Search results for: capacitor copper plates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1398

Search results for: capacitor copper plates

1338 The Effects of Copper and Cadmium on Germination and Seedling Growth of Oriental Beech (Fagus orientalis Lipsky) Seeds

Authors: Handan Ucun Özel, Halil Barış Özel

Abstract:

The toxic effects of copper and cadmium on seed germination, seedling, root, shoot length, and seedling dry biomass of oriental beech (Fagus orientalis Lipsky) was evaluated under laboratory conditions compared to control values. Copper and cadmium treatments at 50, 100, 150, and 200 mg/l affect seed germination and seedling growth of oriental beech as compared to control. Copper treatments at 50, 100, 150, and 200 mg/l concentrations produced significant (p < 0.01) effects on seed germination and seedling length of oriental beech while copper treatment at 150 mg/l significantly affected root growth and seedling dry biomass as compared to control. Similarly, cadmium treatments from 50 to 200 mg/l affected the seed germination, root, shoot length, and seedling dry biomass of oriental beech as compared to control. Cadmium treatments showed an adverse effect on seedlings of oriental beech as compared to copper, copper and cadmium treatments at 200mg/l exhibited the lowest percentage of tolerance in seedlings of oriental beech as compared to control.

Keywords: copper, cadmium, toxicity, oriental beech

Procedia PDF Downloads 261
1337 Hydrometallurgical Treatment of Smelted Low-Grade WEEE

Authors: Ewa Rudnik

Abstract:

Poster shows a comparison of hydrometallurgical routes of copper recovery from low-grade e-waste. Electronic scrap was smelted to produce Cu–Zn–Ag alloy. The alloy was then treated in the following ways: (a) anodic dissolution with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. (b) leaching in ammoniacal solutions of various compositions and then copper electrowinning. Alloy was leached in chloride, carbonate, sulfate and thiosulfate baths. This resulted in the separation of the metals, wherein copper and zinc were transferred to the electrolyte, while metallic tin and silver as well as lead salts remained in the slimes. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammonia-carbonate system, where the final product was copper of high purity (99.9%) at the current efficiency of 60%. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper (I) thiosulfate complexes and precipitation of copper (I) sulfide.

Keywords: alloy, electrolysis, e-waste, leaching

Procedia PDF Downloads 342
1336 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 77
1335 Uptake of Copper by Dead Biomass of Burkholderia cenocepacia Isolated from a Metal Mine in Pará, Brazil

Authors: Ingrid R. Avanzi, Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Elen A. Perpetuo, Claudio Auguto Oller do Nascimento

Abstract:

In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process. In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.

Keywords: biosorption, dead biomass, biotechnology, copper recovery

Procedia PDF Downloads 316
1334 Parallel Magnetic Field Effect on Copper Cementation onto Rotating Iron Rod

Authors: Hamouda M. Mousa, M. Obaid, Chan Hee Park, Cheol Sang Kim

Abstract:

The rate of copper cementation on iron rod was investigated. The study was mainly dedicated to illustrate the effect of application of electromagnetic field (EMF) on the rate of cementation. The magnetic flux was placed parallel to the iron rod and different magnetic field strength was studied. The results showed that without EMF, the rate of mass transfer was correlated by the equation: Sh= 1.36 Re0. 098 Sc0.33. The application of EMF enhanced the time required to reach high percentage copper cementation by 50%. The rate of mass transfer was correlated by the equation: Sh= 2.29 Re0. 95 Sc0.33, with applying EMF. This work illustrates that the enhancement of copper recovery in presence of EMF is due to the induced motion of Fe+n in the solution which is limited in the range of rod rotation speed of 300~900 rpm. The calculation of power consumption of EMF showed that although the application of EMF partially reduced the cementation time, the reduction of power consumption due to utilization of magnetic field is comparable to the increase in power consumed by introducing magnetic field of 2462 A T/m.

