Search results for: channel flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5531

Search results for: channel flow

5381 Low Overhead Dynamic Channel Selection with Cluster-Based Spatial-Temporal Station Reporting in Wireless Networks

Authors: Zeyad Abdelmageid, Xianbin Wang

Abstract:

Choosing the operational channel for a WLAN access point (AP) in WLAN networks has been a static channel assignment process initiated by the user during the deployment process of the AP, which fails to cope with the dynamic conditions of the assigned channel at the station side afterward. However, the dramatically growing number of Wi-Fi APs and stations operating in the unlicensed band has led to dynamic, distributed, and often severe interference. This highlights the urgent need for the AP to dynamically select the best overall channel of operation for the basic service set (BSS) by considering the distributed and changing channel conditions at all stations. Consequently, dynamic channel selection algorithms which consider feedback from the station side have been developed. Despite the significant performance improvement, existing channel selection algorithms suffer from very high feedback overhead. Feedback latency from the STAs, due to the high overhead, can cause the eventually selected channel to no longer be optimal for operation due to the dynamic sharing nature of the unlicensed band. This has inspired us to develop our own dynamic channel selection algorithm with reduced overhead through the proposed low-overhead, cluster-based station reporting mechanism. The main idea behind the cluster-based station reporting is the observation that STAs which are very close to each other tend to have very similar channel conditions. Instead of requesting each STA to report on every candidate channel while causing high overhead, the AP divides STAs into clusters then assigns each STA in each cluster one channel to report feedback on. With the proper design of the cluster based reporting, the AP does not lose any information about the channel conditions at the station side while reducing feedback overhead. The simulation results show equal performance and, at times, better performance with a fraction of the overhead. We believe that this algorithm has great potential in designing future dynamic channel selection algorithms with low overhead.

Keywords: channel assignment, Wi-Fi networks, clustering, DBSCAN, overhead

Procedia PDF Downloads 85
5380 Channel Estimation for Orthogonal Frequency Division Multiplexing Systems over Doubly Selective Channels Base on DCS-DCSOMP Algorithm

Authors: Linyu Wang, Furui Huo, Jianhong Xiang

Abstract:

The Doppler shift generated by high-speed movement and multipath effects in the channel are the main reasons for the generation of a time-frequency doubly-selective (DS) channel. There is severe inter-carrier interference (ICI) in the DS channel. Channel estimation for an orthogonal frequency division multiplexing (OFDM) system over a DS channel is very difficult. The simultaneous orthogonal matching pursuit algorithm under distributed compressive sensing theory (DCS-SOMP) has been used in channel estimation for OFDM systems over DS channels. However, the reconstruction accuracy of the DCS-SOMP algorithm is not high enough in the low SNR stage. To solve this problem, in this paper, we propose an improved DCS-SOMP algorithm based on the inner product difference comparison operation (DCS-DCSOMP). The reconstruction accuracy is improved by increasing the number of candidate indexes and designing the comparison conditions of inner product difference. We combine the DCS-DCSOMP algorithm with the basis expansion model (BEM) to reduce the complexity of channel estimation. Simulation results show the effectiveness of the proposed algorithm and its advantages over other algorithms.

Keywords: OFDM, doubly selective, channel estimation, compressed sensing

Procedia PDF Downloads 66
5379 Enhanced Performance of an All-Vanadium Redox Flow Battery Employing Graphene Modified Carbon Paper Electrodes

Authors: Barun Chakrabarti, Dan Nir, Vladimir Yufit, P. V. Aravind, Nigel Brandon

Abstract:

Fuel cell grade gas-diffusion layer carbon paper (CP) electrodes are subjected to electrophoresis in N,N’-dimethylformamide (DMF) consisting of reduced graphene oxide (rGO). The rGO modified electrodes are compared with CP in a single asymmetric all-vanadium redox battery system (employing a double serpentine flow channel for each half-cell). Peak power densities improved by 4% when the rGO deposits were facing the ion-exchange membrane (cell performance was poorer when the rGO was facing the flow field). Cycling of the cells showed least degradation of the CP electrodes that were coated with rGO in comparison to pristine samples.

