Search results for: adhesively bonded joints
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 602

Search results for: adhesively bonded joints

92 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 38
91 The Effect of Aerobic Exercises on the Amount of Urea, Uric Acid and Creatine in Blood of Iranian Soccer Players

Authors: Abdolrasoul Daneshjoo

Abstract:

The purpose of this research was to study the effect of aerobic exercises with 75% heart beats on the amount of urea, uric acid and creatine in blood of Iranian soccer national U-23 players. 27 players were selected according to the following demographic specifications: age: 21.4±1.60 years old; weight: 68±9.4 kg; height: 174.2±8.6 cm. Urea, uric acid and creatine in blood are considered as dependent variations where as 40 minutes running on a track with maximum 75% heart beats are independent variations. Heart beat and blood pressure in rest time, age, height, and weight are considered as the controlled variations. Maximum heart beats are recorded under maximum exercises (8 minutes and 150-250 watt energy) on ergo meter. Then, in order to determine independent variations, 75% maximum heart beats are considered for each player. Blood is taken twice (before and after determining independence variation). Moreover, the players are given a few instructions to be fulfilled 24 hours before the main exercises. Laboratory analysis method for blood urea sample is deacetyl ammoniom, for uric acid Karvy test and for creatine pyric acid. 'T' formula is applied for analyzing statistical data in dependent groups with degree of freedom 7 (d.f=7) urea and uric acid contain P>0.01 and P>0.05 for creatine. 1. Aerobic exercise can effect on the concentration of urea of blood as well as uric acid and creatine in blood serum and increase the amount of them. 2. Urea of blood serum increases from 26.75±2.59 to 28.9±2.67 (25%) with 40 minutes running and 75% heart beat. 3. Aerobic exercise causes uric acid increase 12.5% from 5.7±0.52 (before exercise) to 6.1±0.71 (after exercise). Creatine of blood serum increases from 1.36±0.27 (before exercise) to 1.85±0.49 (after exercise). We came to this result that during aerobic exercise catabolism of protein substrate increases. Moreover, augmentation of urea, uric acid and creatine in blood serum as metabolic poisons causes disorder in kidney. Also, tendons and joints are affected by these poisons. Appropriate diet and exercise can prevent production of these poisons resulted from heavy exercise.

Keywords: aerobic exercise, urea, uric acid, creatine, blood, soccer national players

Procedia PDF Downloads 509
90 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 116
89 Structural and Binding Studies of Peptidyl-tRNA Hydrolase from Pseudomonas aeruginosa Provide a Platform for the Structure Based Inhibitor Design against Peptidyl-tRNA Hydrolase

Authors: Sujata Sharma, Avinash Singh, Lovely Gautam, Pradeep Sharma, Mau Sinha, Asha Bhushan, Punit Kaur, Tej P. Singh

Abstract:

Peptidyl-tRNA hydrolase (Pth) Pth is an essential bacterial enzyme that catalyzes the release of free tRNA and peptide moeities from peptidyl tRNAs during stalling of protein synthesis. In order to design inhibitors of Pth from Pseudomonas aeruginosa (PaPth), we have determined the structures of PaPth in its native state and in the bound states with two compounds, amino acylate-tRNA analogue (AAtA) and 5-azacytidine (AZAC). The peptidyl-tRNA hydrolase gene from Pseudomonas aeruginosa was amplified by Phusion High-Fidelity DNA Polymerase using forward and reverse primers, respectively. The E. coliBL21 (λDE3) strain was used for expression of the recombinant peptidyl-tRNA hydrolase from Pseudomonas aeruginosa. The protein was purified using a Ni-NTA superflow column. The crystallization experiments were carried out using hanging drop vapour diffusion method. The crystals diffracted to 1.50 Å resolution. The data were processed using HKL-2000. The polypeptide chain of PaPth consists of 194 amino acid residues from Met1 to Ala194. The centrally located β-structure is surrounded by α-helices from all sides except the side that has entrance to the substrate binding site. The structures of the complexes of PaPth with AAtA and AZAC showed the ligands bound to PaPth in the substrate binding cleft and interacted with protein atoms extensively. The residues that formed intermolecular hydrogen bonds with the atoms of AAtA included Asn12, His22, Asn70, Gly113, Asn116, Ser148, and Glu161 of the symmetry related molecule. The amino acids that were involved in hydrogen bonded interactions in case of AZAC included, His22, Gly113, Asn116, and Ser148. As indicated by fittings of two ligands and the number of interactions made by them with protein atoms, AAtA appears to be a more compatible with the structure of the substrate binding cleft. However, there is a further scope to achieve a better stacking than that of O-tyrosyl moiety because it is not still ideally stacked. These observations about the interactions between the protein and ligands have provided the information about the mode of binding of ligands, nature and number of interactions. This information may be useful for the design of tight inhibitors of Pth enzymes.

Keywords: peptidyl tRNA hydrolase, Acinetobacter baumannii, Pth enzymes, O-tyrosyl

Procedia PDF Downloads 390
88 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load

Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul

Abstract:

While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.

Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application

Procedia PDF Downloads 379
87 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 275
86 Pyridine-N-oxide Based AIE-active Triazoles: Synthesis, Morphology and Photophysical Properties

Authors: Luminita Marin, Dalila Belei, Carmen Dumea

Abstract:

Aggregation induced emission (AIE) is an intriguing optical phenomenon recently evidenced by Tang and his co-workers, for which aggregation works constructively in the improving of light emission. The AIE challenging phenomenon is quite opposite to the notorious aggregation caused quenching (ACQ) of light emission in the condensed phase, and comes in line with requirements of photonic and optoelectronic devices which need solid state emissive substrates. This paper reports a series of ten new aggregation induced emission (AIE) low molecular weight compounds based on triazole and pyridine-N-oxide heterocyclic units bonded by short flexible chains, obtained by a „click” chemistry reaction. The compounds present extremely weak luminescence in solution but strong light emission in solid state. To distinguish the influence of the crystallinity degree on the emission efficiency, the photophysical properties were explored by UV-vis and photoluminescence spectroscopy in solution, water suspension, amorphous and crystalline films. On the other hand, the compound morphology of the up mentioned states was monitored by dynamic light scattering, scanning electron microscopy, atomic force microscopy and polarized light microscopy methods. To further understand the structural design – photophysical properties relationship, single crystal X-ray diffraction on some understudy compounds was performed too. The UV-vis absorption spectra of the triazole water suspensions indicated a typical behaviour for nanoparticle formation, while the photoluminescence spectra revealed an emission intensity enhancement up to 921-fold higher of the crystalline films compared to solutions, clearly indicating an AIE behaviour. The compounds have the tendency to aggregate forming nano- and micro- crystals in shape of rose-like and fibres. The crystals integrity is kept due to the strong lateral intermolecular forces, while the absence of face-to-face forces explains the enhanced luminescence in crystalline state, in which the intramolecular rotations are restricted. The studied flexible triazoles draw attention to a new structural design in which small biologically friendly luminophore units are linked together by small flexible chains. This design enlarges the variety of the AIE luminogens to the flexible molecules, guiding further efforts in development of new AIE structures for appropriate applications, the biological ones being especially envisaged.

Keywords: aggregation induced emission, pyridine-N-oxide, triazole

Procedia PDF Downloads 432
85 A Hygrothermal Analysis and Structural Performance of Wood-Frame Wall Systems with Low-Permeance Exterior Insulation

Authors: Marko Spasojevic, Ying Hei Chui, Yuxiang Chen

Abstract:

Increasing the level of exterior insulation in residential buildings is a popular way for improving the thermal characteristic of building enclosure and reducing heat loss. However, the layout and properties of materials composing the wall have a great effect on moisture accumulation within the wall cavity, long-term durability of a wall as well as the structural performance. A one-dimensional hygrothermal modeling has been performed to investigate moisture condensation risks and the drying capacity of standard 2×4 and 2×6 light wood-frame wall assemblies including exterior low-permeance extruded polystyrene (XPS) insulation. The analysis considered two different wall configurations whereby the rigid insulation board was placed either between Oriented Strand Board (OSB) sheathing and the stud or outboard to the structural sheathing. The thickness of the insulation varied between 0 mm and 50 mm and the analysis has been conducted for eight different locations in Canada, covering climate zone 4 through zone 8. Results show that the wall configuration with low-permeance insulation inserted between the stud and OSB sheathing accumulates more moisture within the stud cavity, compared to the assembly with the same insulation placed exterior to the sheathing. On the other hand, OSB moisture contents of the latter configuration were markedly higher. Consequently, the analysis of hygrothermal performance investigated and compared moisture accumulation in both the OSB and stud cavity. To investigate the structural performance of the wall and the effect of soft insulation layer inserted between the sheathing and framing, forty nail connection specimens were tested. Results have shown that both the connection strength and stiffness experience a significant reduction as the insulation thickness increases. These results will be compared with results from a full-scale shear wall tests in order to investigate if the capacity of shear walls with insulated sheathing would experience a similar reduction in structural capacities.

Keywords: hygrothermal analysis, insulated sheathing, moisture performance, nail joints, wood shear wall

Procedia PDF Downloads 97
84 Socio-Demographic and Clinical Characteristics and Use of Herbal Medicine among Patients Seeking Consultation for Knee Osteoarthritis at Secondary Healthcare Facilities in Oman

Authors: Thuraya Ahmed Al Shidhani, Yahya Al Farsi, Alya Al Husni, Samir Al Adawi

Abstract:

Background: Knee osteoarthritis (knee OA) represents a major public health burden worldwide, particularly among older adults. However, little has been documented from Arabian Gulf countries, which have left an information gap. Objective: This study describes the socio-demographic, clinical risk factors, and use of herbal medicine among men and women seeking consultation for knee OA at two secondary healthcare facilities in Muscat, Oman. Methods: A cross-sectional study was conducted among 213 Omani adults with knee OA attending a referral polyclinic in Muscat, Oman, over 12 months from January to December. Socio-demographic data were collected from the participants who are seeking consultation for knee OA. Results: Among the 213 study participants, 171 were females and 42 males. The females were comparatively older than the males, had lower education and lower-income, and more overweight. The majority of the participants were normal weight or underweight. About one-third of participants reported OA in other joints as well. Most participants recalled that they had knee OA for less than a year. About 12% reported a history of trauma. The majority (63%) concurrently had other chronic illnesses, and 33% reported having at least one complication. About 22% were using herbal medicines. About 77% are using herbal local applications in form of powder and creams. Conclusion: This study, to our knowledge, is the first to explore socio-demographic characteristics, clinical risk factors and use of herbal medicine among sufferers of knee OA in Oman. Knee OA tended to occur among our participants at younger ages than reported elsewhere, while obesity appeared orthogonal to the severity of knee OA. Women were more affected than men. About one quarter of Omani patients are using herbal medicine. More studies are needed to understand the causal factors and development of knee OA in Oman. Targeted health education and rehabilitation programs are needed, particularly among Omani women, to improve their physical quality of life.

Keywords: knee joint, osteoarthritis, herbal medicine, Oman

Procedia PDF Downloads 94
83 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy

Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu

Abstract:

Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.

Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films

Procedia PDF Downloads 231
82 Can Zirconia Wings of Resin Retained Cantilever Bridges Be Effectively Bonded To Tooth Tissue When Compared With Metal Wings In The Anterior Dentition in vivo? - A Systematic Review.

Authors: Ariyan S. Araghi, Guy C. Jackson, Stephen J. Bonsor

Abstract:

Materials & Methods: A systematic literature search was undertaken using pre-determined inclusion and exclusion criteria. This review followed the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement. Several databases were used to search for randomised control trials and longitudinal cohort studies, which were published less than thirty years ago. A total of 54 studies met the predefined inclusion criteria. Four studies reviewed the success, survival, and failure characteristics of zirconia framework resin retained bridges, whilst two reviewed non-precious metal resin retained bridges. Results: The analysis of the studies revealed an overall survival rate of 95.9% for zirconia-based restorations compared to 90.7% for non-precious metal frameworks. Non-precious metal resin retained bridges displayed a higher overall failure rate of 11.9% compared to 4.6% for zirconia-based restorations in the analysed papers. The most frequent complications were wing debonding for the non-precious metal wing group, whereas substructure fracture and veneering ceramic fracture were more prevalent for the zirconia arm of the study. Conclusion: Both types of resin retained bridges provide effective medium to long-term survival. Zirconia-based frameworks will provide marginally increased success and survival and greatly improved aesthetics. However, catastrophic failure is more likely with zirconia-based restorations. Non-precious metal is time tested but performs worse than its zirconia counterpart with regards to longevity; it does not exhibit the same framework fractures as zirconia. Cement choice and attention to the adhesive bonding systems used appear to be paramount to restoration longevity with both restoration subtypes. Furthermore, improved longevity can be seen when air particle abrasion is incorporated into the adhesive protocol. Within the limitations of this study, it has been determined that zirconia-based resin retained bridges can be effectively used in anterior cantilever bridges. Clinical Significance: Zirconia-based resin retained bridges have been demonstrating promising results in terms of improved success and survival characteristics, together with improved aesthetics when compared to non-precious metal winged resin retained bridges. Their popularity is increasing in the age of digital dentistry as many restorations are manufactured using such technology. It is essential that clinicians understand the limitations of each material type and principles of adhesion to ensure restoration longevity.

Keywords: resin retained bridge, fixed partial denture, zirconia bridge, adhesive bridge

Procedia PDF Downloads 62
81 Social Inequality and Inclusion Policies in India: Lessons Learned and the Way Forward

Authors: Usharani Rathinam

Abstract:

Although policies directing inclusion of marginalized were in effect, majority of chronically impoverished in India belonged to schedule caste and schedule tribes. Also, taking into account that poverty is gendered; destitute women belonged to lower social order whose need is not largely highlighted at policy level. This paper discusses on social relations poverty which highlights on how social order that existed structurally in the society can perpetuate chronic poverty, followed by a critical review on social inclusion policies of India, its merits and demerits in addressing chronic poverty. Multiple case study design is utilized to address this concern in four districts of India; Jhansi, Tikamgarh, Cuddalore and Anantapur. These four districts were selected by purposive sampling based on the criteria; the district should either be categorized as a backward district or should have a history of high poverty rate. Qualitative methods including eighty in-depth interviews, six focus group discussions, six social mapping procedures and three key informant interviews were conducted in 2011, at each of the locations. Analysis of the data revealed that irrespective of gender, schedule castes and schedule tribe participants were found to be chronically poor in all districts. Caste based discrimination is exhibited at both micro and macro levels; village and institutional levels. At village level, lower caste respondents had lesser access to public resources. Also, within institutional settings, due to confiscation, unequal access to resources is noticed, especially in fund distribution. This study found that half of the budget intended for schedule caste and schedule tribes were confiscated by upper caste administrative staffs. This implies that power based on social hierarchy marginalize lower caste participants from accessing better economic, social, and political benefits, that had led them to suffer long term poverty. This study also explored the traditional ties between caste, social structure and bonded labour as a cause of long-term poverty. Though equal access is being emphasized in constitutional rights, issues at micro level have not been reflected in formulation of these rights. Therefore, it is significant for a policy to consider the structural complexity and then focus on issues such as equal distribution of assets and infrastructural facilities that will reduce exclusion and foster long-term security in areas such as employment, markets and public distribution.