Keywords: copper cementation, electromagnetic field, copper ions, iron cylinder

Procedia PDF Downloads 452
1333 Coumestrol Induced Apoptosis in Breast Cancer MCF-7 Cells via Redox Cycling of Copper and ROS Generation: Implications of Copper Chelation Strategy in Cancer Treatment

Authors: Atif Zafar Khan, Swarnendra Singh, Imrana Naseem

Abstract:

Breast cancer is one of the most frequent malignancies in women worldwide and a leading cause of cancer-related deaths among women. Therefore, there is a need to identify new chemotherapeutic strategies for cancer treatment. Unlike normal cells, cancer cells contain elevated copper levels which play an integral role in angiogenesis. Copper is an important metal ion associated with the chromatin DNA, particularly with guanine. Thus, targeting copper via copper-specific chelators in cancer cells can serve as effective anticancer strategy. Keeping in view these facts, we evaluated the anticancer activity and copper-dependent cytotoxic effect of coumestrol (phytoestrogen in soybean products) in breast cancer MCF-7 cells. Coumestrol inhibited proliferation and induced apoptosis in MCF-7 cells, which was prevented by copper chelator neocuproine and ROS scavengers. Coumestrol treatment induced ROS generation coupled to DNA fragmentation, up-regulation of p53/p21, cell cycle arrest at G1/S phase, mitochondrial membrane depolarization and caspases 9/3 activation. All these effects were suppressed by ROS scavengers and neocuproine. These results suggest that coumestrol targets elevated copper for redox cycling to generate ROS leading to DNA fragmentation. DNA damage leads to p53 up-regulation which directs the cell cycle arrest at G1/S phase and promotes caspase-dependent apoptosis of MCF-7 cells. In conclusion, coumestrol induces pro-oxidant cell death by chelating cellular copper to produce copper-coumestrol complexes that engages in redox cycling in breast cancer cells. Thus, targeting elevated copper levels might be a potential therapeutic strategy for selective cytotoxic action against malignant cells.

Keywords: apoptosis, breast cancer, copper chelation, coumestrol, reactive oxygens species, redox cycling

Procedia PDF Downloads 216
1332 Battery/Supercapacitor Emulator for Chargers Functionality Testing

Authors: S. Farag, A. Kuperman

Abstract:

In this paper, design of solid-state battery/super capacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low-level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Keywords: battery, charger, energy, storage, super capacitor

Procedia PDF Downloads 371
1331 The Effect of Ionic Strength on the Extraction of Copper(II) from Perchlorate Solutions by Capric Acid in Chloroform

Authors: A. Bara, D. Barkat

Abstract:

The liquid-liquid extraction of copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. The ionic strength effect of the aqueous phase shows that the extraction of copper(II) increases with the increase in ionic strength. with different ionic strengths 1, 0.5, 0.25, 0.125 and 0.1M in the aqueous phase. Cu (II) is extracted as the complex CuL2(ClO4).

Keywords: liquid-liquid extraction, ionic strength, copper (II), capric acid

Procedia PDF Downloads 506
1330 Association between Copper Uptake and Decrease of Copper (hypocupremia) in Burn Patients-Infected Pseudomonas aeruginosa

Authors: Khaled Khleifat, Muayyad Abboud, Amjad Khleifat, Humodi Saeed

Abstract:

In this study, Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillusthuringiensis strain Israelisas well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis andEnterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.

Keywords: pseudomonas, Cu uptake, burn patients, biosorption

Procedia PDF Downloads 364
1329 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions

Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu

Abstract:

With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.

Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence

Procedia PDF Downloads 224
1328 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform

Authors: A. Bara, D. Barkat

Abstract:

Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.

Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction

Procedia PDF Downloads 410
1327 A Computational Diagnostics for Dielectric Barrier Discharge Plasma

Authors: Zainab D. Abd Ali, Thamir H. Khalaf

Abstract:

In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon).

Keywords: computational diagnostics, Boltzmann equation, electric discharge, electron density

Procedia PDF Downloads 737
1326 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor

Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly

Abstract:

In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.

