Search results for: Statistical package IBM SPSS 20
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5088

Search results for: Statistical package IBM SPSS 20

48 High Purity Germanium Detector Characterization by Means of Monte Carlo Simulation through Application of Geant4 Toolkit

Authors: Milos Travar, Jovana Nikolov, Andrej Vranicar, Natasa Todorovic

Abstract:

Over the years, High Purity Germanium (HPGe) detectors proved to be an excellent practical tool and, as such, have established their today's wide use in low background γ-spectrometry. One of the advantages of gamma-ray spectrometry is its easy sample preparation as chemical processing and separation of the studied subject are not required. Thus, with a single measurement, one can simultaneously perform both qualitative and quantitative analysis. One of the most prominent features of HPGe detectors, besides their excellent efficiency, is their superior resolution. This feature virtually allows a researcher to perform a thorough analysis by discriminating photons of similar energies in the studied spectra where otherwise they would superimpose within a single-energy peak and, as such, could potentially scathe analysis and produce wrongly assessed results. Naturally, this feature is of great importance when the identification of radionuclides, as well as their activity concentrations, is being practiced where high precision comes as a necessity. In measurements of this nature, in order to be able to reproduce good and trustworthy results, one has to have initially performed an adequate full-energy peak (FEP) efficiency calibration of the used equipment. However, experimental determination of the response, i.e., efficiency curves for a given detector-sample configuration and its geometry, is not always easy and requires a certain set of reference calibration sources in order to account for and cover broader energy ranges of interest. With the goal of overcoming these difficulties, a lot of researches turned towards the application of different software toolkits that implement the Monte Carlo method (e.g., MCNP, FLUKA, PENELOPE, Geant4, etc.), as it has proven time and time again to be a very powerful tool. In the process of creating a reliable model, one has to have well-established and described specifications of the detector. Unfortunately, the documentation that manufacturers provide alongside the equipment is rarely sufficient enough for this purpose. Furthermore, certain parameters tend to evolve and change over time, especially with older equipment. Deterioration of these parameters consequently decreases the active volume of the crystal and can thus affect the efficiencies by a large margin if they are not properly taken into account. In this study, the optimisation method of two HPGe detectors through the implementation of the Geant4 toolkit developed by CERN is described, with the goal of further improving simulation accuracy in calculations of FEP efficiencies by investigating the influence of certain detector variables (e.g., crystal-to-window distance, dead layer thicknesses, inner crystal’s void dimensions, etc.). Detectors on which the optimisation procedures were carried out were a standard traditional co-axial extended range detector (XtRa HPGe, CANBERRA) and a broad energy range planar detector (BEGe, CANBERRA). Optimised models were verified through comparison with experimentally obtained data from measurements of a set of point-like radioactive sources. Acquired results of both detectors displayed good agreement with experimental data that falls under an average statistical uncertainty of ∼ 4.6% for XtRa and ∼ 1.8% for BEGe detector within the energy range of 59.4−1836.1 [keV] and 59.4−1212.9 [keV], respectively.

Keywords: HPGe detector, γ spectrometry, efficiency, Geant4 simulation, Monte Carlo method

Procedia PDF Downloads 84
47 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 110
46 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 188
45 Modelling Spatial Dynamics of Terrorism

Authors: André Python

Abstract:

To this day, terrorism persists as a worldwide threat, exemplified by the recent deadly attacks in January 2015 in Paris and the ongoing massacres perpetrated by ISIS in Iraq and Syria. In response to this threat, states deploy various counterterrorism measures, the cost of which could be reduced through effective preventive measures. In order to increase the efficiency of preventive measures, policy-makers may benefit from accurate predictive models that are able to capture the complex spatial dynamics of terrorism occurring at a local scale. Despite empirical research carried out at country-level that has confirmed theories explaining the diffusion processes of terrorism across space and time, scholars have failed to assess diffusion’s theories on a local scale. Moreover, since scholars have not made the most of recent statistical modelling approaches, they have been unable to build up predictive models accurate in both space and time. In an effort to address these shortcomings, this research suggests a novel approach to systematically assess the theories of terrorism’s diffusion on a local scale and provide a predictive model of the local spatial dynamics of terrorism worldwide. With a focus on the lethal terrorist events that occurred after 9/11, this paper addresses the following question: why and how does lethal terrorism diffuse in space and time? Based on geolocalised data on worldwide terrorist attacks and covariates gathered from 2002 to 2013, a binomial spatio-temporal point process is used to model the probability of terrorist attacks on a sphere (the world), the surface of which is discretised in the form of Delaunay triangles and refined in areas of specific interest. Within a Bayesian framework, the model is fitted through an integrated nested Laplace approximation - a recent fitting approach that computes fast and accurate estimates of posterior marginals. Hence, for each location in the world, the model provides a probability of encountering a lethal terrorist attack and measures of volatility, which inform on the model’s predictability. Diffusion processes are visualised through interactive maps that highlight space-time variations in the probability and volatility of encountering a lethal attack from 2002 to 2013. Based on the previous twelve years of observation, the location and lethality of terrorist events in 2014 are statistically accurately predicted. Throughout the global scope of this research, local diffusion processes such as escalation and relocation are systematically examined: the former process describes an expansion from high concentration areas of lethal terrorist events (hotspots) to neighbouring areas, while the latter is characterised by changes in the location of hotspots. By controlling for the effect of geographical, economical and demographic variables, the results of the model suggest that the diffusion processes of lethal terrorism are jointly driven by contagious and non-contagious factors that operate on a local scale – as predicted by theories of diffusion. Moreover, by providing a quantitative measure of predictability, the model prevents policy-makers from making decisions based on highly uncertain predictions. Ultimately, this research may provide important complementary tools to enhance the efficiency of policies that aim to prevent and combat terrorism.