Keywords: caste, inclusion policies, India, social order

Procedia PDF Downloads 183
80 Lignin Phenol Formaldehyde Resole Resin: Synthesis and Characteristics

Authors: Masoumeh Ghorbania, Falk Liebnerb, Hendrikus W.G. van Herwijnenc, Johannes Konnertha

Abstract:

Phenol formaldehyde (PF) resins are widely used as wood adhesives for variety of industrial products such as plywood, laminated veneer lumber and others. Lignin as a main constituent of wood has become well-known as a potential substitute for phenol in PF adhesives because of their structural similarity. During the last decades numerous research approaches have been carried out to substitute phenol with pulping-derived lignin, whereby the lower reactivity of resins synthesized with shares of lignin seem to be one of the major challenges. This work reports about a systematic screening of different types of lignin (plant origin and pulping process) for their suitability to replace phenol in phenolic resins. Lignin from different plant sources (softwood, hardwood and grass) were used, as these should differ significantly in their reactivity towards formaldehyde of their reactive phenolic core units. Additionally a possible influence of the pulping process was addressed by using the different types of lignin from soda, kraft, and organosolv process and various lignosulfonates (sodium, ammonium, calcium, magnesium). To determine the influence of lignin on the adhesive performance beside others the rate of viscosity development, bond strength development of varying hot pressing time and other thermal properties were investigated. To evaluate the performance of the cured end product, a few selected properties were studied at the example of solid wood-adhesive bond joints, compact panels and plywood. As main results it was found that lignin significantly accelerates the viscosity development in adhesive synthesis. Bonding strength development during curing of adhesives decelerated for all lignin types, while this trend was least for pine kraft lignin and spruce sodium lignosulfonate. However, the overall performance of the products prepared with the latter adhesives was able to fulfill main standard requirements, even after exposing the products to harsh environmental conditions. Thus, a potential application can be considered for processes where reactivity is less critical but adhesive cost and product performance is essential.

Keywords: phenol formaldehyde resin, lignin phenol formaldehyde resin, ABES, DSC

Procedia PDF Downloads 211
79 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 71
78 Trafficking of Women in Assam: The Untold Violation of Women's Human Rights

Authors: Mridula Devi

Abstract:

Trafficking of women is a slur on human dignity and a shameful act to human civilization and development. Trafficking of women is one of worst brazen abuses which violate the women’s human rights. In India, more particularly in Assam, human trafficking and infringement of human rights of individual includes mainly the women and girl child of the State. Trafficking in North East region of India, more particularly in Assam occurs in two different ways – one is the internal trafficking of women and girl child from conflict affected rural areas of Assam for domestic work and prostitution. Secondly, there is trafficking of women to other south-East Asiatic countries like Bangladesh, Bhutan, Bangkok, Myanmar (Burma) for various purposes such as drug trafficking, labor, bar girl and prostitution.Historically, trafficking in human beings is associated with slavery and bonded or forced labor. Since the period of Roman Civilization, there was the practice of traffic in persons in the form of slave trade among the nations. With the rise of new imperialism, slavery had become an integral part of the colonial system of European Countries. With time, it almost became synonymous with prostitution or commercial sexual exploitation. Finally, the United Nation adopted the Convention for the Suppression of the Traffic in Persons and of the Prostitution of others, 1949 by the G.A.Res.No.-317(iv). The Convention totally denounces the traffic in persons for the purpose of prostitution. However, it is important to note that, now a days trafficking is not confined to commercial sexual exploitation of women and children alone. It has myriad forms and the number of victims has been steadily on the rise over the past few decades. In Assam, it takes place through and for marriage, sexual exploitation, begging, organ trading, militancy conflicts, drug padding and smuggling, labour, adoption, entertainment, and sports. In this paper, empirical methodology has been used. The study is based on primary and secondary sources. Data’s are collected from different books, publications, newspaper, journals etc. For empirical analysis, some random samples are collected and systematized for better result. India suffers from the ignominy of being one of the biggest hubs of women trafficking in the world. Over the years, Assam: the north east part of India has been bearing the brunt of the rapidly rising evil of trafficking of women which threaten the life, dignity and human rights of women. Though different laws are adopted at international and national level to restore trafficking, still the menace of trafficking of women in Assam is not decreased, rather it increased. This causes a serious violation of women’s human right in Assam. Human trafficking or women’s trafficking is a serious crime against society. To curb this in Assam it is required to take some effective and dedicated measure at state level as well as national and international level.