Keywords: nano iron, core-shell, reduction reaction, K-M reactor

Procedia PDF Downloads 276
1325 Ultracapacitor State-of-Energy Monitoring System with On-Line Parameter Identification

Authors: N. Reichbach, A. Kuperman

Abstract:

The paper describes a design of a monitoring system for super capacitor packs in propulsion systems, allowing determining the instantaneous energy capacity under power loading. The system contains real-time recursive-least-squares identification mechanism, estimating the values of pack capacitance and equivalent series resistance. These values are required for accurate calculation of the state-of-energy.

Keywords: real-time monitoring, RLS identification algorithm, state-of-energy, super capacitor

Procedia PDF Downloads 500
1324 Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate

Authors: Javier Paul Montalvo Andia, Adriana Larrea Valdivia, Adolfo Pillihuaman Zambrano

Abstract:

The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%.

Keywords: ammonium nitrate, malachite, copper oxide, leaching

Procedia PDF Downloads 154
1323 Copper Doping for Enhancing Photocatalytic Efficiency of Barium Ferrite in Degradation of Atrazine under Visible Light

Authors: Tarek S. Jamil, H. A. Abbas, Rabab A. Nasr, Eman S. Mansor, Rose-Noëlle Vannier

Abstract:

The citrate manner (Pechini method) was utilized in elaboration of a novel Nano-sized BaFe(1-x)CuxO3 (x=0.01, 0.05 and 0.10). The prepared photocatalysts were characterized by x-ray diffraction, diffuse reflectance, TEM and the surface area. The prepared samples have a mixture of cubic perovskite structure (main) and orthorhombic phases. The effect of different loads of copper as dopant on the structural properties as well as the photocatalytic activity was demonstrated. The lattice parameter and the unit cell volume of the prepared materials are given. Doping with copper increased the photocatalytic activity of BaFeO3 several times in abstraction of hazardous atrazine that causes acute problems in drinking water treatment facilities. This may be reasoned to low band gap energy of copper doped BaFe(1-x)CuxO3 attributed to oxygen vacancies formation.

Keywords: photocatalysis, nano-sized, BaFeO3, copper doping, atrazine

Procedia PDF Downloads 326
1322 Distribution, Settings, and Genesis of Burj-Dolomite Shale-Hosted Copper Mineralization in the Central Wadi Araba, Jordan

Authors: Mohammad Salem Abdullah Al-Hwaiti

Abstract:

The stratiform copper mineralization of the Burj-Dolomite shale (BDS) formations of deposits shows that the copper mineralization within the BDS occurs as hydrated copper chlorides and carbonates (mainly paratacamite and malachite, respectively), while copper silicates (mainly chrysocolla and planchette) are the major ore minerals in the BDS. Thus, on the basis of the petrographic and field occurrence, three main stages operated during the development of the copper ore in the sandy and shaly lithofacies. During the first stage, amorphous chrysocolla replaced clays, feldspars, and quartz. This stage was followed by the transition from an amorphous phase to a better-crystallized phase, i.e., the formation of planchette and veins from chrysocolla. The third stage was the formation of chrysocolla along fracture planes. Other secondary minerals are pseudomalachite, dioptase, neoticite together with authigenic fluorapatite. Paratacamite and malachite, which are common in the dolomitic lithofacies, are relatively rare in the sandy and silty lithofacies. The Rare Earth Elements (REEs) patterns for the BDS showed three stages in the evolution of the Precambrian–Cambrian copper mineralization system, involving the following: (A) Epigenetic mobilization of Cu-bearing solution with formation Cu-carbonate in dolomite and limestone mineralization and Cu-silicate mineralization in sandstone; (B) Transgression of Cambrian Sea and SSC deposition of Cu-sulphides during dolomite diagenesis in the BDS Formation; continued diagenesis and oxidation leads to the formation of Cu(II) minerals; (C) Erosion and supergene enrichment of Cu in basement rocks. Detrital copper-bearing sediments accumulate in the lower Cambrian clastic sequence.

