Search results for: antenna with enhanced bandwidth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3143

Search results for: antenna with enhanced bandwidth

2843 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design

Authors: Moulay Youssef El Hafidi

Abstract:

In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.

Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange

Procedia PDF Downloads 49
2842 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 45
2841 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs

Procedia PDF Downloads 37
2840 One Pot Synthesis of Ultrasmall NiMo Catalysts Supported on Amorphous Alumina with Enhanced type 2 Sites for Hydrodesulfurization Reaction: A Combined Experimental and Theoretical Study

Authors: Shalini Arora, Sri Sivakumar

Abstract:

The deep removal of high molecular weight sulphur compounds (e.g., 4,6, dimethyl dibenzothiophene) is challenging due to their steric hindrance. Hydrogenation desulfurization (HYD) pathway is the main pathway to remove these sulfur compounds, and it is mainly governed by the number of type 2 sites. The formation of type 2 sites can be enhanced by modulating the pore structure and the interaction between the active metal and support. To this end, we report the enhanced HDS catalytic activity of ultrasmall NiMo supported on amorphous alumina (A-Al₂O₃) catalysts by one pot colloidal synthesis method followed by calcination and sulfidation. The amorphous alumina (A-Al₂O₃) was chosen as the support due to its lower surface energy, better physicochemical properties, and enhanced acidic sites (due to the dominance of tetra and penta coordinated [Al] sites) than crystalline alumina phase. At 20% metal oxide composition, NiMo supported on A-Al₂O₃ catalyst showed 1.4 and 1.2 times more reaction rate constant and turn over frequency (TOF) respectively than the conventional catalyst (wet impregnated NiMo catalysts) for HDS reaction of dibenzothiophene reactant molecule. A-Al₂O₃ supported catalysts represented enhanced type 2 sites formation (because this catalystpossesses higher sulfidation degree (80%) and NiMoS sites (19.3 x 10¹⁷ sites/mg) with desired optimum stacking degree (2.5) than wet impregnated catalyst at same metal oxide composition 20%) along with higher active metal dispersion, Mo edge site fraction. The experimental observations were also supported by DFT simulations. Lower heat of adsorption (< 4.2 ev for MoS2 interaction and < 3.15 ev for Ni doped MoS2 interaction) values for A-Al₂O₃ confirmed the presence of weaker metal-support interaction in A-Al₂O₃ in contrast to crystalline ℽ-Al₂O3. The weak metal-support interaction for prepared catalysts clearly suggests the higher formation of type 2 sites which leads to higher catalytic activity for HDS reaction.

Keywords: amorphous alumina, colloidal, desulfurization, metal-support interaction

Procedia PDF Downloads 238
2839 Analysis of Enhanced Built-up and Bare Land Index in the Urban Area of Yangon, Myanmar

Authors: Su Nandar Tin, Wutjanun Muttitanon

Abstract:

The availability of free global and historical satellite imagery provides a valuable opportunity for mapping and monitoring the year by year for the built-up area, constantly and effectively. Land distribution guidelines and identification of changes are important in preparing and reviewing changes in the ground overview data. This study utilizes Landsat images for thirty years of information to acquire significant, and land spread data that are extremely valuable for urban arranging. This paper is mainly introducing to focus the basic of extracting built-up area for the city development area from the satellite images of LANDSAT 5,7,8 and Sentinel 2A from USGS in every five years. The purpose analyses the changing of the urban built-up area according to the year by year and to get the accuracy of mapping built-up and bare land areas in studying the trend of urban built-up changes the periods from 1990 to 2020. The GIS tools such as raster calculator and built-up area modelling are using in this study and then calculating the indices, which include enhanced built-up and bareness index (EBBI), Normalized difference Built-up index (NDBI), Urban index (UI), Built-up index (BUI) and Normalized difference bareness index (NDBAI) are used to get the high accuracy urban built-up area. Therefore, this study will point out a variable approach to automatically mapping typical enhanced built-up and bare land changes (EBBI) with simple indices and according to the outputs of indexes. Therefore, the percentage of the outputs of enhanced built-up and bareness index (EBBI) of the sentinel-2A can be realized with 48.4% of accuracy than the other index of Landsat images which are 15.6% in 1990 where there is increasing urban expansion area from 43.6% in 1990 to 92.5% in 2020 on the study area for last thirty years.

