Search results for: Wing Chung Chang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1006

Search results for: Wing Chung Chang

916 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 167
915 Representation of the Kurdish Opposition: From Periphery to Center

Authors: Songul Miftakhov

Abstract:

This study explores political representation and engagement of Eastern and Southeastern Anatolia regions, known to have dense Kurdish population and referred further to as Eastern region, in the Turkish parliament between 1946 and 1980. Traditional local notables had most of the privileges to be represented given their connectedness with political parties. Traditional local notables integrated into right-wing parties considering political and economic aspects. At the same time, they kept control over local political involvement channels. As a result, political representation and presence were monopolized at central, local and civil society levels. One part of Kurdish intellectuals was marginalized from the parliament after addressing issues in Eastern Anatolia and trying to develop solutions apart from the mainstream. Some of them took part in Kurdish oppositional left wing in the 1960s and jounced power of settled notables in 1970s in local administrations or as independent members of the parliament.

Keywords: Kurdish representation, parliament, local nobles, Eastern and Southeastern Anatolia

Procedia PDF Downloads 133
914 Brain-Computer Interface Based Real-Time Control of Fixed Wing and Multi-Rotor Unmanned Aerial Vehicles

Authors: Ravi Vishwanath, Saumya Kumaar, S. N. Omkar

Abstract:

Brain-computer interfacing (BCI) is a technology that is almost four decades old, and it was developed solely for the purpose of developing and enhancing the impact of neuroprosthetics. However, in the recent times, with the commercialization of non-invasive electroencephalogram (EEG) headsets, the technology has seen a wide variety of applications like home automation, wheelchair control, vehicle steering, etc. One of the latest developed applications is the mind-controlled quadrotor unmanned aerial vehicle. These applications, however, do not require a very high-speed response and give satisfactory results when standard classification methods like Support Vector Machine (SVM) and Multi-Layer Perceptron (MLPC). Issues are faced when there is a requirement for high-speed control in the case of fixed-wing unmanned aerial vehicles where such methods are rendered unreliable due to the low speed of classification. Such an application requires the system to classify data at high speeds in order to retain the controllability of the vehicle. This paper proposes a novel method of classification which uses a combination of Common Spatial Paradigm and Linear Discriminant Analysis that provides an improved classification accuracy in real time. A non-linear SVM based classification technique has also been discussed. Further, this paper discusses the implementation of the proposed method on a fixed-wing and VTOL unmanned aerial vehicles.

Keywords: brain-computer interface, classification, machine learning, unmanned aerial vehicles

Procedia PDF Downloads 256
913 A Theoretical Approach on Electoral Competition, Lobby Formation and Equilibrium Policy Platforms

Authors: Deepti Kohli, Meeta Keswani Mehra

Abstract:

The paper develops a theoretical model of electoral competition with purely opportunistic candidates and a uni-dimensional policy using the probability voting approach while focusing on the aspect of lobby formation to analyze the inherent complex interactions between centripetal and centrifugal forces and their effects on equilibrium policy platforms. There exist three types of agents, namely, Left-wing, Moderate and Right-wing who comprise of the total voting population. Also, it is assumed that the Left and Right agents are free to initiate a lobby of their choice. If initiated, these lobbies generate donations which in turn can be contributed to one (or both) electoral candidates in order to influence them to implement the lobby’s preferred policy. Four different lobby formation scenarios have been considered: no lobby formation, only Left, only Right and both Left and Right. The equilibrium policy platforms, amount of individual donations by agents to their respective lobbies and the contributions offered to the electoral candidates have been solved for under each of the above four cases. Since it is assumed that the agents cannot coordinate each other’s actions during the lobby formation stage, there exists a probability with which a lobby would be formed, which is also solved for in the model. The results indicate that the policy platforms of the two electoral candidates converge completely under the cases of no lobby and both (extreme) formations but diverge under the cases of only one (Left or Right) lobby formation. This is because in the case of no lobby being formed, only the centripetal forces (emerging from the election-winning aspect) are present while in the case of both extreme (Left-wing and Right-wing) lobbies being formed, centrifugal forces (emerging from the lobby formation aspect) also arise but cancel each other out, again resulting in a pure policy convergence phenomenon. In contrast, in case of only one lobby being formed, both centripetal and centrifugal forces interact strategically, leading the two electoral candidates to choose completely different policy platforms in equilibrium. Additionally, it is found that in equilibrium, while the donation by a specific agent type increases with the formation of both lobbies in comparison to when only one lobby is formed, the probability of implementation of the policy being advocated by that lobby group falls.