Keywords: diffusion process, terrorism, spatial dynamics, spatio-temporal modeling

Procedia PDF Downloads 315
44 Early Predictive Signs for Kasai Procedure Success

Authors: Medan Isaeva, Anna Degtyareva

Abstract:

Context: Biliary atresia is a common reason for liver transplants in children, and the Kasai procedure can potentially be successful in avoiding the need for transplantation. However, it is important to identify factors that influence surgical outcomes in order to optimize treatment and improve patient outcomes. Research aim: The aim of this study was to develop prognostic models to assess the outcomes of the Kasai procedure in children with biliary atresia. Methodology: This retrospective study analyzed data from 166 children with biliary atresia who underwent the Kasai procedure between 2002 and 2021. The effectiveness of the operation was assessed based on specific criteria, including post-operative stool color, jaundice reduction, and bilirubin levels. The study involved a comparative analysis of various parameters, such as gestational age, birth weight, age at operation, physical development, liver and spleen sizes, and laboratory values including bilirubin, ALT, AST, and others, measured pre- and post-operation. Ultrasonographic evaluations were also conducted pre-operation, assessing the hepatobiliary system and related quantitative parameters. The study was carried out by two experienced specialists in pediatric hepatology. Comparative analysis and multifactorial logistic regression were used as the primary statistical methods. Findings: The study identified several statistically significant predictors of a successful Kasai procedure, including the presence of the gallbladder and levels of cholesterol and direct bilirubin post-operation. A detectable gallbladder was associated with a higher probability of surgical success, while elevated post-operative cholesterol and direct bilirubin levels were indicative of a reduced chance of positive outcomes. Theoretical importance: The findings of this study contribute to the optimization of treatment strategies for children with biliary atresia undergoing the Kasai procedure. By identifying early predictive signs of success, clinicians can modify treatment plans and manage patient care more effectively and proactively. Data collection and analysis procedures: Data for this analysis were obtained from the health records of patients who received the Kasai procedure. Comparative analysis and multifactorial logistic regression were employed to analyze the data and identify significant predictors. Question addressed: The study addressed the question of identifying predictive factors for the success of the Kasai procedure in children with biliary atresia. Conclusion: The developed prognostic models serve as valuable tools for early detection of patients who are less likely to benefit from the Kasai procedure. This enables clinicians to modify treatment plans and manage patient care more effectively and proactively. Potential limitations of the study: The study has several limitations. Its retrospective nature may introduce biases and inconsistencies in data collection. Being single centered, the results might not be generalizable to wider populations due to variations in surgical and postoperative practices. Also, other potential influencing factors beyond the clinical, laboratory, and ultrasonographic parameters considered in this study were not explored, which could affect the outcomes of the Kasai operation. Future studies could benefit from including a broader range of factors.

Keywords: biliary atresia, kasai operation, prognostic model, native liver survival

Procedia PDF Downloads 23
43 About the State of Students’ Career Guidance in the Conditions of Inclusive Education in the Republic of Kazakhstan

Authors: Laura Butabayeva, Svetlana Ismagulova, Gulbarshin Nogaibayeva, Maiya Temirbayeva, Aidana Zhussip

Abstract:

Over the years of independence, Kazakhstan has not only ratified international documents regulating the rights of children to Inclusive education, but also developed its own inclusive educational policy. Along with this, the state pays particular attention to high school students' preparedness for professional self-determination. However, a number of problematic issues in this field have been revealed, such as the lack of systemic mechanisms coordinating stakeholders’ actions in preparing schoolchildren for a conscious choice of in-demand profession, meeting their individual capabilities and special educational needs (SEN). The analysis of the state’s current situation indicates school graduates’ adaptation to the labor market does not meet existing demands of the society. According to the Ministry of Labor and Social Protection of the Population of the Republic of Kazakhstan, about 70 % of Kazakhstani school graduates find themselves difficult to choose a profession, 87 % of schoolchildren make their career choice under the influence of parents and school teachers, 90 % of schoolchildren and their parents have no idea about the most popular professions on the market. The results of the study conducted by KorlanSyzdykova in 2016 indicated the urgent need of Kazakhstani school graduates in obtaining extensive information about in- demand professions and receiving professional assistance in choosing a profession in accordance with their individual skills, abilities, and preferences. The results of the survey, conducted by Information and Analytical Center among heads of colleges in 2020, showed that despite significant steps in creating conditions for students with SEN, they face challenges in studying because of poor career guidance provided to them in schools. The results of the study, conducted by the Center for Inclusive Education of the National Academy of Education named after Y. Altynsarin in the state’s general education schools in 2021, demonstrated the lack of career guidance, pedagogical and psychological support for children with SEN. To investigate these issues, the further study was conducted to examine the state of students’ career guidance and socialization, taking into account their SEN. The hypothesis of this study proposed that to prepare school graduates for a conscious career choice, school teachers and specialists need to develop their competencies in early identification of students' interests, inclinations, SEN and ensure necessary support for them. The state’s 5 regions were involved in the study according to the geographical location. The triangulation approach was utilized to ensure the credibility and validity of research findings, including both theoretical (analysis of existing statistical data, legal documents, results of previous research) and empirical (school survey for students, interviews with parents, teachers, representatives of school administration) methods. The data were analyzed independently and compared to each other. The survey included questions related to provision of pedagogical support for school students in making their career choice. Ethical principles were observed in the process of developing the methodology, collecting, analyzing the data and distributing the results. Based on the results, methodological recommendations on students’ career guidance for school teachers and specialists were developed, taking into account the former’s individual capabilities and SEN.

Keywords: career guidance, children with special educational needs, inclusive education, Kazakhstan

Procedia PDF Downloads 126
42 Investigating Links in Achievement and Deprivation (ILiAD): A Case Study Approach to Community Differences

Authors: Ruth Leitch, Joanne Hughes

Abstract:

This paper presents the findings of a three-year government-funded study (ILiAD) that aimed to understand the reasons for differential educational achievement within and between socially and economically deprived areas in Northern Ireland. Previous international studies have concluded that there is a positive correlation between deprivation and underachievement. Our preliminary secondary data analysis suggested that the factors involved in educational achievement within multiple deprived areas may be more complex than this, with some areas of high multiple deprivation having high levels of student attainment, whereas other less deprived areas demonstrated much lower levels of student attainment, as measured by outcomes on high stakes national tests. The study proposed that no single explanation or disparate set of explanations could easily account for the linkage between levels of deprivation and patterns of educational achievement. Using a social capital perspective that centralizes the connections within and between individuals and social networks in a community as a valuable resource for educational achievement, the ILiAD study involved a multi-level case study analysis of seven community sites in Northern Ireland, selected on the basis of religious composition (housing areas are largely segregated by religious affiliation), measures of multiple deprivation and differentials in educational achievement. The case study approach involved three (interconnecting) levels of qualitative data collection and analysis - what we have termed Micro (or community/grassroots level) understandings, Meso (or school level) explanations and Macro (or policy/structural) factors. The analysis combines a statistical mapping of factors with qualitative, in-depth data interpretation which, together, allow for deeper understandings of the dynamics and contributory factors within and between the case study sites. Thematic analysis of the qualitative data reveals both cross-cutting factors (e.g. demographic shifts and loss of community, place of the school in the community, parental capacity) and analytic case studies of explanatory factors associated with each of the community sites also permit a comparative element. Issues arising from the qualitative analysis are classified either as drivers or inhibitors of educational achievement within and between communities. Key issues that are emerging as inhibitors/drivers to attainment include: the legacy of the community conflict in Northern Ireland, not least in terms of inter-generational stress, related with substance abuse and mental health issues; differing discourses on notions of ‘community’ and ‘achievement’ within/between community sites; inter-agency and intra-agency levels of collaboration and joined-up working; relationship between the home/school/community triad and; school leadership and school ethos. At this stage, the balance of these factors can be conceptualized in terms of bonding social capital (or lack of it) within families, within schools, within each community, within agencies and also bridging social capital between the home/school/community, between different communities and between key statutory and voluntary organisations. The presentation will outline the study rationale, its methodology, present some cross-cutting findings and use an illustrative case study of the findings from a community site to underscore the importance of attending to community differences when trying to engage in research to understand and improve educational attainment for all.