Keywords: built-up area, EBBI, NDBI, NDBAI, urban index

Procedia PDF Downloads 123
2838 Synthesis, Characterization, Optical and Photophysical Properties of Pyrene-Labeled Ruthenium(Ii) Trisbipyridine Complex Cored Dendrimers

Authors: Mireille Vonlanthen, Pasquale Porcu, Ernesto Rivera

Abstract:

Dendritic macromolecules are presenting unique physical and chemical properties. One of them is the faculty of transferring energy from a donor moiety introduced at the periphery to an acceptor moiety at the core, mimicking the antenna effect of the process of photosynthesis. The mechanism of energy transfer is based on the Förster resonance energy exchange and requires some overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor. Since it requires a coupling of transition dipole but no overlap of the physical wavefunctions, the energy transfer by Förster mechanism can occur over quite long distances from 1 to a maximum of 10 nm. However, the efficiency of the transfer depends strongly on distance. The Förster radius is the distance at which 50% of the donor’s emission is deactivated by FRET. In this work, we synthesized and characterized a novel series of dendrimers bearing pyrene moieties at the periphery and a Ru (II) complex at the core. The optical and photophysical properties of these compounds were studied by absorption and fluorescence spectroscopy. Pyrene is a well-studied chromophore that has the particularity to present monomer as well as excimer fluorescence emission. The coordination compounds of Ru (II) are red emitters with low quantum yield and long excited lifetime. We observed an efficient singulet to singulet energy transfer in such constructs. Moreover, it is known that the energy of the MLCT emitting state of Ru (II) can be tuned to become almost isoenegetic with respect to the triplet state of pyrene, leading to an extended phosphorescence lifetime. Using dendrimers bearing pyrene moieties as ligands for Ru (II), we could combine the antenna effect of dendrimers as well as its protection effect to the quenching by dioxygen with lifetime increase due to triplet-triplet equilibrium.

Keywords: dendritic molecules, energy transfer, pyrene, ru-trisbipyridine complex

Procedia PDF Downloads 247
2837 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 91
2836 Interpersonal Emotion Regulation in Adolescence: An Enhanced Critical Incident Study

Authors: Setareh Shayanfar

Abstract:

Given the increasing importance of peer relationships during adolescence, the present study aimed to examine peer interactions that facilitate or hinder adolescents’ regulation of negative emotions. Using the Enhanced Critical Incident Technique, 1-hour semi-structured interviews were conducted with 16 junior high school adolescents. Participants were asked to recall situations when they experienced strong negative emotions during the past school year, indicate the peer interactions that helped or hindered their emotion regulation, and identify prospective interactions with the potential to help regulate their emotions. Data analysis extracted 182 critical incidents, including 109 helping incidents, 45 hindering incidents, and 28 wish list items, which generated 10 categories nested within four overarching themes: Positive Personal Support included (a) supportive presence, (b) expressing concern, (c) empathizing, and (d) encouraging and cheering up; while Strategy Transmission included (e) sharing perspective, and (f) giving advice; Activated Support included (g) taking action, and (h) distracting; while Negative Personal Interactions included (i) withdrawing and (j) punishing. Implications for mental health and service providers, as well as recommendations for future research, are presented.

Keywords: adolescence, emotion regulation, enhanced critical incident technique, peers

Procedia PDF Downloads 113
2835 ROCK Signaling and Radio Resistance: The Association and the Effect

Authors: P. Annapurna, Cecil Ross, Sudhir Krishna, Sweta Srivastava

Abstract:

Irradiation plays a pivotal role in cervical cancer treatment, however some tumors exhibit resistance to therapy while some exhibit relapse, due to better repair and enhanced resistance mechanisms operational in their cells. The present study aims to understand the signaling mechanism operational in resistance phenotype and in the present study we report the role of Rho GTPase associated protein kinase (ROCK) signaling in cervical carcinoma radio-resistance. ROCK signaling has been implicated in several tumor progressions and is important for DNA repair. Irradiation of spheroid cultures of SiHa cervical carcinoma derived cell line at 6Gy resulted in generation of resistant cells in vitro which had better clonogenic abilities and formed larger and more colonies, in soft agar colony formation assay, as compared to the non-irradiated cells. These cells also exhibited an enhanced motility phenotype. Cell cycle profiling showed the cells to be blocked in G2M phase with enhanced pCDC2 levels indicating onset of possible DNA repair mechanism. Notably, 3 days post-irradiation, irradiated cells showed increased ROCK2 translocation to the nucleus with enhanced protein expression as compared to the non-irradiated cells. Radio-sensitization of the resistant cells was enhanced using Y27632, an inhibitor to ROCK signaling. The treatment of resistant cells with Y27632 resulted in increased cell death upon further irradiation. This observation has been confirmed using inhibitory antibodies to ROCK1/2. Result show that both ROCK1/2 have a functional contribution in radiation resistance of cervical cancer cells derived from cell lines. Interestingly enrichment of stem like cells (Hoechst negative cells) was also observed upon irradiation and these cells were markedly sensitive to Y27632 treatment. Our results thus suggest the role of ROCK signaling in radio-resistance in cervical carcinoma. Further studies with human biopsies, mice models and mechanistic of ROCK signaling in the context of radio-resistance will clarify the role of this molecule further and allow for therapeutics development.

Keywords: cervical carcinoma, radio-resistance, ROCK signaling, cancer treatment

Procedia PDF Downloads 291
2834 Surface Enhanced Raman Substrate Detection on the Structure of γ-Aminobutyric Acid(GABA) Connected with Modified Gold-Chitosan Nanoparticles by Mercaptopropionic Acid (MPA)

Authors: Bingjie Wang, Su-Yeon Kwon, Ik-Joong Kang

Abstract:

A Surface-enhanced Raman Scattering (SERS) as the principle for enhancing Raman scattering by molecules adsorbed on rough metal surfaces or by nanostructures is used to detect the concentration change of γ-Aminobutyric Acid (GABA). As for the gold-chitosan nanoshell, it is made by using chitosan nanoparticles crosslinking with sodium tripolyphosphate(TPP) for the first step to form the chitosan nanoparticles, which would be covered with the gold sequentially. The size of the fabricated product was around 100nm. Based on the method that the sulfur end of the MPA linked to gold can form the very strong S–Au bond, and the carboxyl group, the other end of the MPA, can easily absorb the GABA. GABA is the mainly inhibitory neurotransmitter in the mammalian central nervous system in the human body. It plays such significant role in reducing neuronal excitability throughout the nervous system. When the system formed, it generated SERS, which made a clear difference in the intensity of Raman scattering within the range of GABA concentration. So it is obtained from the experiment that the calibration curve according to the GABA concentration relevant with the SERS scattering. In this study, DLS, SEM, FT-IR, UV, SERS were used to analyze the products to obtain the conclusion.

Keywords: chitosan-gold nanoshell, mercaptopropionic acid, γ-aminobutyric acid, surface-enhanced Raman scattering

Procedia PDF Downloads 238
2833 Fabrication and Characterization of Folic Acid-Grafted-Thiomer Enveloped Liposomes for Enhanced Oral Bioavailability of Docetaxel

Authors: Farhan Sohail, Gul Shahnaz Irshad Hussain, Shoaib Sarwar, Ibrahim Javed, Zajif Hussain, Akhtar Nadhman

Abstract:

The present study was aimed to develop a hybrid nanocarrier (NC) system with enhanced membrane permeability, bioavailability and targeted delivery of Docetaxel (DTX) in breast cancer. Hybrid NC’s based on folic acid (FA) grafted thiolated chitosan (TCS) enveloped liposomes were prepared with DTX and evaluated in-vitro and in-vivo for their enhanced permeability and bioavailability. Physicochemical characterization of NC’s including particle size, morphology, zeta potential, FTIR, DSC, PXRD, encapsulation efficiency and drug release from NC’s was determined in vitro. Permeation enhancement and p-gp inhibition were performed through everted sac method on freshly excised rat intestine which indicated that permeation was enhanced 5 times as compared to pure DTX and the hybrid NC’s were strongly able to inhibit the p-gp activity as well. In-vitro cytotoxicity and tumor targeting was done using MDA-MB-231 cell line. The stability study of the formulations performed for 3 months showed the improved stability of FA-TCS enveloped liposomes in terms of its particles size, zeta potential and encapsulation efficiency as compared to TCS NP’s and liposomes. The pharmacokinetic study was performed in vivo using rabbits. The oral bioavailability and AUC0-96 was increased 10.07 folds with hybrid NC’s as compared to positive control. Half-life (t1/2) was increased 4 times (58.76 hrs) as compared to positive control (17.72 hrs). Conclusively, it is suggested that FA-TCS enveloped liposomes have strong potential to enhance permeability and bioavailability of hydrophobic drugs after oral administration and tumor targeting.

Keywords: docetaxel, coated liposome, permeation enhancement, oral bioavailability

Procedia PDF Downloads 377
2832 Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery

Authors: Smita Krishnan, Krittika Chandran, Chandra Mohan Sinnathambi

Abstract:

Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects.

Keywords: advanced oxidation process, photochemical processes, degradation, organic contaminants

Procedia PDF Downloads 471
2831 Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems

Authors: Chuan-Ching Sue, Kai-Chun Chuang

Abstract:

Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay.

Keywords: peer-to-peer, live video streaming system, flash crowd, start-up delay, access control

Procedia PDF Downloads 291
2830 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 131
2829 Sentiment Classification Using Enhanced Contextual Valence Shifters

Authors: Vo Ngoc Phu, Phan Thi Tuoi

Abstract:

We have explored different methods of improving the accuracy of sentiment classification. The sentiment orientation of a document can be positive (+), negative (-), or neutral (0). We combine five dictionaries from [2, 3, 4, 5, 6] into the new one with 21137 entries. The new dictionary has many verbs, adverbs, phrases and idioms, that are not in five ones before. The paper shows that our proposed method based on the combination of Term-Counting method and Enhanced Contextual Valence Shifters method has improved the accuracy of sentiment classification. The combined method has accuracy 68.984% on the testing dataset, and 69.224% on the training dataset. All of these methods are implemented to classify the reviews based on our new dictionary and the Internet Movie data set.

Keywords: sentiment classification, sentiment orientation, valence shifters, contextual, valence shifters, term counting

Procedia PDF Downloads 474
2828 Comparison of Computed Tomography Dose Index, Dose Length Product and Effective Dose Among Male and Female Patients From Contrast Enhanced Computed Tomography Pancreatitis Protocol

Authors: Babina Aryal

Abstract:

Background: The diagnosis of pancreatitis is generally based on clinical and laboratory findings; however, Computed Tomography (CT) is an imaging technique of choice specially Contrast Enhanced Computed Tomography (CECT) shows morphological characteristic findings that allow for establishing the diagnosis of pancreatitis and determining the extent of disease severity which is done along with the administration of appropriate contrast medium. The purpose of this study was to compare Computed Tomography Dose Index (CTDI), Dose Length Product (DLP) and Effective Dose (ED) among male and female patients from Contrast Enhanced Computed Tomography (CECT) Pancreatitis Protocol. Methods: This retrospective study involved data collection based on clinical/laboratory/ultrasonography diagnosis of Pancreatitis and has undergone CECT Abdomen pancreatitis protocol. data collection involved detailed information about a patient's Age and Gender, Clinical history, Individual Computed Tomography Dose Index and Dose Length Product and effective dose. Results: We have retrospectively collected dose data from 150 among which 127 were males and 23 were females. The values obtained from the display of the CT screen were measured, calculated and compared to determine whether the CTDI, DLP and ED values were similar or not. CTDI for females was more as compared to males. The differences in CTDI values for females and males were 32.2087 and 37.1609 respectively. DLP values and Effective dose for both the genders did not show significant differences. Conclusion: This study concluded that there were no more significant changes in the DLP and ED values among both the genders however we noticed that female patients had more CTDI than males.