Keywords: electoral competition, equilibrium policy platforms, lobby formation, opportunistic candidates

Procedia PDF Downloads 308
912 The Influence of Variable Geometrical Modifications of the Trailing Edge of Supercritical Airfoil on the Characteristics of Aerodynamics

Authors: P. Lauk, K. E. Seegel, T. Tähemaa

Abstract:

The fuel consumption of modern, high wing loading, commercial aircraft in the first stage of flight is high because the usable flight level is lower and the weather conditions (jet stream) have great impact on aircraft performance. To reduce the fuel consumption, it is necessary to raise during first stage of flight the L/D ratio value within Cl 0.55-0.65. Different variable geometrical wing trailing edge modifications of SC(2)-410 airfoil were compared at M 0.78 using the CFD software STAR-CCM+ simulation based Reynolds-averaged Navier-Stokes (RANS) equations. The numerical results obtained show that by increasing the width of the airfoil by 4% and by modifying the trailing edge airfoil, it is possible to decrease airfoil drag at Cl 0.70 for up to 26.6% and at the same time to increase commercial aircraft L/D ratio for up to 5.0%. Fuel consumption can be reduced in proportion to the increase in L/D ratio.

Keywords: L/D ratio, miniflaps, mini-TED, supercritical airfoil

Procedia PDF Downloads 178
911 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 146
910 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever

Authors: Ciaran Conway, Nick Jeffers, Jeff Punch

Abstract:

With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.

Keywords: aerodynamics, oscillating cantilevers, PIV, vortices

Procedia PDF Downloads 193
909 The Use of the Social Media as a Propaganda Tool from the Political Parties in Europe against the Immigrants

Authors: Gülbuğ Erol, Caner Çakı

Abstract:

In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population could be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis, and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population should be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.

Keywords: content analysis, political parties, propaganda, social media

Procedia PDF Downloads 383
908 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity

Procedia PDF Downloads 324
907 Formula Student Car: Design, Analysis and Lap Time Simulation

Authors: Rachit Ahuja, Ayush Chugh

Abstract:

Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.

Keywords: aerodynamic performance, front wing, laptime simulation, t-wing

Procedia PDF Downloads 175
906 The Uruguayan Left Wing from the XX to XXI Century: International Dimensions

Authors: Anton Andreev

Abstract:

With the collapse of the Soviet Union and the collapse of a large part of the socialist regimes, left-wing parties all over the world entered the space of crisis, of problems with ideology, identity, with the definition of its goals and objectives. First of all, we can say that the communist parties actually lost their foundation. In 1992, despite the victory of left-wing forces, a Broad Front in which was the winner in the struggle against dictatorship plunged into a deep crisis, the nature of which is looking for a new platform, a new foundation, new goals. Thus, in the late 20th century, the party has revised theoretical beliefs and positions. Radical communist ideology was moderated to social reformism. Modern leftist movement in Uruguay is a movement of moderate reform. Left forces suggest going through successive changes. Changes in ideology and ideas have influenced to the understanding of foreign policy. After the collapse of the Soviet Union Broad Front has changed the direction of its diplomacy from the orientation to the Soviet state to support the USA policy. Government formed by Broad Front, supported the integration processes in the South America. Uruguay was developing the cooperation in the framework of MERCOSUR and began to create relationship with the new centers of power in world political space. Uruguay in the early 21st century is a country that starts to play important role in the international arena. Elections of 26 October 2014 should answer the question of support of internal policy of a Broad Front, as well as of the support of the diplomatic work of the "Left" governments of the country.