Keywords: all-vanadium redox flow batteries, carbon paper electrodes, electrophoretic deposition, reduced graphene oxide

Procedia PDF Downloads 188
5378 Channel Length Modulation Effect on Monolayer Graphene Nanoribbon Field Effect Transistor

Authors: Mehdi Saeidmanesh, Razali Ismail

Abstract:

Recently, Graphene Nanoribbon Field Effect Transistors (GNR FETs) attract a great deal of attention due to their better performance in comparison with conventional devices. In this paper, channel length Modulation (CLM) effect on the electrical characteristics of GNR FETs is analytically studied and modeled. To this end, the special distribution of the electric potential along the channel and current-voltage characteristic of the device is modeled. The obtained results of analytical model are compared to the experimental data of published works. As a result, it is observable that considering the effect of CLM, the current-voltage response of GNR FET is more realistic.

Keywords: graphene nanoribbon, field effect transistors, short channel effects, channel length modulation

Procedia PDF Downloads 377
5377 Effect of Prandtl Number on Flow and Heat Transfer Across a Confined Equilateral Triangular Cylinder

Authors: Tanveer Rasool, A. K. Dhiman

Abstract:

The paper reports 2-D numerical study used to investigate the effect of changing working fluids with Prandtl numbers 0.71, 10 and 50 on the flow and convective heat transfer across an equilateral triangular cylinder placed in a horizontal channel with its apex facing the flow. Numerical results have been generated for fixed blockage ratio of 50% and for three Reynolds numbers of 50, 75, and 100 for each Prandtl numbers respectively. The studies show that for above range of Reynolds numbers, the overall drag coefficient is insensitive to the Prandtl number changes while as the heat transfer characteristics change drastically with changing Prandtl number of the working fluid. The results generated are in complete agreement with the previous literature available.

Keywords: Prandtl number, Reynolds number, drag coefficient, flow and isothermal patterns

Procedia PDF Downloads 365
5376 Modeling Depth Averaged Velocity and Boundary Shear Stress Distributions

Authors: Ebissa Gadissa Kedir, C. S. P. Ojha, K. S. Hari Prasad

Abstract:

In the present study, the depth-averaged velocity and boundary shear stress in non-prismatic compound channels with three different converging floodplain angles ranging from 1.43ᶱ to 7.59ᶱ have been studied. The analytical solutions were derived by considering acting forces on the channel beds and walls. In the present study, five key parameters, i.e., non-dimensional coefficient, secondary flow term, secondary flow coefficient, friction factor, and dimensionless eddy viscosity, were considered and discussed. An expression for non-dimensional coefficient and integration constants was derived based on the boundary conditions. The model was applied to different data sets of the present experiments and experiments from other sources, respectively, to examine and analyse the influence of floodplain converging angles on depth-averaged velocity and boundary shear stress distributions. The results show that the non-dimensional parameter plays important in portraying the variation of depth-averaged velocity and boundary shear stress distributions with different floodplain converging angles. Thus, the variation of the non-dimensional coefficient needs attention since it affects the secondary flow term and secondary flow coefficient in both the main channel and floodplains. The analysis shows that the depth-averaged velocities are sensitive to a shear stress-dependent model parameter non-dimensional coefficient, and the analytical solutions are well agreed with experimental data when five parameters are included. It is inferred that the developed model may facilitate the interest of others in complex flow modeling.

Keywords: depth-average velocity, converging floodplain angles, non-dimensional coefficient, non-prismatic compound channels

Procedia PDF Downloads 50
5375 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering

Authors: Youssef I. Hafez

Abstract:

Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.

Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming

Procedia PDF Downloads 194
5374 Real-Time Monitoring of Complex Multiphase Behavior in a High Pressure and High Temperature Microfluidic Chip

Authors: Renée M. Ripken, Johannes G. E. Gardeniers, Séverine Le Gac

Abstract:

Controlling the multiphase behavior of aqueous biomass mixtures is essential when working in the biomass conversion industry. Here, the vapor/liquid equilibria (VLE) of ethylene glycol, glycerol, and xylitol were studied for temperatures between 25 and 200 °C and pressures of 1 to 10 bar. These experiments were performed in a microfluidic platform, which exhibits excellent heat transfer properties so that equilibrium is reached fast. Firstly, the saturated vapor pressure as a function of the temperature and the substrate mole fraction of the substrate was calculated using AspenPlus with a Redlich-Kwong-Soave Boston-Mathias (RKS-BM) model. Secondly, we developed a high-pressure and high-temperature microfluidic set-up for experimental validation. Furthermore, we have studied the multiphase flow pattern that occurs after the saturation temperature was achieved. A glass-silicon microfluidic device containing a 0.4 or 0.2 m long meandering channel with a depth of 250 μm and a width of 250 or 500 μm was fabricated using standard microfabrication techniques. This device was placed in a dedicated chip-holder, which includes a ceramic heater on the silicon side. The temperature was controlled and monitored by three K-type thermocouples: two were located between the heater and the silicon substrate, one to set the temperature and one to measure it, and the third one was placed in a 300 μm wide and 450 μm deep groove on the glass side to determine the heat loss over the silicon. An adjustable back pressure regulator and a pressure meter were added to control and evaluate the pressure during the experiment. Aqueous biomass solutions (10 wt%) were pumped at a flow rate of 10 μL/min using a syringe pump, and the temperature was slowly increased until the theoretical saturation temperature for the pre-set pressure was reached. First and surprisingly, a significant difference was observed between our theoretical saturation temperature and the experimental results. The experimental values were 10’s of degrees higher than the calculated ones and, in some cases, saturation could not be achieved. This discrepancy can be explained in different ways. Firstly, the pressure in the microchannel is locally higher due to both the thermal expansion of the liquid and the Laplace pressure that has to be overcome before a gas bubble can be formed. Secondly, superheating effects are likely to be present. Next, once saturation was reached, the flow pattern of the gas/liquid multiphase system was recorded. In our device, the point of nucleation can be controlled by taking advantage of the pressure drop across the channel and the accurate control of the temperature. Specifically, a higher temperature resulted in nucleation further upstream in the channel. As the void fraction increases downstream, the flow regime changes along the channel from bubbly flow to Taylor flow and later to annular flow. All three flow regimes were observed simultaneously. The findings of this study are key for the development and optimization of a microreactor for hydrogen production from biomass.

Keywords: biomass conversion, high pressure and high temperature microfluidics, multiphase, phase diagrams, superheating

Procedia PDF Downloads 192
5373 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles

Authors: Nirmal Kant Singh, Anshuman Pratap Singh

Abstract:

In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.

Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle

Procedia PDF Downloads 615
5372 Study of the Relationship between the Roughness Configuration of Channel Bottom and the Creation of Vortices at the Rough Area: Numerical Modelling

Authors: Youb Said, Fourar Ali

Abstract:

To describe the influence of bottom roughness on the free surface flows by numerical modeling, a two-dimensional model was developed. The equations of continuity and momentum (Naviers Stokes equations) are solved by the finite volume method. We considered a turbulent flow in an open channel with a bottom roughness. For our simulations, the K-ε model was used. After setting the initial and boundary conditions and solve the equations set, we were able to achieve the following results: vortex forming in the hollow causing substantial energy dissipation in the obstacle areas that form the bottom roughness. The comparison of our results with experimental ones shows a good agreement in terms of the results in the rough area. However, in other areas, differences were more or less important. These differences are in areas far from the bottom, especially the free surface area just after the bottom. These disagreements are probably due to experimental constants used by the k-ε model.

Keywords: modeling, free surface flow, turbulence, bottom roughness, finite volume, K-ε model, energy dissipation

Procedia PDF Downloads 360
5371 Numerical Study on the Effects of Truncated Ribs on Film Cooling with Ribbed Cross-Flow Coolant Channel

Authors: Qijiao He, Lin Ye

Abstract:

To evaluate the effect of the ribs on internal structure in film hole and the film cooling performance on outer surface, the numerical study investigates on the effects of rib configuration on the film cooling performance with ribbed cross-flow coolant channel. The base smooth case and three ribbed cases, including the continuous rib case and two cross-truncated rib cases with different arrangement, are studied. The distributions of adiabatic film cooling effectiveness and heat transfer coefficient are obtained under the blowing ratios with the value of 0.5 and 1.0, respectively. A commercial steady RANS (Reynolds-averaged Navier-Stokes) code with realizable k-ε turbulence model and enhanced wall treatment were performed for numerical simulations. The numerical model is validated against available experimental data. The two cross-truncated rib cases produce approximately identical cooling effectiveness compared with the smooth case under lower blowing ratio. The continuous rib case significantly outperforms the other cases. With the increase of blowing ratio, the cases with ribs are inferior to the smooth case, especially in the upstream region. The cross-truncated rib I case produces the highest cooling effectiveness among the studied the ribbed channel case. It is found that film cooling effectiveness deteriorates with the increase of spiral intensity of the cross-flow inside the film hole. Lower spiral intensity leads to a better film coverage and thus results in better cooling effectiveness. The distinct relative merits among the cases at different blowing ratios are explored based on the aforementioned dominant mechanism. With regard to the heat transfer coefficient, the smooth case has higher heat transfer intensity than the ribbed cases under the studied blowing ratios. The laterally-averaged heat transfer coefficient of the cross-truncated rib I case is higher than the cross-truncated rib II case.

Keywords: cross-flow, cross-truncated rib, film cooling, numerical simulation

Procedia PDF Downloads 110
5370 Combined Effect of Roughness and Suction on Heat Transfer in a Laminar Channel Flow

Authors: Marzieh Khezerloo, Lyazid Djenidi

Abstract:

Owing to wide range of the micro-device applications, the problems of mixing at small scales is of significant interest. Also, because most of the processes produce heat, it is needed to develop and implement strategies for heat removal in these devices. There are many studies which focus on the effect of roughness or suction on heat transfer performance, separately, although it would be useful to take advantage of these two methods to improve heat transfer performance. Unfortunately, there is a gap in this area. The present numerical study is carried to investigate the combined effects of roughness and wall suction on heat transfer performance of a laminar channel flow; suction is applied on the top and back faces of the roughness element, respectively. The study is carried out for different Reynolds numbers, different suction rates, and various locations of suction area on the roughness. The flow is assumed two dimensional, incompressible, laminar, and steady state. The governing Navier-Stokes equations are solved using ANSYS-Fluent 18.2 software. The present results are tested against previous theoretical results. The results show that by adding suction, the local Nusselt number is enhanced in the channel. In addition, it is shown that by applying suction on the bottom section of the roughness back face, one can reduce the thickness of thermal boundary layer, which leads to an increase in local Nusselt number. This indicates that suction is an effective means for improving the heat transfer rate (suction by controls the thickness of thermal boundary layer). It is also shown that the size and intensity of vortical motion behind the roughness element, decreased with an increasing suction rate, which leads to higher local Nusselt number. So, it can be concluded that by using suction, strategically located on the roughness element, one can control both the recirculation region and the heat transfer rate. Further results will be presented at the conference for coefficient of drag and the effect of adding more roughness elements.

Keywords: heat transfer, laminar flow, numerical simulation, roughness, suction

Procedia PDF Downloads 91
5369 Multiple-Channel Coulter Counter for Cell Sizing and Enumeration

Authors: Yu Chen, Seong-Jin Kim, Jaehoon Chung

Abstract:

High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated.

Keywords: Coulter counter, cell enumeration, high through-put, cell sizing

Procedia PDF Downloads 572
5368 Social Media as a Distribution Channel for Thailand’s Rice Berry Product

Authors: Phutthiwat Waiyawuththanapoom, Wannapong Waiyawuththanapoom, Pimploi Tirastittam

Abstract:

Nowadays, it is a globalization era which social media plays an important role to the lifestyle as an information source, tools to connect people together and etc. This research is object to find out about the significant level of the social media as a distribution channel to the agriculture product of Thailand. In this research, the agriculture product is the Rice Berry which is the cross-bred unmilled rice producing dark violet grain, is a combination of Hom Nin Rice and Thai Jasmine/ Fragrant Rice 105. Rice Berry has a very high nutrition and nice aroma so the product is in the growth stage of the product cycle. The problem for the Rice Berry product in Thailand is the production and the distribution channel. This study is to confirm that the social media is another option as the distribution channel for the product which is not a mass production product. This will be the role model for the other niche market product to select the distribution channel.