Keywords: computed tomography, contrast enhanced computed tomography, computed tomography dose index, dose length product, effective dose

Procedia PDF Downloads 71
2827 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: probability-based damage detection (PBDD), Kriging, surrogate modeling, uncertainty quantification, artificial intelligence, enhanced ideal gas molecular movement (EIGMM)

Procedia PDF Downloads 211
2826 An Enhanced Digital Forensic Model for Internet of Things Forensic

Authors: Tina Wu, Andrew Martin

Abstract:

The expansion of the Internet of Things (IoT) brings a new level of threat. Attacks on IoT are already being used by criminals to form botnets, launch Distributed Denial of Service (DDoS) and distribute malware. This opens a whole new digital forensic arena to develop forensic methodologies in order to have the capability to investigate IoT related crimes. However, existing proposed IoT forensic models are still premature requiring further improvement and validation, many lack details on the acquisition and analysis phase. This paper proposes an enhanced theoretical IoT digital forensic model focused on identifying and acquiring the main sources of evidence in a methodical way. In addition, this paper presents a theoretical acquisition framework of the different stages required in order to be capable of acquiring evidence from IoT devices.

Keywords: acquisition, Internet of Things, model, zoning

Procedia PDF Downloads 237
2825 Tailoring Polythiophene Nanocomposites with MnS/CoS Nanoparticles for Enhanced Surface-Enhanced Raman Spectroscopy (SERS) Detection of Mercury Ions in Water

Authors: Temesgen Geremew

Abstract:

The excessive emission of heavy metal ions from industrial processes poses a serious threat to both the environment and human health. This study presents a distinct approach utilizing (PTh-MnS/CoS NPs) for the highly selective and sensitive detection of Hg²⁺ ions in water. Such detection is crucial for safeguarding human health, protecting the environment, and accurately assessing toxicity. The fabrication method employs a simple and efficient chemical precipitation technique, harmoniously combining polythiophene, MnS, and CoS NPs to create highly active substrates for SERS. The MnS@Hg²⁺ exhibits a distinct Raman shift at 1666 cm⁻¹, enabling specific identification and demonstrating the highest responsiveness among the studied semiconductor substrates with a detection limit of only 1 nM. This investigation demonstrates reliable and practical SERS detection for Hg²⁺ ions. Relative standard deviation (RSD) ranged from 0.49% to 9.8%, and recovery rates varied from 96% to 102%, indicating selective adsorption of Hg²⁺ ions on the synthesized substrate. Furthermore, this research led to the development of a remarkable set of substrates, including (MnS, CoS, MnS/CoS, and PTh-MnS/CoS) nanoparticles were created right there on SiO₂/Si substrate, all exhibiting sensitive, robust, and selective SERS for Hg²⁺ ion detection. These platforms effectively monitor Hg²⁺ concentrations in real environmental samples.

Keywords: surface-enhanced raman spectroscopy (SERS), sensor, mercury ions, nanoparticles, and polythiophene.

Procedia PDF Downloads 19
2824 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 261
2823 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate

Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi

Abstract:

A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.

Keywords: oxidation, nanoaggregates, porphyrinoids, silver

Procedia PDF Downloads 260
2822 Implications of Humanizing Pedagogy on Learning Design in a Technology-Enhanced Language Learning Environment: Critical Reflections on Student Identity and Agency

Authors: Mukhtar Raban

Abstract:

Nelson Mandela University subscribes to a humanizing pedagogy (HP), as housed under broader critical pedagogy, that underpins and informs learning and teaching activities at the institution. The investigation sought to explore the implications of humanizing and critical pedagogical considerations for a technology-enhanced language learning (TELL) environment in a university course. The paper inquires into the design of a learning resource in an online learning environment of an English communication module, that applied HP principles. With an objective of creating agentive spaces for foregrounding identity, student voice, critical self-reflection, and recognition of others’ humanity; a flexible and open 'My Presence' feature was added to the TELL environment that allowed students and lecturers to share elements of their backgrounds in a ‘mutually vulnerable’ manner as a way of establishing digital identity and a more ‘human’ presence in the online language learning encounter, serving as a catalyst for the recognition of the ‘other’. Following a qualitative research design, the study adopted an auto-ethnographic approach, complementing the critical inquiry nature embedded into the activity’s practices. The study’s findings provide critical reflections and deductions on the possibilities of leveraging digital human expression within a humanizing pedagogical framework to advance the realization of HP-adoption in language learning and teaching encounters. It was found that the consideration of humanizing pedagogical principles in the design of online learning was more effective when the critical outcomes were explicated to students and lecturers prior to the completion of the activities. The integration of humanizing pedagogy also led to a contextual advancement of ‘affective’ language learning. Upon critical reflection and analysis, student identity and agency can flourish in a technology-enhanced learning environment when humanizing, and critical pedagogy influences the learning design.

Keywords: critical reflection, humanizing pedagogy, student identity, technology-enhanced language learning

Procedia PDF Downloads 105
2821 Technology Enhanced Learning Using Virtual and Augmented Realities: An Applied Method to Improve the Animation Teaching Delivery

Authors: Rosana Marar, Edward Jaser

Abstract:

This paper presents a software solution to enhance the content and presentation of graphic design and animation related textbooks. Using augmented and virtual reality concepts, a mobile application is developed to improve the static material found in books. This allows users to interact with animated examples and tutorials using their mobile phones and stereoscopic 3D viewers which will enhance information delivery. The application is tested on Google Cardboard with visual content in 3D space. Evaluation of the proposed application demonstrates that it improved the readability of static content and provided new experiences to the reader.

Keywords: animation, augmented reality, google cardboard, interactive media, technology enhanced learning, virtual reality

Procedia PDF Downloads 153
2820 Optimization of Hydraulic Fracturing for Horizontal Wells in Enhanced Geothermal Reservoirs

Authors: Qudratullah Muradi

Abstract:

Geothermal energy is a renewable energy source that can be found in abundance on our planet. Only a small fraction of it is currently converted to electrical power, though in recent years installed geothermal capacity has increased considerably all over the world. In this paper, we assumed a model for designing of Enhanced Geothermal System, EGS. We used computer modeling group, CMG reservoir simulation software to create the typical Hot Dry Rock, HDR reservoir. In this research two wells, one injection of cold water and one production of hot water are included in the model. There are some hydraulic fractures created by the mentioned software. And cold water is injected in order to produce energy from the reservoir. The result of injecting cold water to the reservoir and extracting geothermal energy is defined by some graphs at the end of this research. The production of energy is quantified in a period of 10 years.

Keywords: geothermal energy, EGS, HDR, hydraulic fracturing

Procedia PDF Downloads 152
2819 Engaging Students with Special Education Needs through Technology-Enhanced Interactive Activities in Class

Authors: Pauli P.Y. Lai

Abstract:

Students with Special Education Needs (SEN) face many challenges in learning. Various challenges include difficulty in handwriting, slow understanding and assimilation, difficulty in paying attention during class, and lack of communication skills. To engage students with Special Education Needs in class with general students, Blackboard Collaborate is used as a teaching and learning tool to deliver a lecture with interactive activities. Blackboard Collaborate provides a good platform to create and enhance active, collaborative and interactive learning experience whereby the SEN students can easily interact with their general peers and the instructor by using the features of drawing on a virtual whiteboard, file sharing, classroom chatter, breakout room, hand-raising feature, polling, etc. By integrating a blended learning approach with Blackboard Collaborate, the students with Special Education Needs could engage in interactive activities with ease in class. Our research aims at exploring and discovering the use of Blackboard Collaborate for inclusive education based on a qualitative design with in-depth interviews. Being served in a general education environment, three university students with different kinds of learning disabilities have participated in our study. All participants agreed that functions provided by Blackboard Collaborate have enhanced their learning experiences and helped them learn better. Their academic performances also showed that SEN students could perform well with the help of technology. This research studies different aspects of using Blackboard Collaborate to create an inclusive learning environment for SEN students.