Keywords: Uruguay, broad front, Vazquez, international dimensions

Procedia PDF Downloads 333
905 A Group Setting of IED in Microgrid Protection Management System

Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu

Abstract:

There are a number of distributed generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the intelligent electronic device (IED) and a supervisory control and data acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a microgrid protection management system (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.

Keywords: IEC 61850, IED, group Setting, microgrid

Procedia PDF Downloads 434
904 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer

Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang

Abstract:

In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.

Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction

Procedia PDF Downloads 211
903 Distributed Perceptually Important Point Identification for Time Series Data Mining

Authors: Tak-Chung Fu, Ying-Kit Hung, Fu-Lai Chung

Abstract:

In the field of time series data mining, the concept of the Perceptually Important Point (PIP) identification process is first introduced in 2001. This process originally works for financial time series pattern matching and it is then found suitable for time series dimensionality reduction and representation. Its strength is on preserving the overall shape of the time series by identifying the salient points in it. With the rise of Big Data, time series data contributes a major proportion, especially on the data which generates by sensors in the Internet of Things (IoT) environment. According to the nature of PIP identification and the successful cases, it is worth to further explore the opportunity to apply PIP in time series ‘Big Data’. However, the performance of PIP identification is always considered as the limitation when dealing with ‘Big’ time series data. In this paper, two distributed versions of PIP identification based on the Specialized Binary (SB) Tree are proposed. The proposed approaches solve the bottleneck when running the PIP identification process in a standalone computer. Improvement in term of speed is obtained by the distributed versions.

Keywords: distributed computing, performance analysis, Perceptually Important Point identification, time series data mining

Procedia PDF Downloads 400
902 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases

Authors: Xavier Bertrand, Alexandre Cayrel

Abstract:

The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.

Keywords: aerodynamics, lifting line, surrogate model, CFD

Procedia PDF Downloads 321
901 Derivative Usage, Ownership Structure, and Bank Value in European Countries

Authors: Chuang-Chang Chang, Keng-Yu Ho, Yu-Jen Hsiao, Hsin-Ni Yang

Abstract:

Using a sample of detailed ownership data of 1,032 listed commercial bank observations in 30 European countries from 2004 to 2010, we explore what categories of shareholder are more likely to use derivatives and how different types of owners affect the bank value. We find that a shift in equity from bank investors to either non-financial companies or institutional investors have increase incentives to use derivatives. Moreover, we have significant evidence that a shift in equity from bank investors to either family or manager shareholders who attend derivative activities will decrease bank value. However, a shift in equity from bank investors to non-financial companies who use derivative instrument will increase the bank value. Our results are also robustness to address for the potential endogeneity problems.

Keywords: derivative usage, ownership structure, bank value

Procedia PDF Downloads 322
900 Time-Series Analysis of Port State Control Inspections for Tankers

Authors: Chien-Chung Yuan, Cunqiang Cai, Wu-Hsun Chung, Shu-Te Sung

Abstract:

A tanker is a critical vessel used to transport or store liquids or gases in bulk in maritime shipping. However, it is more dangerous than other types of vessels. Port State Control (PSC) inspection is an important measure to ensure maritime safety when such vessels traveling between ports. However, the current inspection system lacks a useful tool to observe the inspections for tankers and to identify non-random instances in PSC inspections. This study collects the inspection records in Taiwan’s ports from 2015 to 2018 and utilizes run charts to map the PSC inspections for tankers in terms of deficiencies. Based on these time-series charts, several patterns of deficiencies are identified. The results demonstrate that run charts are a useful tool to observe how the PSC inspections for tankers are performed. Also, the charts can help port administrations to identify abnormal phenomena for further investigation. Furthermore, with valuable information from the analysis, port administrations can take proactive improvement measures to ensure the safety of tanker shipping.