Keywords: dolomite shale, copper mineralization, REE, Jordan

Procedia PDF Downloads 49
1321 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 307
1320 Intraspecific Response of the Ciliate Tetrahymena thermophila to Copper and Thermal Stress

Authors: Doufoungognon Carine Kone

Abstract:

Heavy metals present in large quantities in ecosystems can alter biological and cellular functions and disrupt trophic functions. However, their toxicity can change according to thermal conditions, as toxicity depends on their bioavailability and thermal optimum of organisms. Organisms can develop different tolerance strategies to maintain themselves in a stressful environment, but these strategies are often studied in a single-stressor context. This study evaluates the responses of the ciliate Tetrahymena thermophila to copper, high temperature, and their interaction. Six genotypes were exposed to a gradient of copper concentrations ranging from 0 to 350mg/L in synthetic media at three temperatures: 15°C, 23°C, and 31°C. Cell density, cell shape and size (and their variance), swimming speed and trajectory, and copper uptake rate were measured. Depending on the genotype, swimming speed, trajectory, and cell size were highly affected by stress gradients. One gets bigger, while two genotypes get smaller and the other remain unchanged. Some genotypes swam less rapidly, while others speed up as copper and temperature increased. Concerning copper uptake, the two genotypes accumulating the best and the worst, whatever the copper concentration or temperature, were also those that had the highest densities. Finally, very few temperature x copper interactions were observed on phenotypic parameters. The diversity of phenotypic responses revealed in this study reflects the existence of divergent strategies adopted by Tetrahymena thermophila to resist to copper and thermal stress, which suggests an important role of intraspecific variability in biodiversity response to environmental stress. One general and the surprising pattern was a global absence of interactive effects between copper and high temperature exposure on the observed phenotypic responses.

Keywords: ciliate, copper, intraspecific variability, phenotype, temperature, tolerance, multiple stressors

Procedia PDF Downloads 46
1319 Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites

Authors: L. N. Shubha, P. Madhusudana Rao

Abstract:

The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures.

Keywords: polyaniline/copper oxide (PANI/CuO) nanocomposite, XRD, SEM, FTIRand DC- conductivity, UV-visible spectra

Procedia PDF Downloads 270
1318 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products

Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin

Abstract:

Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.

Keywords: utilization of copper slag, cast iron, grinding balls, propping agents

Procedia PDF Downloads 124
1317 Copper Related Toxicity of 1-Hydroxy-2-Thiopyridines

Authors: Elena G. Salina, Vadim A. Makarov

Abstract:

With the emergence of primary resistance to the current drugs and wide distribution of latent tuberculosis infection, a need for new compounds with a novel mode of action is growing steadily. Copper-mediated innate immunity and antibacterial toxicity propose novel strategies in TB drug discovery and development. Transcriptome of M. tuberculosis was obtained by RNA-seq, intracellular copper content was measured by ISP MS and complexes of 1-hydroxy-2-thiopyridines with copper were detected by HPLC.1-hydroxy-2-thiopyridine derivatives were found to be highly active in vitro against both actively growing and dormant non-culturable M. tuberculosis. Transcriptome response to 1-hydroxy-2-thiopyridines revealed signs of copper toxicity in M. tuberculosis bacilli. Indeed, Cu was found to accumulate inside cells treated with 1-hydroxy-2-thiopyridines. These compounds were found to form stable charged lipophylic complexes with Cu²⁺ ions which transport into mycobacterial cell. Subsequent metabolic destruction of the complex led to transformation of 1-hydroxy-2-thiopyridines into 2-methylmercapto-2-ethoxycarbonylpyridines, which did not possess antitubercular activity and releasing of free Cu²⁺ in the cytoplasm. 1-hydroxy-2-thiopyridines are a potent class of Cu-dependent inhibitors of M. tuberculosis which may control M. tuberculosis infection by impairment of copper homeostasis. Acknowledgment: This work was financially supported by the Ministry of Education and Science of the RussianFederation (Agreement No 14.616.21.0065; unique identifier RFMEFI61616X0065).