Keywords: educational achievement, multiple deprivation, community case studies, social capital

Procedia PDF Downloads 348
41 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 22
40 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 262
39 SWOT Analysis on the Prospects of Carob Use in Human Nutrition: Crete, Greece

Authors: Georgios A. Fragkiadakis, Antonia Psaroudaki, Theodora Mouratidou, Eirini Sfakianaki

Abstract:

Research: Within the project "Actions for the optimal utilization of the potential of carob in the Region of Crete" which is financed-supervised by the Region, with collaboration of Crete University and Hellenic Mediterranean University, a SWOT (strengths, weaknesses, opportunities, threats) survey was carried out, to evaluate the prospects of carob in human nutrition, in Crete. Results and conclusions: 1). Strengths: There exists a local production of carob for human consumption, based on international reports, and local-product reports. The data on products in the market (over 100 brands of carob food), indicates a sufficiency of carob materials offered in Crete. The variety of carob food products retailed in Crete indicates a strong demand-production-consumption trend. There is a stable number (core) of businesses that invest significantly (Creta carob, Cretan mills, etc.). The great majority of the relevant food stores (bakery, confectionary etc.) do offer carob products. The presence of carob products produced in Crete is strong on the internet (over 20 main professionally designed websites). The promotion of the carob food-products is based on their variety and on a few historical elements connected with the Cretan diet. 2). Weaknesses: The international prices for carob seed affect the sector; the seed had an international price of €20 per kg in 2021-22 and fell to €8 in 2022, causing losses to carob traders. The local producers do not sort the carobs they deliver for processing, causing 30-40% losses of the product in the industry. The occasional high price triggers the collection of degraded raw material; large losses may emerge due to the action of insects. There are many carob trees whose fruits are not collected, e.g. in Apokoronas, Chania. The nutritional and commercial value of the wild carob fruits is very low. Carob trees-production is recorded by Greek statistical services as "other cultures" in combination with prickly pear i.e., creating difficulties in retrieving data. The percentage of carob used for human nutrition, in contrast to animal feeding, is not known. The exact imports of carob are not closely monitored. We have no data on the recycling of carob by-products in Crete. 3). Opportunities: The development of a culture of respect for carob trade may improve professional relations in the sector. Monitoring carob market and connecting production with retailing-industry needs may allow better market-stability. Raw material evaluation procedures may be implemented to maintain carob value-chain. The state agricultural services may be further involved in carob-health protection. The education of farmers on carob cultivation/management, can improve the quality of the product. The selection of local productive varieties, may improve the sustainability of the culture. Connecting the consumption of carob with health-food products, may create added value in the sector. The presence and extent of wild carob threes in Crete, represents, potentially, a target for grafting. 4). Threats: The annual fluctuation of carob yield challenges the programming of local food industry activities. Carob is a forest species also - there is danger of wrong classification of crops as forest areas, where land ownership is not clear.

Keywords: human nutrition, carob food, SWOT analysis, crete, greece

Procedia PDF Downloads 45
38 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population

Authors: Ye Xue, Zhenhua Deng

Abstract:

Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.

Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool

Procedia PDF Downloads 32
37 Use of computer and peripherals in the Archaeological Surveys of Sistan in Eastern Iran

Authors: Mahyar Mehrafarin, Reza Mehrafarin

Abstract:

The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.

Keywords: archaeological surveys, computer use, iran, modern technologies, sistan

Procedia PDF Downloads 48
36 Theoretical Modelling of Molecular Mechanisms in Stimuli-Responsive Polymers

Authors: Catherine Vasnetsov, Victor Vasnetsov

Abstract:

Context: Thermo-responsive polymers are materials that undergo significant changes in their physical properties in response to temperature changes. These polymers have gained significant attention in research due to their potential applications in various industries and medicine. However, the molecular mechanisms underlying their behavior are not well understood, particularly in relation to cosolvency, which is crucial for practical applications. Research Aim: This study aimed to theoretically investigate the phenomenon of cosolvency in long-chain polymers using the Flory-Huggins statistical-mechanical framework. The main objective was to understand the interactions between the polymer, solvent, and cosolvent under different conditions. Methodology: The research employed a combination of Monte Carlo computer simulations and advanced machine-learning methods. The Flory-Huggins mean field theory was used as the basis for the simulations. Spinodal graphs and ternary plots were utilized to develop an initial computer model for predicting polymer behavior. Molecular dynamic simulations were conducted to mimic real-life polymer systems. Machine learning techniques were incorporated to enhance the accuracy and reliability of the simulations. Findings: The simulations revealed that the addition of very low or very high volumes of cosolvent molecules resulted in smaller radii of gyration for the polymer, indicating poor miscibility. However, intermediate volume fractions of cosolvent led to higher radii of gyration, suggesting improved miscibility. These findings provide a possible microscopic explanation for the cosolvency phenomenon in polymer systems. Theoretical Importance: This research contributes to a better understanding of the behavior of thermo-responsive polymers and the role of cosolvency. The findings provide insights into the molecular mechanisms underlying cosolvency and offer specific predictions for future experimental investigations. The study also presents a more rigorous analysis of the Flory-Huggins free energy theory in the context of polymer systems. Data Collection and Analysis Procedures: The data for this study was collected through Monte Carlo computer simulations and molecular dynamic simulations. The interactions between the polymer, solvent, and cosolvent were analyzed using the Flory-Huggins mean field theory. Machine learning techniques were employed to enhance the accuracy of the simulations. The collected data was then analyzed to determine the impact of cosolvent volume fractions on the radii of gyration of the polymer. Question Addressed: The research addressed the question of how cosolvency affects the behavior of long-chain polymers. Specifically, the study aimed to investigate the interactions between the polymer, solvent, and cosolvent under different volume fractions and understand the resulting changes in the radii of gyration. Conclusion: In conclusion, this study utilized theoretical modeling and computer simulations to investigate the phenomenon of cosolvency in long-chain polymers. The findings suggest that moderate cosolvent volume fractions can lead to improved miscibility, as indicated by higher radii of gyration. These insights contribute to a better understanding of the molecular mechanisms underlying cosolvency in polymer systems and provide predictions for future experimental studies. The research also enhances the theoretical analysis of the Flory-Huggins free energy theory.