Keywords: distribution, social media, rice berry, distribution channel

Procedia PDF Downloads 402
5367 Sum Capacity with Regularized Channel Inversion in Multi-Antenna Downlink Systems under Equal Power Constraint

Authors: Attaullah Khawaja, Amna Shabbir

Abstract:

Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper regularized channel inversion under equal power constraint in the multiuser multiple input multiple output (MU-MIMO) broadcast channels has been considered. Sum capacity with plain channel inversion also known as Zero Forcing Beam Forming (ZFBF) and optimum sum capacity using Dirty Paper Coding (DPC) has also been investigated. Analysis and simulations show that regularization enhances the system performance and empower linear growth in Sum Capacity and specially work well at low signal to noise ratio (SNRs) regime.

Keywords: broadcast channel, channel inversion, multiple antenna multiple-user wireless, multiple-input multiple-output (MIMO), regularization, dirty paper coding (DPC), sum capacity

Procedia PDF Downloads 484
5366 Experimental Study of the Dynamics of Sediments in Natural Channels in a Non-Stationary Flow Regime

Authors: Fourar Ali, Fourar Fatima Zohra

Abstract:

Knowledge of sediment characteristics is fundamental to understanding their sedimentary functioning: sedimentation, settlement, and erosion processes of cohesive sediments are controlled by complex interactions between physical, chemical, and biological factors. Sediment transport is of primary importance in river hydraulics and river engineering. Indeed, the displacement of sediments can lead to lasting modifications of the bed in terms of its elevation, slope and roughness. The protection of a bank, for example, is likely to initiate a local incision of the river bed, which, in turn, can lead to the subsidence of the bank. The flows in the natural environment occur in general with heterogeneous boundary conditions because of the distribution of the roughnesses of the fixed or mobile bottoms and of the important deformations of the free surface, especially for the flows with a weak draft considering the irregularity of the bottom. Bedforms significantly influence flow resistance. The arrangement of particles lining the bottom of the stream bed or experimental channel generates waveforms of different sizes that lead to changes in roughness and consequently spatial variability in the turbulent characteristics of the flow. The study which is focused on the laws of friction in alluvial beds, aims to analyze the characteristics of flows and materials constituting the natural channels. Experimental results were obtained by simulating these flows on a rough bottom in an experimental channel at the Hydraulics Laboratory of the University of Batna 2. The system of equations governing the problem is solved using the program named: CLIPPER.5 and ACP.

Keywords: free surface flow, heterogeneous sand, moving bottom bed, friction coefficient, bottom roughness

Procedia PDF Downloads 51
5365 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects

Authors: Okuyade Ighoroje Wilson Ata

Abstract:

Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.

Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel

Procedia PDF Downloads 58
5364 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 55
5363 Experimental Study on Heat and Mass Transfer of Humidifier for Fuel Cell

Authors: You-Kai Jhang, Yang-Cheng Lu

Abstract:

Major contributions of this study are threefold: designing a new model of planar-membrane humidifier for Proton Exchange Membrane Fuel Cell (PEMFC), an index to measure the Effectiveness (εT) of that humidifier, and an air compressor system to replicate related planar-membrane humidifier experiments. PEMFC as a kind of renewable energy has become more and more important in recent years due to its reliability and durability. To maintain the efficiency of the fuel cell, the membrane of PEMFC need to be controlled in a good hydration condition. How to maintain proper membrane humidity is one of the key issues to optimize PEMFC. We developed new humidifier to recycle water vapor from cathode air outlet so as to keep the moisture content of cathode air inlet in a PEMFC. By measuring parameters such as dry side air outlet dew point temperature, dry side air inlet temperature and humidity, wet side air inlet temperature and humidity, and differential pressure between dry side and wet side, we calculated indices obtained by dew point approach temperature (DPAT), water flux (J), water recovery ratio (WRR), effectiveness (εT), and differential pressure (ΔP). We discussed six topics including sealing effect, flow rate effect, flow direction effect, channel effect, temperature effect, and humidity effect by using these indices. Gas cylinders are used as sources of air supply in many studies of humidifiers. Gas cylinder depletes quickly during experiment at 1kW air flow rate, and it causes replication difficult. In order to ensure high stable air quality and better replication of experimental data, this study designs an air supply system to overcome this difficulty. The experimental result shows that the best rate of pressure loss of humidifier is 0.133×10³ Pa(g)/min at the torque of 25 (N.m). The best humidifier performance ranges from 30-40 (LPM) of air flow rates. The counter flow configured humidifies moisturizes the dry side inlet air more effectively than the parallel flow humidifier. From the performance measurements of the channel plates various rib widths studied in this study, it is found that the narrower the rib width is, the more the performance of humidifier improves. Raising channel width in same hydraulic diameter (Dh ) will obtain higher εT and lower ΔP. Moreover, increasing the dry side air inlet temperature or humidity will lead to lower εT. In addition, when the dry side air inlet temperature exceeds 50°C, the effect becomes even more obvious.