Keywords: Assam, human trafficking, sexual exploitation, India

Procedia PDF Downloads 495
77 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 272
76 Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia

Authors: Ilham Aji Dermawan, M. Sapari Dwi Hadian, R. Irvan Sophian, Iyan Haryanto

Abstract:

The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too.

Keywords: geological structure, groundwater, hydrogeology, influent aquifer, structural trap

Procedia PDF Downloads 183
75 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 73
74 Active Vibration Reduction for a Flexible Structure Bonded with Sensor/Actuator Pairs on Efficient Locations Using a Developed Methodology

Authors: Ali H. Daraji, Jack M. Hale, Ye Jianqiao

Abstract:

With the extensive use of high specific strength structures to optimise the loading capacity and material cost in aerospace and most engineering applications, much effort has been expended to develop intelligent structures for active vibration reduction and structural health monitoring. These structures are highly flexible, inherently low internal damping and associated with large vibration and long decay time. The modification of such structures by adding lightweight piezoelectric sensors and actuators at efficient locations integrated with an optimal control scheme is considered an effective solution for structural vibration monitoring and controlling. The size and location of sensor and actuator are important research topics to investigate their effects on the level of vibration detection and reduction and the amount of energy provided by a controller. Several methodologies have been presented to determine the optimal location of a limited number of sensors and actuators for small-scale structures. However, these studies have tackled this problem directly, measuring the fitness function based on eigenvalues and eigenvectors achieved with numerous combinations of sensor/actuator pair locations and converging on an optimal set using heuristic optimisation techniques such as the genetic algorithms. This is computationally expensive for small- and large-scale structures subject to optimise a number of s/a pairs to suppress multiple vibration modes. This paper proposes an efficient method to determine optimal locations for a limited number of sensor/actuator pairs for active vibration reduction of a flexible structure based on finite element method and Hamilton’s principle. The current work takes the simplified approach of modelling a structure with sensors at all locations, subjecting it to an external force to excite the various modes of interest and noting the locations of sensors giving the largest average percentage sensors effectiveness measured by dividing all sensor output voltage over the maximum for each mode. The methodology was implemented for a cantilever plate under external force excitation to find the optimal distribution of six sensor/actuator pairs to suppress the first six modes of vibration. It is shown that the results of the optimal sensor locations give good agreement with published optimal locations, but with very much reduced computational effort and higher effectiveness. Furthermore, it is shown that collocated sensor/actuator pairs placed in these locations give very effective active vibration reduction using optimal linear quadratic control scheme.

Keywords: optimisation, plate, sensor effectiveness, vibration control

Procedia PDF Downloads 205
73 Inhibitory Effect of Coumaroyl Lupendioic Acid on Inflammation Mediator Generation in Complete Freund’s Adjuvant-Induced Arthritis

Authors: Rayhana Begum, Manju Sharma

Abstract:

Careya arborea Roxb. belongs to the Lecythidaceae family, is traditionally used in tumors, anthelmintic, bronchitis, epileptic fits, astringents, inflammation, an antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, toothache, and ear pain. The present study was focused on investigating the anti-arthritic effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark in the chronic inflammatory model and further assessing its possible mechanism on the modulation of inflammatory biomarkers. Arthritis was induced by injecting 0.1 ml of Complete Freund’s Adjuvant (5 mg/ml of heat killed Mycobacterium tuberculosis) into the subplantar region of the left hind paw. Treatment with coumaroyl lupendioic acid (10 and 20 mg/kg, p.o.) and reference drugs (indomethacin and dexamethasone at the dose of 5 mg/kg, p.o.) were started on the day of induction and continued up to 28 days. The progression of arthritis was evaluated by measuring paw volume, tibio tarsal joint diameters, and arthritic index. The effect of coumaroyl lupendioic acid (CLA) on the production PGE₂, NO, MPO, NF-κB, TNF-α, IL-1β, and IL-6 on serum level as well as inflamed paw tissue were also assessed. In addition, ankle joints and spleen were collected and prepared for histological examination. CLA in inflamed rats resulted in significant amelioration of paw edema, tibio-tarsal joint swelling and arthritic score as compared to CFA control group. The results indicated that CLA treated groups markedly decreased the levels of inflammatory mediators (PGE₂, NO, MPO and NF-κB levels) and down-regulated the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in paw tissue homogenates as well as in serum. However, the more pronounced effect was observed in the inflamed paw tissue homogenates. CLA also revealed a protective effect to the tibio-tarsal joint cartilage and spleen. These results suggest that coumaroyl lupendioic acid inhibits inflammation may be through the suppression of the cascade of proinflammatory mediators via the down-regulation of NF-ҡB.