Keywords: port state control, tanker, run chart, deficiency

Procedia PDF Downloads 129
899 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performance of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h0, pitch amplitude θ0, and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The optimal kinematic factors detected are a dimensionless heave amplitude of 0.831c, a high pitch around 80°, and a low flapping frequency of 0.327 hertz.

Keywords: numerical simulation, flapping wing, energy extraction, power coefficient, efficiency, RBF, NSGA-II

Procedia PDF Downloads 4
898 Turkish College Students’ Attitudes toward Homophobia; Relations with, Right-Wing Authoritarianism, Social Dominance Orientation and Just World Beliefs

Authors: Melek Göregenli, Işık Gürşimşek

Abstract:

There has been a great deal of research in the past few decades examining attitudes toward homosexuals.Theoretic research has demonstrated that antihomosexual attitudes are expressed in cognitive, affective, behavioral and cultural components. Homophobia is generally defined as hostility towards or fear of LGBTI people, but can also refer to social and cultural ideologies which stigmatize homosexuality. Negative feelings or attitudes towards non-heterosexual behavior, identity, relationships and community can lead to homophobic behavior and is the root of the discrimination experienced by many lesbian, gay, bisexual and transgender (LGBTI) people. Since the increase in number of hate crimes during the last decade, there has been a sense of urgency to respond to the problem of hate violence in Turkey. The LGBTI Rights Association KAOS-GL indicated that the most of lesbian, gay, bisexual, travesty and transsexuals reported some form of victimization in their lifetimes based on their sexual orientation in Turkey. This study explored the relations between homophobia, right-wing authoritarianism, social dominance orientation and just world belief attitudes towards LGBTI individuals in a sample of 393 Turkish college students from Ege University in Izmir, Turkey. Data were collected with a questionnaire including the Homosexism Scale, the Right-Wing Authoritarianism Scale, Social Dominance Orientation Scale and Just World Belief Scale. Participants completed a questionnaire containing the attitude measures and other several questions related with the socio-demographic variables. Consistent with the previous finding males were more homophobic than females. Contrary to this finding the main effects of other demographic variables (age, income, place of birth, class) were not statistically significant except the department of participants. These findings imply that efforts to garner wide-ranging support for policies designed to change negative attitudes to LGBT people and to enhance the given awareness on homophobia. The results of the study were discussed in cross-cultural and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.

Keywords: homophobia, just world belief, right-wing authoritarianism, social dominance orientation, Turkey

Procedia PDF Downloads 335
897 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 443
896 Performance Investigation of UAV Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion

Authors: Ebrahim Hassan Kapeel, Ahmed Mohsen Kamel, Hossan Hendy, Yehia Z. Elhalwagy

Abstract:

Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control lawisdesigned for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.

Keywords: UAV dynamic model, attitude control, nonlinear PID, dynamic inversion

Procedia PDF Downloads 78
895 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 100
894 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 58
893 The Internet and Transformation of Epistemic Communities: An Exploratory Review of Communication Research between 2002 and 2022

Authors: Dayei Oh, Feeza Vasudeva, Narges Azizi Fard

Abstract:

Drawing on the Foucauldian conception of episteme, epistemic communities refer to a community in which members share common frames of epistemic reference, delineating the proper construction of social realities for their members. One of the most cited definitions of epistemic communities is a group of professionals possessing acknowledged expertise and proficiency in a specific field, influencing policymaking and governance. More recently, the advancement of the Internet has changed the way society produces, disseminates, and consumes knowledge. Against this backdrop, this literature review explores the ways in which online epistemic communities are studied in communication scholarship between 2002 and 2022. Examining 92 peer-reviewed journal articles from the Web of Science database, three research objectives have been addressed: (1) geographical contexts, platforms, and methods that are studied in communication research, (2) different types of epistemic communities, and (3) prevailing themes and concepts that are related to the research of the chosen epistemic communities. This research demonstrates increasing scholarly attention towards the lay public as prominent online epistemic communities along with more conventional epistemic communities such as academia and journalists, hinting at how the Internet provides epistemic capacities for negotiating the boundaries of epistemic authority and competencies between experts and lay people. Through qualitative reading of these papers, the findings show that communication research tends to approach epistemic communities of the political left and right asymmetrically: The right-wing epistemic communities are studied in connection with mis/disinformation, conspiracy theories, populist rejection of authoritative epistemologies, whereas the left-wing communities are studied as emancipatory epistemic struggles and activism against Western, colonial, white, and male-centric knowledge systems. This points to a grave need for communication and multidisciplinary scholarship to investigate such uncharted characters of right- and left-wing epistemic communities.

Keywords: communication research, internet, knowledge, online epistemic communities

Procedia PDF Downloads 24
892 Simulation of Bird Strike on Airplane Wings by Using SPH Methodology

Authors: Tuğçe Kiper Elibol, İbrahim Uslan, Mehmet Ali Guler, Murat Buyuk, Uğur Yolum

Abstract:

According to the FAA report, 142603 bird strikes were reported for a period of 24 years, between 1990 – 2013. Bird strike with aerospace structures not only threaten the flight security but also cause financial loss and puts life in danger. The statistics show that most of the bird strikes are happening with the nose and the leading edge of the wings. Also, a substantial amount of bird strikes is absorbed by the jet engines and causes damage on blades and engine body. Crash proof designs are required to overcome the possibility of catastrophic failure of the airplane. Using computational methods for bird strike analysis during the product development phase has considerable importance in terms of cost saving. Clearly, using simulation techniques to reduce the number of reference tests can dramatically affect the total cost of an aircraft, where for bird strike often full-scale tests are considered. Therefore, development of validated numerical models is required that can replace preliminary tests and accelerate the design cycle. In this study, to verify the simulation parameters for a bird strike analysis, several different numerical options are studied for an impact case against a primitive structure. Then, a representative bird mode is generated with the verified parameters and collided against the leading edge of a training aircraft wing, where each structural member of the wing was explicitly modeled. A nonlinear explicit dynamics finite element code, LS-DYNA was used for the bird impact simulations. SPH methodology was used to model the behavior of the bird. Dynamic behavior of the wing superstructure was observed and will be used for further design optimization purposes.

Keywords: bird impact, bird strike, finite element modeling, smoothed particle hydrodynamics

Procedia PDF Downloads 297
891 Performance Investigation of Unmanned Aerial Vehicles Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion

Authors: Ebrahim H. Kapeel, Ahmed M. Kamel, Hossam Hendy, Yehia Z. Elhalwagy

Abstract:

Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control law is designed for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.

Keywords: attitude control, nonlinear PID, dynamic inversion

Procedia PDF Downloads 79
890 The Flow Separation Delay on the Aircraft Wing

Authors: Ishtiaq A. Chaudhry, Z. R. Tahir, F. A. Siddiqui, Z. Anwar, F. Valenzuelacalva

Abstract:

A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set up are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay on the actual aircraft wing. Firstly a single circular jet is synthesized at varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Secondly, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.

Keywords: boundary layer, flow separation, streamwise vortices, synthetic jet actuator

Procedia PDF Downloads 428
889 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts

Authors: Anand R. Nair, Markus Trenker

Abstract:

Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.

Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone

Procedia PDF Downloads 195
888 Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft

Authors: Kartik Gupta, Umar Khan, Mayur Parab, Dhiraj Chaudhari, Afzal Ansari

Abstract:

The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD.

Keywords: wind tunnel testing, CFD, stabilizer, stabilator

Procedia PDF Downloads 28
887 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing

Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak

Abstract:

In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.

Keywords: unmanned aerial vehicles, morphing, autopilots, autonomous performance

Procedia PDF Downloads 643