Keywords: molecular modelling, flory-huggins, cosolvency, stimuli-responsive polymers

Procedia PDF Downloads 42
35 Supporting 'vulnerable' Students to Complete Their Studies During the Economic Crisis in Greece: The Umbrella Program of International Hellenic University

Authors: Rigas Kotsakis, Nikolaos Tsigilis, Vasilis Grammatikopoulos, Evridiki Zachopoulou

Abstract:

During the last decade, Greece has faced an unprecedented financial crisis, affecting various aspects and functionalities of Higher Education. Besides the restricted funding of academic institutions, the students and their families encountered economical difficulties that undoubtedly influenced the effective completion of their studies. In this context, a fairly large number of students in Alexander campus of International Hellenic University (IHU) delay, interrupt, or even abandon their studies, especially when they come from low-income families, belong to sensitive social or special needs groups, they have different cultural origins, etc. For this reason, a European project, named “Umbrella”, was initiated aiming at providing the necessary psychological support and counseling, especially to disadvantaged students, towards the completion of their studies. To this end, a network of various academic members (academic staff and students) from IHU, namely iMentor, were implicated in different roles. Specifically, experienced academic staff trained students to serve as intermediate links for the integration and educational support of students that fall into the aforementioned sensitive social groups and face problems for the completion of their studies. The main idea of the project is held upon its person-centered character, which facilitates direct student-to-student communication without the intervention of the teaching staff. The backbone of the iMentors network are senior students that face no problem in their academic life and volunteered for this project. It should be noted that there is a provision from the Umbrella structure for substantial and ethical rewards for their engagement. In this context, a well-defined, stringent methodology was implemented for the evaluation of the extent of the problem in IHU and the detection of the profile of the “candidate” disadvantaged students. The first phase included two steps, (a) data collection and (b) data cleansing/ preprocessing. The first step involved the data collection process from the Secretary Services of all Schools in IHU, from 1980 to 2019, which resulted in 96.418 records. The data set included the School name, the semester of studies, a student enrolling criteria, the nationality, the graduation year or the current, up-to-date academic state (still studying, delayed, dropped off, etc.). The second step of the employed methodology involved the data cleansing/preprocessing because of the existence of “noisy” data, missing and erroneous values, etc. Furthermore, several assumptions and grouping actions were imposed to achieve data homogeneity and an easy-to-interpret subsequent statistical analysis. Specifically, the duration of 40 years recording was limited to the last 15 years (2004-2019). In 2004 the Greek Technological Institutions were evolved into Higher Education Universities, leading into a stable and unified frame of graduate studies. In addition, the data concerning active students were excluded from the analysis since the initial processing effort was focused on the detection of factors/variables that differentiated graduate and deleted students. The final working dataset included 21.432 records with only two categories of students, those that have a degree and those who abandoned their studies. Findings of the first phase are presented across faculties and further discussed.

Keywords: higher education, students support, economic crisis, mentoring

Procedia PDF Downloads 88
34 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach

Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira

Abstract:

Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.

Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers

Procedia PDF Downloads 107
33 Impact of Interdisciplinary Therapy Allied to Online Health Education on Cardiometabolic Parameters and Inflammation Factor Rating in Obese Adolescents

Authors: Yasmin A. M. Ferreira, Ana C. K. Pelissari, Sofia De C. F. Vicente, Raquel M. Da S. Campos, Deborah C. L. Masquio, Lian Tock, Lila M. Oyama, Flavia C. Corgosinho, Valter T. Boldarine, Ana R. Dâmaso

Abstract:

The prevalence of overweight and obesity is growing around the world and currently considered a global epidemic. Food and nutrition are essential requirements for promoting health and protecting non-communicable chronic diseases, such as obesity and cardiovascular disease. Specific dietary components may modulate the inflammation and oxidative stress in obese individuals. Few studies have investigated the dietary Inflammation Factor Rating (IFR) in obese adolescents. The IFR was developed to characterize an individual´s diet on anti- to pro-inflammatory score. This evaluation contributes to investigate the effects of inflammatory diet in metabolic profile in several individual conditions. Objectives: The present study aims to investigate the effects of a multidisciplinary weight loss therapy on inflammation factor rating and cardiometabolic risk in obese adolescents. Methods: A total of 26 volunteers (14-19 y.o) were recruited and submitted to 20 weeks interdisciplinary therapy allied to health education website- Ciclo do Emagrecimento®, including clinical, nutritional, psychological counseling and exercise training. The body weight was monitored weekly by self-report and photo. The adolescents answered a test to evaluate the knowledge of the topics covered in the videos. A 24h dietary record was applied at the baseline and after 20 weeks to assess the food intake and to calculate IFR. A negative IFR suggests that diet may have inflammatory effects and a positive IFR indicates an anti-inflammatory effect. Statistical analysis was performed using the program STATISTICA version 12.5 for Windows. The adopted significant value was α ≤ 5 %. Data normality was verified with the Kolmogorov Smirnov test. Data were expressed as mean±SD values. To analyze the effects of intervention it was applied test t. Pearson´s correlations test was performed. Results: After 20 weeks of treatment, body mass index (BMI), body weight, body fat (kg and %), abdominal and waist circumferences decreased significantly. The mean of high-density lipoprotein cholesterol (HDL-c) increased after the therapy. Moreover, it was found an improvement of inflammation factor rating from -427,27±322,47 to -297,15±240,01, suggesting beneficial effects of nutritional counselling. Considering the correlations analysis, it was found that pro-inflammatory diet is associated with increase in the BMI, very low-density lipoprotein cholesterol (VLDL), triglycerides, insulin and insulin resistance index (HOMA-IR); while an anti-inflammatory diet is associated with improvement of HDL-c and insulin sensitivity Check index (QUICKI). Conclusion: The 20-week blended multidisciplinary therapy was effective to reduce body weight, anthropometric circumferences and improve inflammatory markers in obese adolescents. In addition, our results showed that an increase in inflammatory profile diet is associated with cardiometabolic parameters, suggesting the relevance to stimulate anti-inflammatory diet habits as an effective strategy to treat and control of obesity and related comorbidities. Financial Support: FAPESP (2017/07372-1) and CNPq (409943/2016-9)