Keywords: PEM fuel cell, water management, membrane humidifier, heat and mass transfer, humidifier performance

Procedia PDF Downloads 141
5362 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media

Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr

Abstract:

The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.

Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution

Procedia PDF Downloads 823
5361 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 51
5360 A Survey on Countermeasures of Cache-Timing Attack on AES Systems

Authors: Settana M. Abdulh, Naila A. Sadalla, Yaseen H. Taha, Howaida Elshoush

Abstract:

Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. This includes timing information, power consumption as well as electromagnetic or even sound leaking which can exploited by an attacker. Implementing side channel attacks are possible if and only if an attacker has access to a cryptosystem. In this case, the attacker can exploit bad implementation in software or hardware which is not controlled by encryption implementer. Thus, he/she will represent a real threat to the security system. Several countermeasures have been proposed to eliminate side channel information vulnerability.Cache timing attack is a special type of side channel attack. Here, timing information is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. This paper reviews the technique applied in this attack and surveys the countermeasures against it, evaluating the feasibility and usability of each. Based on this evaluation, finally we pose several recommendations about using these countermeasures.

Keywords: AES algorithm, side channel attack, cache timing attack, cache timing countermeasure

Procedia PDF Downloads 267
5359 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.

Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection

Procedia PDF Downloads 345
5358 Stream Channel Changes in Balingara River, Sulawesi Tengah

Authors: Muhardiyan Erawan, Zaenal Mutaqin

Abstract:

Balingara River is one of the rivers with the type Gravel-Bed in Indonesia. Gravel-Bed Rivers easily deformed in a relatively short time due to several variables, that are climate (rainfall), river discharge, topography, rock types, and land cover. To determine stream channel changes in Balingara River used Landsat 7 and 8 and analyzed planimetric or two dimensions. Parameters to determine changes in the stream channel are sinuosity ratio, Brice Index, the extent of erosion and deposition. Changes in stream channel associated with changes in land cover then analyze with a descriptive analysis of spatial and temporal. The location of a stream channel has a low gradient in the upstream, and middle watershed with the type of rock in the form of gravel is more easily changed than other locations. Changes in the area of erosion and deposition influence the land cover changes.

Keywords: Brice Index, erosion, deposition, gravel-bed, land cover change, sinuosity ratio, stream channel change

Procedia PDF Downloads 297
5357 Product Line Design with Customization in the Presence of Demand Uncertainty

Authors: Parisa Bagheri Tookanlou

Abstract:

In this paper, we analyze a product line design problem faced by a manufacturing firm where the product line consists of a customized product in addition to a standard product and is offered in a market in which customers are heterogeneous on aesthetic attributes of the product. The customization level of a product is defined by the fraction of aesthetic attributes of the product that the manufacturer chooses to customize. In contrast to the existing literature on product line design that predominantly assumes deterministic demand, we consider the presence of demand uncertainty and frame the product line design problem in a single period (news vendor) setting. We examine the effect of demand uncertainty on product line decisions. Furthermore, we also examine how product line decisions are influenced by channel structure. While we use the centralized channel as a benchmark, we consider the decentralized dual channel where the customized product is sold through an online channel owned by the manufacturer and the standard product is sold through a retailer. We introduce a supply contract between the manufacturer and the retailer for improving channel efficiency and coordinate the distribution channel.

