to integrating them into solid waste management in order to achieve a healthy and clean living environment in the Bauchi metropolis. Among other suggestions, the paper recommends that the role of women should be identified and integrated into developing policies and programs for a clean and healthy living urban environment; this will not only improve the environmental quality but would also increase the income base of the family.

Keywords: women, solid waste, integration, segregation

Procedia PDF Downloads 53
1801 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 80