Keywords: cardiometabolic risk, inflammatory diet, multidisciplinary therapy, obesity

Procedia PDF Downloads 166
32 A Critical Evaluation of Occupational Safety and Health Management Systems' Implementation: Case of Mutare Urban Timber Processing Factories, Zimbabwe

Authors: Johanes Mandowa

Abstract:

The study evaluated the status of Occupational Safety and Health Management Systems’ (OSHMSs) implementation by Mutare urban timber processing factories. A descriptive cross sectional survey method was utilized in the study. Questionnaires, interviews and direct observations were the techniques employed to extract primary data from the respondents. Secondary data was acquired from OSH encyclopedia, OSH journals, newspaper articles, internet, past research papers, African Newsletter on OSH and NSSA On-guard magazines among others. Analysis of data collected was conducted using statistical and descriptive methods. Results revealed an unpleasant low uptake rate (16%) of OSH Management Systems by Mutare urban timber processing factories. On a comparative basis, low implementation levels were more pronounced in small timber processing factories than in large factories. The low uptake rate of OSH Management Systems revealed by the study validates the Government of Zimbabwe and its social partners’ observation that the dismal Zimbabwe OSH performance was largely due to non implementation of safety systems at most workplaces. The results exhibited a relationship between availability of a SHE practitioner in Mutare urban timber processing factories and OSHMS implementation. All respondents and interviewees’ agreed that OSH Management Systems are handy in curbing occupational injuries and diseases. It emerged from the study that the top barriers to implementation of safety systems are lack of adequate financial resources, lack of top management commitment and lack of OSHMS implementation expertise. Key motivators for OSHMSs establishment were cited as provision of adequate resources (76%), strong employee involvement (64%) and strong senior management commitment and involvement (60%). Study results demonstrated that both OSHMSs implementation barriers and motivators affect all Mutare urban timber processing factories irrespective of size. The study recommends enactment of a law by Ministry of Public Service, Labour and Social Welfare in consultation with NSSA to make availability of an OSHMS and qualified SHE practitioner mandatory at every workplace. More so, the enacted law should prescribe minimum educational qualification required for one to practice as a SHE practitioner. Ministry of Public Service, Labour and Social Welfare and NSSA should also devise incentives such as reduced WCIF premiums for good OSH performance to cushion Mutare urban timber processing factories from OSHMS implementation costs. The study recommends the incorporation of an OSH module in the academic curriculums of all programmes offered at tertiary institutions so as to ensure that graduates who later end up assuming influential management positions in Mutare urban timber processing factories are abreast with the necessity of OSHMSs in preventing occupational injuries and diseases. In the quest to further boost management’s awareness on the importance of OSHMSs, NSSA and SAZ are urged by the study to conduct OSHMSs awareness breakfast meetings targeting executive management on a periodic basis. The Government of Zimbabwe through the Ministry of Public Service, Labour and Social Welfare should also engage ILO Country Office for Zimbabwe to solicit for ILO’s technical assistance so as to enhance the effectiveness of NSSA’s and SAZ’s OSHMSs promotional programmes.

Keywords: occupational safety health management system, national social security authority, standard association of Zimbabwe, Mutare urban timber processing factories, ministry of public service, labour and social welfare

Procedia PDF Downloads 286
31 Developing Primal Teachers beyond the Classroom: The Quadrant Intelligence (Q-I) Model

Authors: Alexander K. Edwards

Abstract:

Introduction: The moral dimension of teacher education globally has assumed a new paradigm of thinking based on the public gain (return-on-investments), value-creation (quality), professionalism (practice), and business strategies (innovations). Abundant literature reveals an interesting revolutionary trend in complimenting the raising of teachers and academic performances. Because of the global competition in the knowledge-creation and service areas, the C21st teacher at all levels is expected to be resourceful, strategic thinker, socially intelligent, relationship aptitude, and entrepreneur astute. This study is a significant contribution to practice and innovations to raise exemplary or primal teachers. In this study, the qualities needed were considered as ‘Quadrant Intelligence (Q-i)’ model for a primal teacher leadership beyond the classroom. The researcher started by examining the issue of the majority of teachers in Ghana Education Services (GES) in need of this Q-i to be effective and efficient. The conceptual framing became determinants of such Q-i. This is significant for global employability and versatility in teacher education to create premium and primal teacher leadership, which are again gaining high attention in scholarship due to failing schools. The moral aspect of teachers failing learners is a highly important discussion. In GES, some schools score zero percent at the basic education certificate examination (BECE). The question is what will make any professional teacher highly productive, marketable, and an entrepreneur? What will give teachers the moral consciousness of doing the best to succeed? Method: This study set out to develop a model for primal teachers in GES as an innovative way to highlight a premium development for the C21st business-education acumen through desk reviews. The study is conceptually framed by examining certain skill sets such as strategic thinking, social intelligence, relational and emotional intelligence and entrepreneurship to answer three main burning questions and other hypotheses. Then the study applied the causal comparative methodology with a purposive sampling technique (N=500) from CoE, GES, NTVI, and other teachers associations. Participants responded to a 30-items, researcher-developed questionnaire. Data is analyzed on the quadrant constructs and reported as ex post facto analyses of multi-variances and regressions. Multiple associations were established for statistical significance (p=0.05). Causes and effects are postulated for scientific discussions. Findings: It was found out that these quadrants are very significant in teacher development. There were significant variations in the demographic groups. However, most teachers lack considerable skills in entrepreneurship, leadership in teaching and learning, and business thinking strategies. These have significant effect on practices and outcomes. Conclusion and Recommendations: It is quite conclusive therefore that in GES teachers may need further instructions in innovations and creativity to transform knowledge-creation into business venture. In service training (INSET) has to be comprehensive. Teacher education curricula at Colleges may have to be re-visited. Teachers have the potential to raise their social capital, to be entrepreneur, and to exhibit professionalism beyond their community services. Their primal leadership focus will benefit many clienteles including students and social circles. Recommendations examined the policy implications for curriculum design, practice, innovations and educational leadership.