Keywords: blackboard collaborate, enhanced learning experience, inclusive education, special education needs

Procedia PDF Downloads 107
2818 Software Quality Assurance in Network Security using Cryptographic Techniques

Authors: Sidra Shabbir, Ayesha Manzoor, Mehreen Sirshar

Abstract:

The use of the network communication has imposed serious threats to the security of assets over the network. Network security is getting more prone to active and passive attacks which may result in serious consequences to data integrity, confidentiality and availability. Various cryptographic techniques have been proposed in the past few years to combat with the concerned problem by ensuring quality but in order to have a fully secured network; a framework of new cryptosystem was needed. This paper discusses certain cryptographic techniques which have shown far better improvement in the network security with enhanced quality assurance. The scope of this research paper is to cover the security pitfalls in the current systems and their possible solutions based on the new cryptosystems. The development of new cryptosystem framework has paved a new way to the widespread network communications with enhanced quality in network security.

Keywords: cryptography, network security, encryption, decryption, integrity, confidentiality, security algorithms, elliptic curve cryptography

Procedia PDF Downloads 702
2817 Enhancing the CO2 Photoreduction of SnFe2O4 by Surface Modification Through Acid Treatment and Au Deposition

Authors: Najmul Hasan, Shiping Li, Chunli Liu

Abstract:

The synergy effect of surface modifications using the acid treatment and noble metal (Au) deposition on the efficiency of SnFe2O4 (SFO) nano-octahedron photocatalyst has been investigated. Inorganic acids (H2SO4 and HNO3) were employed to compare the effects of different acids. It has been found that after corrosion treatment using H2SO4 and deposition of Au nanoparticles, SnFe2O4 nano-octahedron (Au-S-SFO) showed significantly enhanced photocatalytic activity under simulated light irradiation. Au-S-SFO was characterized by XRD, XPS, EDS, FTIR, Uv-vis-DRS, SEM, PL, and EIS analysis. The mechanism for CO2 reduction was investigated by scavenger tests. The stability of Au-S-SFO was confirmed by continuously repeated tests followed by XRD analysis. The surface corrosion treatment of SFO octahedron with H2SO4 could produce hydroxyl group (-OH) and sulfonic acid group (-SO3H) as reaction sites. These active sites not only enhanced the Au nanoparticles deposition to the acid treated SFO surface but also acted as the Brønsted acid sites that enhance the water adsorption and provide protons for CTC degradation and CO2 reduction. These effects improved the carrier separation and transfer efficiency. In addition, the photocatalytic efficiency was further enhanced by the surface plasmon resonance (SPR) effect of Au nanoparticles deposited on the surface of acid-treated SFO. As a result of the synergy of both acid treatment and SPR effect from the Au NPs, Au-S-SFO exhibited the highest CO2 reduction activity with 2.81, 1.92, and 2.69 times higher evolution rates for CO, CH4, and H2, respectively than that of pure SFO.

Keywords: surface modification, CO2 reduction, Au deposition, Gas-liquid interfacial plasma

Procedia PDF Downloads 58
2816 Use of Metamaterials Structures to Reduce the SAR in the Human Head

Authors: Hafawa Messaoudi, Taoufik Aguili

Abstract:

Due to the rapid growth in the use of wireless communication systems, there has been a recent increase in public concern regarding the exposure of humans to Radio Frequency (RF) electromagnetic radiation. This is particularly evident in the case of mobile telephone handsets. Previously, the insertion of a ferrite sheet between the antenna and the human head, the use of conductive materials (such as aluminum), the use of metamaterials (SRR), frequency selective surface (FSS), and electromagnetic band gap (EBG) structures to design high performance devices were proposed as methods of reducing the SAR value. This paper aims to provide an investigation of the effectiveness of various available Specific Absorption Rate (SAR) reduction solutions.

Keywords: EBG, HIS, metamaterials, SAR reduction

Procedia PDF Downloads 495
2815 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids

Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout

Abstract:

Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.

Keywords: graphene, layered material, field emission, plasma, doping

Procedia PDF Downloads 340
2814 Wireless Backhauling for 5G Small Cell Networks

Authors: Abdullah A. Al Orainy

Abstract:

Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.

Keywords: backhaul, small cells, wireless, 5G

Procedia PDF Downloads 466