Keywords: copper toxicity, drug discovery, M. tuberculosis inhibitors, 2-thiopyridines

Procedia PDF Downloads 144
1316 Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping

Authors: Yasaman Tabari-Saadi, Kaiwen Sun, Jialiang Huang, Martin Green, Xiaojing Hao

Abstract:

Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications.

Keywords: copper doped, AgBiS₂, thin-film solar cell, carrier concentration, p-type semiconductor

Procedia PDF Downloads 89
1315 Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide

Authors: Humaira Khan, Mohsin Javed, Sammia Shahid

Abstract:

The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity.

Keywords: degradation, graphene oxide, photocatalysis, ZnO nanoparticles and copper-doped ZnO nanoparticles

Procedia PDF Downloads 183
1314 Thermal Postbuckling of First Order Shear Deformable Functionally Graded Plates

Authors: Merbouha Barka, K. H. Benrahou, A. Fakrar, A. Tounsi, E. A. Adda Bedia

Abstract:

This paper presents an analytical investigation on the buckling and postbuckling behaviors of thick functionally graded plates subjected to thermal load .Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on first order shear deformation plate theory taking into account Von Karman nonlinearity and initial geometrical imperfection. By applying Galerkin method, closed-form relations of postbuckling equilibrium paths for simply supported plates are determined. Analysis is carried out to show the effects of material and geometrical properties, in-plane boundary restraint, and imperfection on the buckling and postbuckling loading capacity of the plates.

Keywords: functionally graded materials, postbuckling, first order shear deformation theory, imperfection

Procedia PDF Downloads 284
1313 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed S. Sarhan

Abstract:

This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.

Keywords: concrete beam, deflection, ductility, plate

Procedia PDF Downloads 131
1312 Polymerization: An Alternative Technology for Heavy Metal Removal

Authors: M. S. Mahmoud

Abstract:

In this paper, the adsorption performance of a novel environmental friendly material, calcium alginate gel beads as a non-conventional technique for the successful removal of copper ions from aqueous solution are reported on. Batch equilibrium studies were carried out to evaluate the adsorption capacity and process parameters such as pH, adsorbent dosages, initial metal ion concentrations, stirring rates and contact times. It was observed that the optimum pH for maximum copper ions adsorption was at pH 5.0. For all contact times, an increase in copper ions concentration resulted in decrease in the percent of copper ions removal. Langmuir and Freundlich's isothermal models were used to describe the experimental adsorption. Adsorbent was characterization using Fourier transform-infrared (FT-IR) spectroscopy and Transmission electron microscopy (TEM).

Keywords: adsorption, alginate polymer, isothermal models, equilibrium

Procedia PDF Downloads 425
1311 Detecting Characters as Objects Towards Character Recognition on Licence Plates

Authors: Alden Boby, Dane Brown, James Connan

Abstract:

Character recognition is a well-researched topic across disciplines. Regardless, creating a solution that can cater to multiple situations is still challenging. Vehicle licence plates lack an international standard, meaning that different countries and regions have their own licence plate format. A problem that arises from this is that the typefaces and designs from different regions make it difficult to create a solution that can cater to a wide range of licence plates. The main issue concerning detection is the character recognition stage. This paper aims to create an object detection-based character recognition model trained on a custom dataset that consists of typefaces of licence plates from various regions. Given that characters have featured consistently maintained across an array of fonts, YOLO can be trained to recognise characters based on these features, which may provide better performance than OCR methods such as Tesseract OCR.

Keywords: computer vision, character recognition, licence plate recognition, object detection

Procedia PDF Downloads 88
1310 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing

Procedia PDF Downloads 376
1309 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques

Authors: Javad Yarmahmoudi, Alireza Mirzaee

Abstract:

Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.

Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT

Procedia PDF Downloads 296