Keywords: complete Freund’s adjuvant , Coumaroyl lupendioic acid, pro-inflammatory cytokines, prostaglandin E2

Procedia PDF Downloads 122
72 Experimental and Numerical Investigation of Micro-Welding Process and Applications in Digital Manufacturing

Authors: Khaled Al-Badani, Andrew Norbury, Essam Elmshawet, Glynn Rotwell, Ian Jenkinson , James Ren

Abstract:

Micro welding procedures are widely used for joining materials, developing duplex components or functional surfaces, through various methods such as Micro Discharge Welding or Spot Welding process, which can be found in the engineering, aerospace, automotive, biochemical, biomedical and numerous other industries. The relationship between the material properties, structure and processing is very important to improve the structural integrity and the final performance of the welded joints. This includes controlling the shape and the size of the welding nugget, state of the heat affected zone, residual stress, etc. Nowadays, modern high volume productions require the welding of much versatile shapes/sizes and material systems that are suitable for various applications. Hence, an improved understanding of the micro welding process and the digital tools, which are based on computational numerical modelling linking key welding parameters, dimensional attributes and functional performance of the weldment, would directly benefit the industry in developing products that meet current and future market demands. This paper will introduce recent work on developing an integrated experimental and numerical modelling code for micro welding techniques. This includes similar and dissimilar materials for both ferrous and non-ferrous metals, at different scales. The paper will also produce a comparative study, concerning the differences between the micro discharge welding process and the spot welding technique, in regards to the size effect of the welding zone and the changes in the material structure. Numerical modelling method for the micro welding processes and its effects on the material properties, during melting and cooling progression at different scales, will also be presented. Finally, the applications of the integrated numerical modelling and the material development for the digital manufacturing of welding, is discussed with references to typical application cases such as sensors (thermocouples), energy (heat exchanger) and automotive structures (duplex steel structures).

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 235
71 Epidemiological Analysis of the Patients Supplied with Foot Orthoses in Ortho-Prosthetic Center of Kosovo

Authors: Ardiana Murtezani, Ilirijana Dallku, Teuta Osmani Vllasolli, Sabit Sllamniku

Abstract:

Background: The use of foot orthoses are always indicated when there are alterations of the optimal biomechanics' position of the foot. Orthotics are very effective and very suitable for the majority of patients with pain due to overload which can be related to biomechanical disorders. Aim: To assess the frequency of patients requiring foot orthoses, type of orthoses and analysis of their disease leading to the use of foot orthoses. Material and Methods: Our study included 128 patients with various foot pathologies, treated at the outpatient department of the Ortho-Prosthetic Center of Kosovo (OPCK) in Prishtina. Prospective-descriptive clinical method was used during this study. Functional status of patients was examined, and the following parameters are noted: range of motion measurements for the affected joints/lower extremities, manual test for muscular strength below the knee and foot of the affected extremity, perimeter measurements of the lower extremities, measurements of lower extremities, foot length measurement, foot width measurements and size. In order to complete the measurements the following instruments are used: plantogram, pedogram, meter and cork shoe lift appliances. Results: The majority of subjects in this study are male (60.2% vs. 39.8%), and the dominant age group was 0-9 (47.7%), 61 subjects respectively. Most frequent foot disorders were: congenital disease 60.1%, trauma cases 13.3%, consequences from rheumatologic disease 12.5%, neurologic dysfunctions 11.7%, and the less frequented are the infectious cases 1.6%. Congenital anomalies were the most frequent cases, and from this group majority of cases suffered from pes planovalgus (37.5%), eqinovarus (15.6%) and discrepancies between extremities (6.3%). Furthermore, traumatic amputations (2.3%) and arthritis (0.8%). As far as neurologic disease, subjects with cerebral palsy are represented with (3.1%), peroneal nerve palsy (2.3%) and hemiparesis (1.6%). Infectious disease osteomyelitis sequels are represented with (1.6%). Conclusion: Based on our study results, we have concluded that the use of foot orthoses for patients suffering from rheumatoid arthritis and nonspecific arthropaty was effective treatment choice, leading to decrease of pain, less deformities and improves the quality of life.

Keywords: orthoses, epidemiological analysis, rheumatoid arthritis, rehabilitation

Procedia PDF Downloads 206
70 A Comparison of Three Different Modalities in Improving Oral Hygiene in Adult Orthodontic Patients: An Open-Label Randomized Controlled Trial

Authors: Umair Shoukat Ali, Rashna Hoshang Sukhia, Mubassar Fida

Abstract:

Introduction: The objective of the study was to compare outcomes in terms of Bleeding index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) with video graphics and plaque disclosing tablets (PDT) versus verbal instructions in adult orthodontic patients undergoing fixed appliance treatment (FAT). Materials and Methods: Adult orthodontic patients have recruited from outpatient orthodontic clinics who fulfilled the inclusion criteria and were randomly allocated to three groups i.e., video, PDT, and verbal groups. We included patients undergoing FAT for six months of both genders with all teeth bonded mesial to first molars having no co-morbid conditions such as rheumatic fever and diabetes mellitus. Subjects who had gingivitis as assessed by Bleeding Index (BI), Gingival Index (GI), and Orthodontic Plaque Index (OPI) were recruited. We excluded subjects having > 2 mm of clinical attachment loss, pregnant and lactating females, any history of periodontal therapy within the last six months, and any consumption of antibiotics or anti-inflammatory drugs within the last one month. Pre- and post-interventional measurements were taken at two intervals only for BI, GI, and OPI. The primary outcome of this trial was to evaluate the mean change in the BI, GI, and OPI in the three study groups. A computer-generated randomization list was used to allocate subjects to one of the three study groups using a random permuted block sampling of 6 and 9 to randomize the samples. No blinding of the investigator or the participants was performed. Results: A total of 99 subjects were assessed for eligibility, out of which 96 participants were randomized as three of the participants declined to be part of this trial. This resulted in an equal number of participants (32) that were analyzed in all three groups. The mean change in the oral hygiene indices score was assessed, and we found no statistically significant difference among the three interventional groups. Pre- and post-interventional results showed statistically significant improvement in the oral hygiene indices for the video and PDT groups. No statistically significant difference for age, gender, and education level on oral hygiene indices were found. Simple linear regression showed that the video group produced significantly higher mean OPI change as compared to other groups. No harm was observed during the trial. Conclusions: Visual aids performed better as compared to the verbal group. Gender, age, and education level had no statistically significant impact on the oral hygiene indices. Longer follow-ups will be required to see the long-term effects of these interventions. Trial Registration: NCT04386421 Funding: Aga Khan University and Hospital (URC 183022)

Keywords: oral hygiene, orthodontic treatment, adults, randomized clinical trial

Procedia PDF Downloads 94
69 Carboxyfullerene-Modified Titanium Dioxide Nanoparticles in Singlet Oxygen and Hydroxyl Radicals Scavenging Activity

Authors: Kai-Cheng Yang, Yen-Ling Chen, Er-Chieh Cho, Kuen-Chan Lee

Abstract:

Titanium dioxide nanomaterials offer superior protection for human skin against the full spectrum of ultraviolet light. However, some literature reviews indicated that it might be associated with adverse effects such as cytotoxicity or reactive oxygen species (ROS) due to their nanoscale. The surface of fullerene is covered with π electrons constituting aromatic structures, which can effectively scavenge large amount of radicals. Unfortunately, fullerenes are poor solubility in water, severe aggregation, and toxicity in biological applications when dispersed in solvent have imposed the limitations to the use of fullerenes. Carboxyfullerene acts as the scavenger of radicals for several years. Some reports indicate that carboxyfullerene not only decrease the concentration of free radicals in ambience but also prevent cells from reducing the number or apoptosis under UV irradiation. The aim of this study is to decorate fullerene –C70-carboxylic acid (C70-COOH) on the surface of titanium dioxide nanoparticles (P25) for the purpose of scavenging ROS during the irradiation. The modified material is prepared through the esterification of C70-COOH with P25 (P25/C70-COOH). The binding edge and structure are studied by using Transmission electron microscope (TEM) and Fourier transform infrared (FTIR). The diameter of P25 is about 30 nm and C70-COOH is found to be conjugated on the edge of P25 in aggregation morphology with the size of ca. 100 nm. In the next step, the FTIR was used to confirm the binding structure between P25 and C70-COOH. There are two new peaks are shown at 1427 and 1720 cm-1 for P25/C70-COOH, resulting from the C–C stretch and C=O stretch formed during esterification with dilute sulfuric acid. The IR results further confirm the chemically bonded interaction between C70-COOH and P25. In order to provide the evidence of scavenging radical ability of P25/C70-COOH, we chose pyridoxine (Vit.B6) and terephthalic acid (TA) to react with singlet oxygen and hydroxyl radicals. We utilized these chemicals to observe the radicals scavenging statement via detecting the intensity of ultraviolet adsorption or fluorescence emission. The UV spectra are measured by using different concentration of C70-COOH modified P25 with 1mM pyridoxine under UV irradiation for various duration times. The results revealed that the concentration of pyridoxine was increased when cooperating with P25/C70-COOH after three hours as compared with control (only P25). It indicates fewer radicals could be reacted with pyridoxine because of the absorption via P25/C70-COOH. The fluorescence spectra are observed by measuring P25/C70-COOH with 1mM terephthalic acid under UV irradiation for various duration times. The fluorescence intensity of TAOH was decreased in ten minutes when cooperating with P25/C70-COOH. Here, it was found that the fluorescence intensity was increased after thirty minutes, which could be attributed to the saturation of C70-COOH in the absorption of radicals. However, the results showed that the modified P25/C70-COOH could reduce the radicals in the environment. Therefore, we expect that P25/C70-COOH is a potential materials in using for antioxidant.

