Search results for: cell surface display
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9919

Search results for: cell surface display

1819 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 151
1818 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 268
1817 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 81
1816 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant K. Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input-output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986, and 0.9214, respectively at HH-polarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373, and 0.9428, respectively.

Keywords: bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE

Procedia PDF Downloads 393
1815 Corrosion Mitigation in Gas Facilities Piping Through the Use of FBE Coated Pipes and Corrosion Resistant Alloy Girth Welds

Authors: Fadi Chammas, Saad Alkhaldi, Tariq Alghamdi, Stefano Alexandirs

Abstract:

The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately (1700) breakout flanges, and prevent the potential hydrocarbon leaks.

Keywords: pipelines, corrosion, cost-saving, project completion

Procedia PDF Downloads 92
1814 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 76
1813 Identification and Characterization of in Vivo, in Vitro and Reactive Metabolites of Zorifertinib Using Liquid Chromatography Lon Trap Mass Spectrometry

Authors: Adnan A. Kadi, Nasser S. Al-Shakliah, Haitham Al-Rabiah

Abstract:

Zorifertinib is a novel, potent, oral, a small molecule used to treat non-small cell lung cancer (NSCLC). zorifertinib is an Epidermal Growth Factor Receptor (EGFR) inhibitor and has good blood–brain barrier permeability for (NSCLC) patients with EGFR mutations. zorifertinibis currently at phase II/III clinical trials. The current research reports the characterization and identification of in vitro, in vivo and reactive intermediates of zorifertinib. Prediction of susceptible sites of metabolism and reactivity pathways (cyanide and GSH) of zorifertinib were performed by the Xenosite web predictor tool. In-vitro metabolites of zorifertinib were performed by incubation with rat liver microsomes (RLMs) and isolated perfused rat liver hepatocytes. Extraction of zorifertinib and it's in vitro metabolites from the incubation mixtures were done by protein precipitation. In vivo metabolism was done by giving a single oral dose of zorifertinib(10 mg/Kg) to Sprague Dawely rats in metabolic cages by using oral gavage. Urine was gathered and filtered at specific time intervals (0, 6, 12, 18, 24, 48, 72,96and 120 hr) from zorifertinib dosing. A similar volume of ACN was added to each collected urine sample. Both layers (organic and aqueous) were injected into liquid chromatography ion trap mass spectrometry(LC-IT-MS) to detect vivozorifertinib metabolites. N-methyl piperizine ring and quinazoline group of zorifertinib undergoe metabolism forming iminium and electro deficient conjugated system respectively, which are very reactive toward nucleophilic macromolecules. Incubation of zorifertinib with RLMs in the presence of 1.0 mM KCN and 1.0 Mm glutathione were made to check reactive metabolites as it is often responsible for toxicities associated with this drug. For in vitro metabolites there were nine in vitro phase I metabolites, four in vitro phase II metabolites, eleven reactive metabolites(three cyano adducts, five GSH conjugates metabolites, and three methoxy metabolites of zorifertinib were detected by LC-IT-MS. For in vivo metabolites, there were eight in vivo phase I, tenin vivo phase II metabolitesofzorifertinib were detected by LC-IT-MS. In vitro and in vivo phase I metabolic pathways wereN- demthylation, O-demethylation, hydroxylation, reduction, defluorination, and dechlorination. In vivo phase II metabolic reaction was direct conjugation of zorifertinib with glucuronic acid and sulphate.

Keywords: in vivo metabolites, in vitro metabolites, cyano adducts, GSH conjugate

Procedia PDF Downloads 167
1812 Effect of Burdock Root Extract Concentration on Physiochemical Property of Coated Jasmine Rice by Using Top-Spay Fluidized Bed Coating Technique

Authors: Donludee Jaisut, Norihisa Kato, Thanutchaporn Kumrungsee, Kiyoshi Kawai, Somkiat Prachayawarakorn, Patchalee Tungtrakul

Abstract:

Jasmine Rice is a principle food of Thai people. However, glycemic index of jasmine rice is in high level, risk of type II diabetes after consuming. Burdock root is a good source of non-starch polysaccharides such as inulin. Inulin acts as prebiotic and helps reduce blood-sugar level. The purpose of this research was to reduce digestion rate of jasmine rice by coating burdock root extract on rice surface, using top-spay fluidized bed coating technique. Coating experiments were performed by spraying burdock root solution onto Jasmine rice kernels (Khao Dawk Mali-105; KDML), which had an initial moisture content of 11.6% wet basis, suspended in the fluidized bed. The experimental conditions were: solution spray rates of 31.7 mL/min, atomization pressure of 1.5 bar, spray time of 10 min, time of drying after spraying of 30 s, superficial air velocity of 3.2 m/s and drying temperatures of 60°C. The coated rice quality was evaluated in terms of the moisture content, texture, whiteness and digestion rate. The results showed that initial and final moisture contents of samples were the same in concentration 8% (v/v) and 10% (v/v). The texture was insignificantly changed from that of uncoated sample. The whiteness values were varied on concentration of burdock root extract. Coated samples were slower digested.

Keywords: burdock root, digestion, drying, rice

Procedia PDF Downloads 266
1811 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 45
1810 Transcriptomic Analysis for Differential Expression of Genes Involved in Secondary Metabolite Production in Narcissus Bulb and in vitro Callus

Authors: Aleya Ferdausi, Meriel Jones, Anthony Halls

Abstract:

The Amaryllidaceae genus Narcissus contains secondary metabolites, which are important sources of bioactive compounds such as pharmaceuticals indicating that their biological activity extends from the native plant to humans. Transcriptome analysis (RNA-seq) is an effective platform for the identification and functional characterization of candidate genes as well as to identify genes encoding uncharacterized enzymes. The biotechnological production of secondary metabolites in plant cell or organ cultures has become a tempting alternative to the extraction of whole plant material. The biochemical pathways for the production of secondary metabolites require primary metabolites to undergo a series of modifications catalyzed by enzymes such as cytochrome P450s, methyltransferases, glycosyltransferases, and acyltransferases. Differential gene expression analysis of Narcissus was obtained from two conditions, i.e. field and in vitro callus. Callus was obtained from modified MS (Murashige and Skoog) media supplemented with growth regulators and twin-scale explants from Narcissus cv. Carlton bulb. A total of 2153 differentially expressed transcripts were detected in Narcissus bulb and in vitro callus, and 78.95% of those were annotated. It showed the expression of genes involved in the biosynthesis of alkaloids were present in both conditions i.e. cytochrome P450s, O-methyltransferase (OMTs), NADP/NADPH dehydrogenases or reductases, SAM-synthetases or decarboxylases, 3-ketoacyl-CoA, acyl-CoA, cinnamoyl-CoA, cinnamate 4-hydroxylase, alcohol dehydrogenase, caffeic acid, N-methyltransferase, and NADPH-cytochrome P450s. However, cytochrome P450s and OMTs involved in the later stage of Amaryllidaceae alkaloids biosynthesis were mainly up-regulated in field samples. Whereas, the enzymes involved in initial biosynthetic pathways i.e. fructose biphosphate adolase, aminotransferases, dehydrogenases, hydroxyl methyl glutarate and glutamate synthase leading to the biosynthesis of precursors; tyrosine, phenylalanine and tryptophan for secondary metabolites were up-regulated in callus. The knowledge of probable genes involved in secondary metabolism and their regulation in different tissues will provide insight into the Narcissus plant biology related to alkaloid production.

Keywords: narcissus, callus, transcriptomics, secondary metabolites

Procedia PDF Downloads 112
1809 Emulsified Oil Removal in Produced Water by Graphite-Based Adsorbents Using Adsorption Coupled with Electrochemical Regeneration

Authors: Zohreh Fallah, Edward P. L. Roberts

Abstract:

One of the big challenges for produced water treatment is removing oil from water in the form of emulsified droplets which are not easily separated. An attractive approach is adsorption, as it is a simple and effective process. However, adsorbents must be regenerated in order to make the process cost effective. Several sorbents have been tested for treating oily wastewater. However, some issues such as high energy consumption for activated carbon thermal regeneration have been reported. Due to their significant electrical conductivity, Graphite Intercalation Compounds (GIC) were found to be suitable to be regenerated electrochemically. They are non-porous materials with low surface area and fast adsorptive capacity which are useful for removal of low concentration of organics. An innovative adsorption/regeneration process has been developed at the University of Manchester in which adsorption of organics are done by using a patented GIC adsorbent coupled with subsequent electrochemical regeneration. The oxidation of adsorbed organics enables 100% regeneration so that the adsorbent can be reused over multiple adsorption cycles. GIC adsorbents are capable of removing a wide range of organics and pollutants; however, no comparable report is available for removal of emulsified oil in produced water using abovementioned process. In this study the performance of this technology for the removal of emulsified oil in wastewater was evaluated. Batch experiments were carried out to determine the adsorption kinetics and equilibrium isotherm for both real produced water and model emulsions. The amount of oil in wastewater was measured by using the toluene extraction/fluorescence analysis before and after adsorption and electrochemical regeneration cycles. It was found that oil in water emulsion could be successfully treated by the treatment process and More than 70% of oil was removed.

Keywords: adsorption, electrochemical regeneration, emulsified oil, produced water

Procedia PDF Downloads 561
1808 The Combination of Porcine Plasma Protein and Maltodextrin as Wall Materials on Microencapsulated Turmeric Oil Powder Quality

Authors: Namfon Samsalee, Rungsinee Sothornvit

Abstract:

Turmeric is a natural plant herb and generally extracted as essential oil and widely used in food, cosmetic, pharmaceutical products including insect repellent. However, turmeric oil is a volatile essential oil which is easy to be lost during storage or exposure to light. Therefore, biopolymers such as protein and polysaccharide can be used as wall materials to encapsulate the essential oil which will solve this drawback. Approximately 60% plasma from porcine blood contains 6-7% of protein content mainly albumin and globulin which can be a good source of animal protein at the low-cost biopolymer from by-product. Microencapsulation is a useful technique to entrap volatile compounds in the biopolymer matrix and protect them to degrade. The objective of this research was to investigate the different ratios of two biopolymers (PPP and maltodextrin; MD) as wall materials at 100:0, 75:25, 50:50, 25:75 and 0:100 at a fixed ratio of wall material: core material (turmeric oil) at 3:1 (oil in water) on the qualities of microencapsulated powder using freeze drying. It was found that the combination of PPP and MD showed higher solubility of microencapsules compared to the use of PPP alone (P < 0.05). Moreover, the different ratios of wall materials also affected on color (L*, a* and b*) of microencapsulated powder. Morphology of microencapsulated powder using a scanning electron microscope showed holes on the surface reflecting on free oil content and encapsulation efficiency of microencapsules. At least 50% of MD was needed to increase encapsulation efficiency of microencapsulates rather than using only PPP as the wall material (P < 0.05). Microencapsulated turmeric oil powder can be useful as food additives to improve food texture, as a biopolymer material for edible film and coating to maintain quality of food products.

Keywords: microencapsulation, turmeric oil, porcine plasma protein, maltodextrin

Procedia PDF Downloads 149
1807 The Effect of the Spinacia oleracea Extract on the Control of the Green Mold 'Penilillium digitatum' at the Post Harvested Citrus

Authors: Asma Chbani, Douaa Salim, Josephine Al Alam, Pascale De Caro

Abstract:

Penicillium digitatum, the causal agent of citrus green mold, is responsible for 90% of post-harvest losses. Chemical fungicides remain the most used products for protection against this pathogen but are also responsible for damage to human health and the environment. The aim of this study is to evaluate the ability of Spinacia oleracea extract to serve as biological control agents, an alternative to harmful synthetic fungicides, against orange decay for storing fruit caused by P. digitatum. In this study, we studied the implication of a crude extract of a green plant, Spinacia oleracea, in the protection of oranges against P. digitatum. Thus, in vivo antifungal tests as well as adhesion test were done. For in vivo antifungal test, oranges were pulverized with the prepared crude extracts at different concentrations ranged from 25 g L⁻¹ to 200 g L⁻¹, contaminated by the fungus and then observed during 8 weeks for their macroscopic changes at 24°C. For adhesion test, the adhesion index is defined as the number of Penicillium digitatum spores fixed per orange cell. An index greater than 25 is the indicator of a strong adhesion, whereas for an index less than 10, the adhesion is low. Ten orange cells were examined in triplicate for each extract, and the averages of adherent cells were calculated. Obtained results showed an inhibitory activity of the Penicillium development with the aqueous extract of dry Spinacia oleracea with a concentration of 50 g L⁻¹ considered as the minimal protective concentration. The prepared extracts showed a greater inhibition of the development of P. digitatum up to 10 weeks, even greater than the fungicide control Nystatin. Adhesion test’s results showed that the adhesion of P. digitatum spores to the epidermal cells of oranges in the presence of the crude spinach leaves extract is weak; the mean of the obtained adhesion index was estimated to 2.7. However, a high adhesion was observed with water used a negative control. In conclusion, all these results confirm that the use of this green plant highly rich in chlorophyll having several phytotherapeutic activities, could be employed as a great treatment for protection of oranges against mold and also as an alternative for chemical fungicides.

Keywords: Penicillium digitatum, Spinacia oleracea, oranges, biological control, postharvest diseases

Procedia PDF Downloads 145
1806 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream

Authors: S. Baississe, S. Godbane, A. Lekbir

Abstract:

The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).

Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure

Procedia PDF Downloads 179
1805 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 391
1804 Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly (Ether-Ether-Ketone)

Authors: Mahmoud A. Abdulhamid

Abstract:

Poly(ether-ether-ketone) (PEEK) has received increased attention due to its outstanding performance in different membrane applications including gas and liquid separation. However, it suffers from a semi-crystalline morphology, bad solubility and low porosity. To fabricate membranes from PEEK, the usage of harsh acid such as sulfuric acid is essential, regardless its hazardous properties. In this work, we report the molecular design of poly(ether-ether-ketones) (iPEEKs) with intrinsic porosity character, by incorporating kinked units into PEEK backbone such as spirobisindane, Tröger's base, and triptycene. The porous polymers were used to fabricate stable membranes for organic solvent nanofiltration application. To better understand the mechanism, we conducted molecular dynamics simulations to evaluate the possible interactions between the polymers and the solvents. Notable enhancement in separation performance was observed confirming the importance of molecular engineering of high-performance polymers. The iPEEKs demonstrated good solubility in polar aprotic solvents, a high surface area of 205–250 m² g⁻¹, and excellent thermal stability. Mechanically flexible nanofiltration membranes were prepared from N-methyl-2-pyrrolidone dope solution at iPEEK concentrations of 19–35 wt%. The molecular weight cutoff of the membranes was fine-tuned in the range of 450–845 g mol⁻¹ displaying 2–6 fold higher permeance (3.57–11.09 L m⁻² h⁻¹ bar⁻¹) than previous reports. The long-term stabilities were demonstrated by a 7 day continuous cross-flow filtration.

Keywords: molecular engineering, polymer synthesis, membrane fabrication, liquid separation

Procedia PDF Downloads 61
1803 Influence of Low and Extreme Heat Fluxes on Thermal Degradation of Carbon Fibre-Reinforced Polymers

Authors: Johannes Bibinger, Sebastian Eibl, Hans-Joachim Gudladt

Abstract:

This study considers the influence of different irradiation scenarios on the thermal degradation of carbon fiber-reinforced polymers (CFRP). Real threats are simulated, such as fires with long-lasting low heat fluxes and nuclear heat flashes with short-lasting high heat fluxes. For this purpose, coated and uncoated quasi-isotropic samples of the commercially available CFRP HexPly® 8552/IM7 are thermally irradiated from one side by a cone calorimeter and a xenon short-arc lamp with heat fluxes between 5 and 175 W/cm² at varying time intervals. The specimen temperature is recorded on the front and backside as well as at different laminate depths. The CFRP is non-destructively tested with ultrasonic testing, infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and micro-focused computed X-Ray tomography (μCT). Destructive tests are performed to evaluate the mechanical properties in terms of interlaminar shear strength (ILSS), compressive and tensile strength. The irradiation scenarios vary significantly in heat flux and exposure time. Thus, different heating rates, radiation effects, and temperature distributions occur. This leads to unequal decomposition processes, which affect the sensitivity of the strength type and damage behaviour of the specimens. However, with the use of surface coatings, thermal degradation of composite materials can be delayed.