Keywords: emotional intelligence, entrepreneurship, leadership, quadrant intelligence (q-i), primal teacher leadership, strategic thinking, social intelligence

Procedia PDF Downloads 274
30 EGF Serum Level in Diagnosis and Prediction of Mood Disorder in Adolescents and Young Adults

Authors: Monika Dmitrzak-Weglarz, Aleksandra Rajewska-Rager, Maria Skibinska, Natalia Lepczynska, Piotr Sibilski, Joanna Pawlak, Pawel Kapelski, Joanna Hauser

Abstract:

Epidermal growth factor (EGF) is a well-known neurotrophic factor that involves in neuronal growth and synaptic plasticity. The proteomic research provided in order to identify novel candidate biological markers for mood disorders focused on elevated EGF serum level in patients during depression episode. However, the EGF association with mood disorder spectrum among adolescents and young adults has not been studied extensively. In this study, we aim to investigate the serum levels of EGF in adolescents and young adults during hypo/manic, depressive episodes and in remission compared to healthy control group. In our study, we involved 80 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorder spectrum, and 35 healthy volunteers matched by age and gender. Diagnoses were established according to DSM-IV-TR criteria using structured clinical interviews: K-SADS for child and adolescents, and SCID for young adults. Clinical and biological evaluations were made at baseline and euthymic mood (at 3th or 6th month of treatment and after 1 and 2 years). The Young Mania Rating Scale and Hamilton Rating Scale for Depression were used for assessment. The study protocols were approved by the relevant ethics committee. Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human EGF (cat. no DY 236) DuoSet ELISA kit was used (R&D Systems). Serum EGF levels were analysed with following variables: age, age under 18 and above 18 years old, sex, family history of affective disorders, drug-free vs. medicated. Shapiro-Wilk test was used to test the normality of the data. The homogeneity of variance was calculated with Levene’s test. EGF levels showed non-normal distribution and the homogeneity of variance was violated. Non-parametric tests: Mann-Whitney U test, Kruskall-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation coefficient was applied in the analyses The statistical significance level was set at p<0.05. Elevated EGF level at baseline (p=0.001) and at month 24 (p=0.02) was detected in study subjects compared with controls. Increased EGF level in women at month 12 (p=0.02) compared to men in study group have been observed. Using Wilcoxon signed rank test differences in EGF levels were detected: decrease from baseline to month 3 (p=0.014) and increase comparing: month 3 vs. 24 (p=0.013); month 6 vs. 12 (p=0.021) and vs. 24 (p=0.008). EGF level at baseline was negatively correlated with depression and mania occurrence at 24 months. EGF level at 24 months was positively correlated with depression and mania occurrence at 12 months. No other correlations of EGF levels with clinical and demographical variables have been detected. The findings of the present study indicate that EGF serum level is significantly elevated in the study group of patients compared to the controls. We also observed fluctuations in EGF levels during two years of disease observation. EGF seems to be useful as an early marker for prediction of diagnosis, course of illness and treatment response in young patients during first episode od mood disorders, which requires further investigation. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.

Keywords: biological marker, epidermal growth factor, mood disorders, prediction

Procedia PDF Downloads 164
29 Impact of Lack of Testing on Patient Recovery in the Early Phase of COVID-19: Narratively Collected Perspectives from a Remote Monitoring Program

Authors: Nicki Mohammadi, Emma Reford, Natalia Romano Spica, Laura Tabacof, Jenna Tosto-Mancuso, David Putrino, Christopher P. Kellner

Abstract:

Introductory Statement: The onset of the COVID-19 pandemic demanded an unprecedented need for the rapid development, dispersal, and application of infection testing. However, despite the impressive mobilization of resources, individuals were incredibly limited in their access to tests, particularly during the initial months of the pandemic (March-April 2020) in New York City (NYC). Access to COVID-19 testing is crucial in understanding patients’ illness experiences and integral to the development of COVID-19 standard-of-care protocols, especially in the context of overall access to healthcare resources. Succinct Description of basic methodologies: 18 Patients in a COVID-19 Remote Patient Monitoring Program (Precision Recovery within the Mount Sinai Health System) were interviewed regarding their experience with COVID-19 during the first wave (March-May 2020) of the COVID-19 pandemic in New York City. Patients were asked about their experiences navigating COVID-19 diagnoses, the health care system, and their recovery process. Transcribed interviews were analyzed for thematic codes, using grounded theory to guide the identification of emergent themes and codebook development through an iterative process. Data coding was performed using NVivo12. References for the domain “testing” were then extracted and analyzed for themes and statistical patterns. Clear Indication of Major Findings of the study: 100% of participants (18/18) referenced COVID-19 testing in their interviews, with a total of 79 references across the 18 transcripts (average: 4.4 references/interview; 2.7% interview coverage). 89% of participants (16/18) discussed the difficulty of access to testing, including denial of testing without high severity of symptoms, geographical distance to the testing site, and lack of testing resources at healthcare centers. Participants shared varying perspectives on how the lack of certainty regarding their COVID-19 status affected their course of recovery. One participant shared that because she never tested positive she was shielded from her anxiety and fear, given the death toll in NYC. Another group of participants shared that not having a concrete status to share with family, friends and professionals affected how seriously onlookers took their symptoms. Furthermore, the absence of a positive test barred some individuals from access to treatment programs and employment support. Concluding Statement: Lack of access to COVID-19 testing in the first wave of the pandemic in NYC was a prominent element of patients’ illness experience, particularly during their recovery phase. While for some the lack of concrete results was protective, most emphasized the invalidating effect this had on the perception of illness for both self and others. COVID-19 testing is now widely accessible; however, those who are unable to demonstrate a positive test result but who are still presumed to have had COVID-19 in the first wave must continue to adapt to and live with the effects of this gap in knowledge and care on their recovery. Future efforts are required to ensure that patients do not face barriers to care due to the lack of testing and are reassured regarding their access to healthcare. Affiliations- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 2Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY

Keywords: accessibility, COVID-19, recovery, testing

Procedia PDF Downloads 159
28 Developing and integrated Clinical Risk Management Model

Authors: Mohammad H. Yarmohammadian, Fatemeh Rezaei

Abstract:

Introduction: Improving patient safety in health systems is one of the main priorities in healthcare systems, so clinical risk management in organizations has become increasingly significant. Although several tools have been developed for clinical risk management, each has its own limitations. Aims: This study aims to develop a comprehensive tool that can complete the limitations of each risk assessment and management tools with the advantage of other tools. Methods: Procedure was determined in two main stages included development of an initial model during meetings with the professors and literature review, then implementation and verification of final model. Subjects and Methods: This study is a quantitative − qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment of the two parts of the fourth phase and seven phases of the research was conducted. Purposive and stratification sampling of various responsible teams for the selected process was conducted in the operating room. Final model verified in eight phases through application of activity breakdown structure, failure mode and effects analysis (FMEA), healthcare risk priority number (RPN), root cause analysis (RCA), FT, and Eindhoven Classification model (ECM) tools. This model has been conducted typically on patients admitted in a day-clinic ward of a public hospital for surgery in October 2012 to June. Statistical Analysis Used: Qualitative data analysis was done through content analysis and quantitative analysis done through checklist and edited RPN tables. Results: After verification the final model in eight-step, patient's admission process for surgery was developed by focus discussion group (FDG) members in five main phases. Then with adopted methodology of FMEA, 85 failure modes along with its causes, effects, and preventive capabilities was set in the tables. Developed tables to calculate RPN index contain three criteria for severity, two criteria for probability, and two criteria for preventability. Tree failure modes were above determined significant risk limitation (RPN > 250). After a 3-month period, patient's misidentification incidents were the most frequent reported events. Each RPN criterion of misidentification events compared and found that various RPN number for tree misidentification reported events could be determine against predicted score in previous phase. Identified root causes through fault tree categorized with ECM. Wrong side surgery event was selected by focus discussion group to purpose improvement action. The most important causes were lack of planning for number and priority of surgical procedures. After prioritization of the suggested interventions, computerized registration system in health information system (HIS) was adopted to prepare the action plan in the final phase. Conclusion: Complexity of health care industry requires risk managers to have a multifaceted vision. Therefore, applying only one of retrospective or prospective tools for risk management does not work and each organization must provide conditions for potential application of these methods in its organization. The results of this study showed that the integrated clinical risk management model can be used in hospitals as an efficient tool in order to improve clinical governance.

Keywords: failure modes and effective analysis, risk management, root cause analysis, model

Procedia PDF Downloads 218
27 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 20
26 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification

Authors: Chung-Ming Lo, Chung-Chien Lee

Abstract:

In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.

Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis

Procedia PDF Downloads 253
25 Information Pollution: Exploratory Analysis of Subs-Saharan African Media’s Capabilities to Combat Misinformation and Disinformation

Authors: Muhammed Jamiu Mustapha, Jamiu Folarin, Stephen Obiri Agyei, Rasheed Ademola Adebiyi, Mutiu Iyanda Lasisi

Abstract:

The role of information in societal development and growth cannot be over-emphasized. It has remained an age-long strategy to adopt the information flow to make an egalitarian society. The same has become a tool for throwing society into chaos and anarchy. It has been adopted as a weapon of war and a veritable instrument of psychological warfare with a variety of uses. That is why some scholars posit that information could be deployed as a weapon to wreak “Mass Destruction" or promote “Mass Development". When used as a tool for destruction, the effect on society is like an atomic bomb which when it is released, pollutes the air and suffocates the people. Technological advancement has further exposed the latent power of information and many societies seem to be overwhelmed by its negative effect. While information remains one of the bedrock of democracy, the information ecosystem across the world is currently facing a more difficult battle than ever before due to information pluralism and technological advancement. The more the agents involved try to combat its menace, the difficult and complex it is proving to be curbed. In a region like Africa with dangling democracy enfolds with complexities of multi-religion, multi-cultures, inter-tribes, ongoing issues that are yet to be resolved, it is important to pay critical attention to the case of information disorder and find appropriate ways to curb or mitigate its effects. The media, being the middleman in the distribution of information, needs to build capacities and capabilities to separate the whiff of misinformation and disinformation from the grains of truthful data. From quasi-statistical senses, it has been observed that the efforts aimed at fighting information pollution have not considered the built resilience of media organisations against this disorder. Apparently, the efforts, resources and technologies adopted for the conception, production and spread of information pollution are much more sophisticated than approaches to suppress and even reduce its effects on society. Thus, this study seeks to interrogate the phenomenon of information pollution and the capabilities of select media organisations in Sub-Saharan Africa. In doing this, the following questions are probed; what are the media actions to curb the menace of information pollution? Which of these actions are working and how effective are they? And which of the actions are not working and why they are not working? Adopting quantitative and qualitative approaches and anchored on the Dynamic Capability Theory, the study aims at digging up insights to further understand the complexities of information pollution, media capabilities and strategic resources for managing misinformation and disinformation in the region. The quantitative approach involves surveys and the use of questionnaires to get data from journalists on their understanding of misinformation/disinformation and their capabilities to gate-keep. Case Analysis of select media and content analysis of their strategic resources to manage misinformation and disinformation is adopted in the study while the qualitative approach will involve an In-depth Interview to have a more robust analysis is also considered. The study is critical in the fight against information pollution for a number of reasons. One, it is a novel attempt to document the level of media capabilities to fight the phenomenon of information disorder. Two, the study will enable the region to have a clear understanding of the capabilities of existing media organizations to combat misinformation and disinformation in the countries that make up the region. Recommendations emanating from the study could be used to initiate, intensify or review existing approaches to combat the menace of information pollution in the region.

Keywords: disinformation, information pollution, misinformation, media capabilities, sub-Saharan Africa

Procedia PDF Downloads 136
24 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera that are responsible for the biodeterioration, biodegradation, and biological pollution of the structures and features of the two historic parks of the UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study the morphological, aesthetic, and physical effects of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial, and aquatic habitats. A qualitative study revealed seven classes of Algae. Most of the algal genera isolated have proven records of potential biodegradation, discoloration, and biological pollution. Chlorophyceae was predominantly represented by eleven genera: Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae with two genera, Tribonema and Vaucheria. Bacillariophyceae (Diatoms) are represented by six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria, Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum, Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class, with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study, followed by Gloeocapsa of Cyanophyceae, which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria, and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene, and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and two unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures, and railings. The Algae are reported to induce surface erosion, natural weathering, and cracking, leading to technical and mechanical instability and extensive damage to building materials. The algal biofilms secrete different organic acids, which are responsible for biosolubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhea, fever, muscle spasms, and lung and throat infections. The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodegradation, historic gardens, UK

Procedia PDF Downloads 17
23 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis

Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam

Abstract:

Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.