Keywords: product line design, demand uncertainty, customization level, distribution channel

Procedia PDF Downloads 153
5356 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX has adopted an Adaptive Modulation and Coding (AMC) in OFDM to endure higher data rates and error free transmission. AMC schemes employ the Channel State Information (CSI) to efficiently utilize the channel and maximize the throughput and for better spectral efficiency. This CSI has given to the transmitter by the channel estimators. In this paper, LSE (Least Square Error) and MMSE (Minimum Mean square Error) estimators are suggested and BER (Bit Error Rate) performance has been analyzed. Channel equalization is also integrated with with AMC-OFDM system and presented with Constant Modulus Algorithm (CMA) and Least Mean Square (LMS) algorithms with convergence rates analysis. Simulation results proved that increment in modulation scheme size causes to improvement in throughput along with BER value. There is a trade-off among modulation size, throughput, BER value and spectral efficiency. Results also reported the requirement of channel estimation and equalization in high data rate systems.

Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX

Procedia PDF Downloads 369
5355 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.

Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate

Procedia PDF Downloads 241
5354 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 332
5353 Towards Accurate Velocity Profile Models in Turbulent Open-Channel Flows: Improved Eddy Viscosity Formulation

Authors: W. Meron Mebrahtu, R. Absi

Abstract:

Velocity distribution in turbulent open-channel flows is organized in a complex manner. This is due to the large spatial and temporal variability of fluid motion resulting from the free-surface turbulent flow condition. This phenomenon is complicated further due to the complex geometry of channels and the presence of solids transported. Thus, several efforts were made to understand the phenomenon and obtain accurate mathematical models that are suitable for engineering applications. However, predictions are inaccurate because oversimplified assumptions are involved in modeling this complex phenomenon. Therefore, the aim of this work is to study velocity distribution profiles and obtain simple, more accurate, and predictive mathematical models. Particular focus will be made on the acceptable simplification of the general transport equations and an accurate representation of eddy viscosity. Wide rectangular open-channel seems suitable to begin the study; other assumptions are smooth-wall, and sediment-free flow under steady and uniform flow conditions. These assumptions will allow examining the effect of the bottom wall and the free surface only, which is a necessary step before dealing with more complex flow scenarios. For this flow condition, two ordinary differential equations are obtained for velocity profiles; from the Reynolds-averaged Navier-Stokes (RANS) equation and equilibrium consideration between turbulent kinetic energy (TKE) production and dissipation. Then different analytic models for eddy viscosity, TKE, and mixing length were assessed. Computation results for velocity profiles were compared to experimental data for different flow conditions and the well-known linear, log, and log-wake laws. Results show that the model based on the RANS equation provides more accurate velocity profiles. In the viscous sublayer and buffer layer, the method based on Prandtl’s eddy viscosity model and Van Driest mixing length give a more precise result. For the log layer and outer region, a mixing length equation derived from Von Karman’s similarity hypothesis provides the best agreement with measured data except near the free surface where an additional correction based on a damping function for eddy viscosity is used. This method allows more accurate velocity profiles with the same value of the damping coefficient that is valid under different flow conditions. This work continues with investigating narrow channels, complex geometries, and the effect of solids transported in sewers.

Keywords: accuracy, eddy viscosity, sewers, velocity profile

Procedia PDF Downloads 82
5352 Normally Closed Thermoplastic Microfluidic Valves with Microstructured Valve Seats: A Strategy to Avoid Permanently Bonded Valves during Channel Sealing

Authors: Kebin Li, Keith Morton, Matthew Shiu, Karine Turcotte, Luke Lukic, Teodor Veres

Abstract:

We present a normally closed thermoplastic microfluidic valve design that uses microstructured valve seats to locally prevent the membrane from bonding to the valve seat during microfluidic channel sealing. The microstructured valve seat reduces the adhesion force between the contact surfaces of the valve seat and the membrane locally, allowing valve open and close operations while simultaneously providing a permanent and robust bond elsewhere to cover and seal the microfluidic channel network. Dynamic valve operation including opening and closing times can be tuned by changing the valve seat diameter as well as the density of the microstructures on the valve seats. The influence of the microstructured valve seat on the general flow behavior through the microfluidic devices was also studied. A design window for the fabrication of valve structure is identified and discussed to minimize the fabrication complexity.

Keywords: hot-embossing, injection molding, microfabrication, microfluidics, microvalves, thermoplastic elastomer

Procedia PDF Downloads 258