Keywords: CFRP, one-sided thermal damage, high heat flux, heating rate, non-destructive and destructive testing

Procedia PDF Downloads 78
1802 Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties

Authors: Boda Sreenivas, Lyathakula Ravindranath, Kanugula Srishailam, Byru Venkatram Reddy

Abstract:

Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization.

Keywords: ftir/raman spectra, DFT, NLO, homo-lumo, NBO, halogenated benzoic acids

Procedia PDF Downloads 43
1801 Behavior of the RC Slab Subjected to Impact Loading According to the DIF

Authors: Yong Jae Yu, Jae-Yeol Cho

Abstract:

In the design of structural concrete for impact loading, design or model codes often employ a dynamic increase factor (DIF) to impose dynamic effect on static response. Dynamic increase factors that are obtained from laboratory material test results and that are commonly given as a function of strain rate only are quite different from each other depending on the design concept of design codes like ACI 349M-06, fib Model Code 2010 and ACI 370R-14. Because the dynamic increase factors currently adopted in the codes are too simple and limited to consider a variety of strength of materials, their application in practical design is questionable. In this study, the dynamic increase factors used in the three codes were validated through the finite element analysis of reinforced concrete slab elements which were tested and reported by other researcher. The test was intended to simulate a wall element of the containment building in nuclear power plants that is assumed to be subject to impact scenario that the Pentagon experienced on September 11, 2001. The finite element analysis was performed using the ABAQAUS 6.10 and the plasticity models were employed for the concrete, reinforcement. The dynamic increase factors given in the three codes were applied to the stress-strain curves of the materials. To estimate the dynamic increase factors, strain rate was adopted as a parameter. Comparison of the test and analysis was done with regard to perforation depth, maximum deflection, and surface crack area of the slab. Consequently, it was found that DIF has so great an effect on the behavior of the reinforced concrete structures that selection of DIF should be very careful. The result implies that DIF should be provided in design codes in more delicate format considering various influence factors.

Keywords: impact, strain rate, DIF, slab elements

Procedia PDF Downloads 273
1800 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker

Authors: G. Roshan Deen, J. S. Pedersen

Abstract:

Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.

Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering

Procedia PDF Downloads 401
1799 Comparison of Microleakage of Composite Restorations Using Fifth and Seventh Generation of Bonding Agents

Authors: Karina Nabilla, Dedi Sumantri, Nurul T. Rizal, Siti H. Yavitha

Abstract:

Background: Composite resin is the most frequently used material for restoring teeth, but still failure cases are seen which leading to microleakage. Microleakage might be attributed to various factors, one of them is bonding agent. Various generations of bonding agents have been introduced to overcome the microleakage. The aim of this study was to evaluate the microleakage of composite restorations using the fifth and seventh bonding agent. Methods: Class I cavities (3X2X2 mm) were prepared on the occlusal surfaces of 32 human upper premolars. Teeth were classified into two groups according to the type of bonding agent used (n =16). Group I: Fifth Generation of Bonding Agent-Adper Single Bond2. Group II: Seventh Generation of Bonding Agent-Single Bond Universal. All cavities were restored with Filtek Z250 XT composite resin, stored in sterile aquades water at 370C for 24 h. The root apices were sealed with sticky wax, and all the surfaces, except for 2 mm from the margins, were coated with nail varnish. The teeth were immersed in a 1% methylene blue dye solution for 24 h, and then rinsed in running water, blot-dried and sectioned longitudinally through the center of restorations from the buccal to palatal surface. The sections were blindly assessed for microleakage of dye penetration by using a stereomicroscope. Dye penetration along margin was measured in µm then calculated into the percentage and classified into scoring system 1 to 3. Data were collected and statistically analyzed by Chi-Square test. Result: There was no significant difference (p > 0,05) between two groups. Conclusion: Fifth generation of bonding agent revealed less leakage compared to the seventh generation even statistically there was no significant difference.