Keywords: titanium dioxide, fullerene, radical scavenging activity, antioxidant

Procedia PDF Downloads 378
68 Modeling the Relation between Discretionary Accrual Earnings Management, International Financial Reporting Standards and Corporate Governance

Authors: Ikechukwu Ndu

Abstract:

This study examines the econometric modeling of the relation between discretionary accrual earnings management, International Financial Reporting Standards (IFRS), and certain corporate governance factors with regard to listed Nigerian non-financial firms. Although discretionary accrual earnings management is a well-known and global problem that has an adverse impact on users of the financial statements, its relationship with IFRS and corporate governance is neither adequately researched nor properly systematically investigated in Nigeria. The dearth of research in the relation between discretionary accrual earnings management, IFRS and corporate governance in Nigeria has made it difficult for academics, practitioners, government setting bodies, regulators and international bodies to achieve a clearer understanding of how discretionary accrual earnings management relates to IFRS and certain corporate governance characteristics. This is the first study to the author’s best knowledge to date that makes interesting research contributions that significantly add to the literature of discretionary accrual earnings management and its relation with corporate governance and IFRS pertaining to the Nigerian context. A comprehensive review is undertaken of the literature of discretionary total accrual earnings management, IFRS, and certain corporate governance characteristics as well as the data, models, methodologies, and different estimators used in the study. Secondary financial statement, IFRS, and corporate governance data are sourced from Bloomberg database and published financial statements of Nigerian non-financial firms for the period 2004 to 2016. The methodology uses both the total and working capital accrual basis. This study has a number of interesting preliminary findings. First, there is a negative relationship between the level of discretionary accrual earnings management and the adoption of IFRS. However, this relationship does not appear to be statistically significant. Second, there is a significant negative relationship between the size of the board of directors and discretionary accrual earnings management. Third, CEO Separation of roles does not constrain earnings management, indicating the need to preserve relationships, personal connections, and maintain bonded friendships between the CEO, Chairman, and executive directors. Fourth, there is a significant negative relationship between discretionary accrual earnings management and the use of a Big Four firm as an auditor. Fifth, including shareholders in the audit committee, leads to a reduction in discretionary accrual earnings management. Sixth, the debt and return on assets (ROA) variables are significant and positively related to discretionary accrual earnings management. Finally, the company size variable indicated by the log of assets is surprisingly not found to be statistically significant and indicates that all Nigerian companies irrespective of size engage in discretionary accrual management. In conclusion, this study provides key insights that enable a better understanding of the relationship between discretionary accrual earnings management, IFRS, and corporate governance in the Nigerian context. It is expected that the results of this study will be of interest to academics, practitioners, regulators, governments, international bodies and other parties involved in policy setting and economic development in areas of financial reporting, securities regulation, accounting harmonization, and corporate governance.

Keywords: discretionary accrual earnings management, earnings manipulation, IFRS, corporate governance

Procedia PDF Downloads 111
67 An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading

Authors: Emre Kara, Şura Karakuzu, Ahmet Fatih Geylan, Metehan Demir, Kadir Koç, Halil Aykul

Abstract:

The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0°/90°] cross ply E-Glass Biaxial stitched, [0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions.

Keywords: adhesive and adhesion, aluminum foam, bending, collapse mechanisms

Procedia PDF Downloads 303
66 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 174
65 Comparative Analysis of a Self-Supporting Wall of Granite Slabs in a Multi-Leaves Enclosure System

Authors: Miguel Angel Calvo Salve

Abstract:

Building enclosures and façades not only have an aesthetic component they must also ensure thermal comfort and improve the acoustics and air quality in buildings. The role of facades design, its assemblies, and construction are key in developing a greener future in architecture. This research and study focus on the design of a multi-leaves building envelope, with a self-supporting wall of granite slabs. The study will demonstrate the advantages of its use in compare with the hanging stone veneer in a vented cladding system. Using the Design of the School of Music and Theatre of the Atlantic Area in Spain as a case study where the multi-leaves enclosure system consists in a self-supported outer leaf of large granite slabs of 15cm. of thickness, a vent cavity with thermal isolation, a brick wall, and a series of internal layers. The methodology used were simulations and data collected in building. The advantages of the self-supporting wall of granite slabs in the outer leaf (15cm). compared with a hanging stone veneer in a vented cladding system can summarize the goals as follows: Using the stone in more natural way, by compression. The weight of the stone slabs goes directly to a strip-footing and don't overload the reinforced concrete structure of the building. The weight of the stone slabs provides an external aerial soundproofing, preventing the sound transmission to the structure. The thickness of the stone slabs is enough to provide the external waterproofing of the building envelope. The self-supporting system with minimum anchorages allows having a continuous and external thermal isolation without thermal bridges. The thickness of ashlars masonry provides a thermal inertia that balances the temperatures between day and night in the external thermal insulation layer. The absence of open joints gives the quality of a continuous envelope transmitting the sensations of the stone, the heaviness in the facade, the rhythm of the music and the sequence of the theatre. The main cost of stone due his bigger thickness is more than compensated with the reduction in assembly costs. Don´t need any substructure systems for hanging stone veneers.

Keywords: self-supporting wall, stone cladding systems, hanging veneer cladding systems, sustainability of facade systems

Procedia PDF Downloads 34
64 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 38
63 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 253