Keywords: composite restoration, fifth generation of bonding agent, microleakage, seventh generation of bonding agent

Procedia PDF Downloads 242
1798 Therapeutic Effects of Toll Like Receptor 9 Ligand CpG-ODN on Radiation Injury

Authors: Jianming Cai

Abstract:

Exposure to ionizing radiation causes severe damage to human body and an safe and effective radioprotector is urgently required for alleviating radiation damage. In 2008, flagellin, an agonist of TLR5, was found to exert radioprotective effects on radiation injury through activating NF-kB signaling pathway. From then, the radioprotective effects of TLR ligands has shed new lights on radiation protection. CpG-ODN is an unmethylated oligonucleotide which activates TLR9 signaling pathway. In this study, we demonstrated that CpG-ODN has therapeutic effects on radiation injuries induced by γ ray and 12C6+ heavy ion particles. Our data showed that CpG-ODN increased the survival rate of mice after whole body irradiation and increased the number of leukocytes as well as the bone marrow cells. CpG-ODN also alleviated radiation damage on intestinal crypt through regulating apoptosis signaling pathway including bcl2, bax, and caspase 3 etc. By using a radiation-induced pulmonary fibrosis model, we found that CpG-ODN could alleviate structural damage, within 20 week after whole–thorax 15Gy irradiation. In this model, Th1/Th2 imbalance induced by irradiation was also reversed by CpG-ODN. We also found that TGFβ-Smad signaling pathway was regulated by CpG-ODN, which accounts for the therapeutic effects of CpG-ODN in radiation-induced pulmonary injury. On another hand, for high LET radiation protection, we investigated protective effects of CpG-ODN against 12C6+ heavy ion irradiation and found that after CpG-ODN treatment, the apoptosis and cell cycle arrest induced by 12C6+ irradiation was reduced. CpG-ODN also reduced the expression of Bax and caspase 3, while increased the level of bcl2. Then we detected the effect of CpG-ODN on heavy ion induced immune dysfunction. Our data showed that CpG-ODN increased the survival rate of mice and also the leukocytes after 12C6+ irradiation. Besides, the structural damage of immune organ such as thymus and spleen was also alleviated by CpG-ODN treatment. In conclusion, we found that TLR9 ligand, CpG-ODN reduced radiation injuries in response to γ ray and 12C6+ heavy ion irradiation. On one hand, CpG-ODN inhibited the activation of apoptosis induced by radiation through regulating bcl2, bax and caspase 3. On another hand, through activating TLR9, CpG-ODN recruit MyD88-IRAK-TRAF6 complex, activating TAK1, IRF5 and NF-kB pathway, and thus alleviates radiation damage. This study provides novel insights into protection and therapy of radiation damages.

Keywords: TLR9, CpG-ODN, radiation injury, high LET radiation

Procedia PDF Downloads 456
1797 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 398
1796 Exploring Penicillin Resistance in Gonococcal Penicillin Binding Protein-2: Molecular Docking and Ligand Interaction Analysis

Authors: Sinethemba Yakobi, Lindiwe Zuma, Ofentse Pooe

Abstract:

Gonococcal infections present a notable public health issue, and the major approach for treatment involves using β-lactam antibiotics that specifically target penicillin-binding protein 2 (PBP2) in Neisseria gonorrhoeae. This study examines the influence of flavonoids, namely rutin, on the structural changes of PBP2 in both penicillin-resistant (FA6140) and penicillin-susceptible (FA19) strains. The research clarifies the structural effects of particular mutations, such as inserting an aspartate residue at position 345 (Asp-345a) in the PBP2 protein. The strain FA6140, which is resistant to penicillin, shows specific changes that lead to a decrease in penicillin binding. These mutations, namely P551S and F504L, significantly impact the pace at which acylation occurs and the stability of the strain under high temperatures. Molecular docking analyses investigate the antibacterial activities of rutin and other phytocompounds, emphasizing its exceptional binding affinity and potential as an inhibitor of PBP2. Quercetin and protocatechuic acid have encouraging antibacterial effectiveness, with quercetin displaying characteristics similar to those of drugs. Molecular dynamics simulations offer a detailed comprehension of the interactions between flavonoids and PBP2, highlighting rutin's exceptional antioxidant effects and strong affinity for the substrate binding site. The study's wider ramifications pertain to the pressing requirement for antiviral treatments in the context of the ongoing COVID-19 epidemic. Flavonoids have a strong affinity for binding to PBP2, indicating their potential as inhibitors to impair cell wall formation in N. gonorrhoeae. Ultimately, this study provides extensive knowledge on the interactions between proteins and ligands, the dynamics of the structure, and the ability of flavonoids to combat penicillin-resistant N. gonorrhoeae bacteria. The verified simulation outcomes establish a basis for creating potent inhibitors and medicinal therapies to combat infectious illnesses.

Keywords: phytochemicals, penicillin-binding protein 2, gonococcal infection, ligand-protein interaction, binding energy, neisseria gonorrhoeae FA19, neisseria gonorrhoeae FA6140, flavonoids

Procedia PDF Downloads 20
1795 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas

Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards

Abstract:

Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.

Keywords: airborne laser scanning, digital terrain models, filtering, forested areas

Procedia PDF Downloads 117
1794 The Effect of Pozzolan Addition on the Physico-Chemical and Mechanical Properties of Mortars Based on Cement Resistant to Sulfate (CRS)

Authors: L. Belagraa, A. Belguendouz, Y. Rouabah, A. Bouzid, A. Noui, O. Kessal

Abstract:

The use of cements CRS in aggressive environments showed a lot of benefits as like good mechanical responses and therefore better durability, however, their manufacturing consume a lot of clinker, which leads to the random hazardous deposits, the shortage of natural resources and the gas and the dust emissions mainly; (CO2) with its ecological negative impact on the environment. Technical, economic and environmental benefits by the use of blended cements have been reported and being considered as a research area of great interest. The purpose of this study is to evaluate the influence of the substitution of natural pozzolan on the physico-chemical properties of the new formulated binder and the mechanical behavior of mortar containing this binary cement. Hence, the pozzolan replacement is composed with different proportions (0%, 2.5%, 5%, 7.5% and 10%). The physico-chemical properties of cement resistant to sulfate (CRS) alternative composition were investigated. Further, the behavior of the mortars based on this binder is studied. These characteristics includes chemical composition, density and fineness, consistency, setting time, shrinkage, absorption and the mechanical response. The results obtained showed that the substitution of pozzolan at the optimal ratio of 5% has a positive effect on the resulting cement, greater specific surface area, reduced water demand, accelerating the process of hydration, a better mechanical responses and decreased absorption. Therefore, economic and ecological cement based on mineral addition like pozzolan could be possible as well as advantageous to the formulation of environmental mortars.

Keywords: Cement Resistant to Sulfate (CRS), environmental mortars mechanical response, physico-chemical properties, pozzolan

Procedia PDF Downloads 334
1793 Railway Transport as a Potential Source of Polychlorinated Biphenyls in Soil

Authors: Nataša Stojić, Mira Pucarević, Nebojša Ralević, Vojislava Bursić, Gordan Stojić

Abstract:

Surface soil (0 – 10 cm) samples from 52 sampling sites along the length of railway tracks on the territory of Srem (the western part of the Autonomous Province of Vojvodina, itself part of Serbia) were collected and analyzed for 7 polychlorinated biphenyls (PCBs) in order to see how the distance from the railroad on the one hand and dump on the other hand, affect the concentration of PCBs (CPCBs) in the soil. Samples were taken at a distance of 0.03 to 4.19 km from the railway and 0.43 to 3.35 km from the landfills. For the soil extraction the Soxhlet extraction (USEPA 3540S) was used. The extracts were purified on a silica-gel column (USEPA 3630C). The analysis of the extracts was performed by gas chromatography with tandem mass spectrometry. PCBs were not detected only at two locations. Mean total concentration of PCBs for all other sampling locations was 0,0043 ppm dry weight (dw) with a range of 0,0005 to 0,0227 ppm dw. On the part of the data that were interesting for this research with statistical methods (PCA) were isolated factors that affect the concentration of PCBs. Data were also analyzed using the Pearson's chi-squared test which showed that the hypothesis of independence of CPCBs and distance from the railway can be rejected. Hypothesis of independence between CPCB and the percentage of humus in the soil can also be rejected, in contrast to dependence of CPCB and the distance from the landfill where the hypothesis of independence cannot be rejected. Based on these results can be said that railway transport is a potential source of PCBs. The next step in this research is to establish the position of transformers which are located near sampling sites as another important factor that affects the concentration of PCBs in the soil.

Keywords: GC/MS, landfill, PCB, railway, soil

Procedia PDF Downloads 297
1792 Chemical Reaction, Heat and Mass Transfer on Unsteady MHD Flow along a Vertical Stretching Sheet with Heat Generation/Absorption and Variable Viscosity

Authors: Jatindra Lahkar

Abstract:

The effect of chemical reaction on laminar mixed convection flow and heat and mass transfer along a vertical unsteady stretching sheet is investigated, in the presence of heat generation/absorption with variable viscosity and viscous dissipation. The governing non-linear partial differential equations are reduced to ordinary differential equations using similarity transformation and solved numerically using the fourth order Runge-Kutta method along with shooting technique. The effects of various flow parameters on the velocity, temperature and concentration distributions are analyzed and presented graphically. Skin-friction coefficient, Nusselt number and Sherwood number are derived at the sheet. It is observed that the influence of chemical reaction, the fluid flow along the sheet accelerate with the increase of chemical reaction parameter, on the other hand, temperature of the fluid increases with increase of chemical reaction parameter but concentration of the fluid reduces with it. The boundary layer decreases on the surface of the sheet for all values of unsteadiness parameter, increasing values of the chemical reaction parameter. The increases in the values of Sc cause the species concentration and its boundary layer thickness to decrease resulting in less induced flow and higher fluid temperatures. This is depicted in the decreases in the velocity and species concentration and increases in the fluid temperature as Sc increases.

Keywords: chemical reaction, heat generation/absorption, magnetic number, unsteadiness, variable viscosity

Procedia PDF Downloads 278
1791 Spatial Analysis the Suitability Area for Jatropha curcas L. as an Alternative to Biodiesel in Central Kalimantan, Indonesia

Authors: Rizki Oktariza, Sri Fauza Pratiwi, Hilza Ikhsanti

Abstract:

Human depends on fossil fuels as the bigger sources of considerable energy in all sectors. Based on that cases, we are needed alternative energy to supplies needed for fuel, one of them by using energy fuel from the biodiesel. The raw materials that can be used for producing the biodiesel energy are Jatropha curcas L. In Indonesia, the availability of land for the development of the Jatropha curcas L which has very appropriate Indonesia reached 14.2 million hectares, with an area of suitable in Kalimantan around 10 million hectares. In Central Kalimantan, as one of the provinces of Kalimantan, has considerable potential planting Jatropha curcas L because of the physical condition and have a largest of the agricultural land. To support the potential of Jatropha curcas L in Central Kalimantan, spatial analysis is needed to find out the appropriate areas for Jatropha curcas L growing land. The suitability of region is influenced by several variables i.e., rainfall, the slope of the land, the surface temperature and the altitude of a region. The compliance of criteria are divided into four criteria: high suitable (S1), moderately suitable (S2), marginally suitable (S3), not suitable (N). The suitability of the region is based on these variables and made an overlay analysis of these variables by using Geographic Information System. Based on this overlay analysis will results a map of the suitability area for planting Jatropha curcas L, which is distribution criteria is high suitable (S1) of 213,245 ha, moderately suitable (S2) of 14,389,353 ha, marginally suitable (S3) 360,357 ha, not suitable (N) 0.020 ha.

Keywords: geographic information system, Jatropha curcas L., overlay, the suitable area

Procedia PDF Downloads 146
1790 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 93