Keywords: chlorophyll, gene expression, genetic variation, stomata

Procedia PDF Downloads 210
22 Understanding the Impact of Spatial Light Distribution on Object Identification in Low Vision: A Pilot Psychophysical Study

Authors: Alexandre Faure, Yoko Mizokami, éRic Dinet

Abstract:

These recent years, the potential of light in assisting visually impaired people in their indoor mobility has been demonstrated by different studies. Implementing smart lighting systems for selective visual enhancement, especially designed for low-vision people, is an approach that breaks with the existing visual aids. The appearance of the surface of an object is significantly influenced by the lighting conditions and the constituent materials of the objects. Appearance of objects may appear to be different from expectation. Therefore, lighting conditions lead to an important part of accurate material recognition. The main objective of this work was to investigate the effect of the spatial distribution of light on object identification in the context of low vision. The purpose was to determine whether and what specific lighting approaches should be preferred for visually impaired people. A psychophysical experiment was designed to study the ability of individuals to identify the smallest cube of a pair under different lighting diffusion conditions. Participants were divided into two distinct groups: a reference group of observers with normal or corrected-to-normal visual acuity and a test group, in which observers were required to wear visual impairment simulation glasses. All participants were presented with pairs of cubes in a "miniature room" and were instructed to estimate the relative size of the two cubes. The miniature room replicates real-life settings, adorned with decorations and separated from external light sources by black curtains. The correlated color temperature was set to 6000 K, and the horizontal illuminance at the object level at approximately 240 lux. The objects presented for comparison consisted of 11 white cubes and 11 black cubes of different sizes manufactured with a 3D printer. Participants were seated 60 cm away from the objects. Two different levels of light diffuseness were implemented. After receiving instructions, participants were asked to judge whether the two presented cubes were the same size or if one was smaller. They provided one of five possible answers: "Left one is smaller," "Left one is smaller but unsure," "Same size," "Right one is smaller," or "Right one is smaller but unsure.". The method of constant stimuli was used, presenting stimulus pairs in a random order to prevent learning and expectation biases. Each pair consisted of a comparison stimulus and a reference cube. A psychometric function was constructed to link stimulus value with the frequency of correct detection, aiming to determine the 50% correct detection threshold. Collected data were analyzed through graphs illustrating participants' responses to stimuli, with accuracy increasing as the size difference between cubes grew. Statistical analyses, including 2-way ANOVA tests, showed that light diffuseness had no significant impact on the difference threshold, whereas object color had a significant influence in low vision scenarios. The first results and trends derived from this pilot experiment clearly and strongly suggest that future investigations could explore extreme diffusion conditions to comprehensively assess the impact of diffusion on object identification. For example, the first findings related to light diffuseness may be attributed to the range of manipulation, emphasizing the need to explore how other lighting-related factors interact with diffuseness.

Keywords: Lighting, Low Vision, Visual Aid, Object Identification, Psychophysical Experiment

Procedia PDF Downloads 36
21 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 103
20 Quasi-Photon Monte Carlo on Radiative Heat Transfer: An Importance Sampling and Learning Approach

Authors: Utkarsh A. Mishra, Ankit Bansal

Abstract:

At high temperature, radiative heat transfer is the dominant mode of heat transfer. It is governed by various phenomena such as photon emission, absorption, and scattering. The solution of the governing integrodifferential equation of radiative transfer is a complex process, more when the effect of participating medium and wavelength properties are taken into consideration. Although a generic formulation of such radiative transport problem can be modeled for a wide variety of problems with non-gray, non-diffusive surfaces, there is always a trade-off between simplicity and accuracy of the problem. Recently, solutions of complicated mathematical problems with statistical methods based on randomization of naturally occurring phenomena have gained significant importance. Photon bundles with discrete energy can be replicated with random numbers describing the emission, absorption, and scattering processes. Photon Monte Carlo (PMC) is a simple, yet powerful technique, to solve radiative transfer problems in complicated geometries with arbitrary participating medium. The method, on the one hand, increases the accuracy of estimation, and on the other hand, increases the computational cost. The participating media -generally a gas, such as CO₂, CO, and H₂O- present complex emission and absorption spectra. To model the emission/absorption accurately with random numbers requires a weighted sampling as different sections of the spectrum carries different importance. Importance sampling (IS) was implemented to sample random photon of arbitrary wavelength, and the sampled data provided unbiased training of MC estimators for better results. A better replacement to uniform random numbers is using deterministic, quasi-random sequences. Halton, Sobol, and Faure Low-Discrepancy Sequences are used in this study. They possess better space-filling performance than the uniform random number generator and gives rise to a low variance, stable Quasi-Monte Carlo (QMC) estimators with faster convergence. An optimal supervised learning scheme was further considered to reduce the computation costs of the PMC simulation. A one-dimensional plane-parallel slab problem with participating media was formulated. The history of some randomly sampled photon bundles is recorded to train an Artificial Neural Network (ANN), back-propagation model. The flux was calculated using the standard quasi PMC and was considered to be the training target. Results obtained with the proposed model for the one-dimensional problem are compared with the exact analytical and PMC model with the Line by Line (LBL) spectral model. The approximate variance obtained was around 3.14%. Results were analyzed with respect to time and the total flux in both cases. A significant reduction in variance as well a faster rate of convergence was observed in the case of the QMC method over the standard PMC method. However, the results obtained with the ANN method resulted in greater variance (around 25-28%) as compared to the other cases. There is a great scope of machine learning models to help in further reduction of computation cost once trained successfully. Multiple ways of selecting the input data as well as various architectures will be tried such that the concerned environment can be fully addressed to the ANN model. Better results can be achieved in this unexplored domain.

Keywords: radiative heat transfer, Monte Carlo Method, pseudo-random numbers, low discrepancy sequences, artificial neural networks

Procedia PDF Downloads 184
19 Neural Correlates of Diminished Humor Comprehension in Schizophrenia: A Functional Magnetic Resonance Imaging Study

Authors: Przemysław Adamczyk, Mirosław Wyczesany, Aleksandra Domagalik, Artur Daren, Kamil Cepuch, Piotr Błądziński, Tadeusz Marek, Andrzej Cechnicki

Abstract:

The present study aimed at evaluation of neural correlates of humor comprehension impairments observed in schizophrenia. To investigate the nature of this deficit in schizophrenia and to localize cortical areas involved in humor processing we used functional magnetic resonance imaging (fMRI). The study included chronic schizophrenia outpatients (SCH; n=20), and sex, age and education level matched healthy controls (n=20). The task consisted of 60 stories (setup) of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible (yes/no) and how funny it was (1-9 Likert-type scale). fMRI was performed on a 3T scanner (Magnetom Skyra, Siemens) using 32-channel head coil. Three contrasts in accordance with the three stages of humor processing were analyzed in both groups: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution; funny vs neutral - elaboration. Additionally, parametric modulation analysis was performed using both subjective ratings separately in order to further differentiate the areas involved in incongruity resolution processing. Statistical analysis for behavioral data used U Mann-Whitney test and Bonferroni’s correction, fMRI data analysis utilized whole-brain voxel-wise t-tests with 10-voxel extent threshold and with Family Wise Error (FWE) correction at alpha = 0.05, or uncorrected at alpha = 0.001. Between group comparisons revealed that the SCH subjects had attenuated activation in: the right superior temporal gyrus in case of irresolvable incongruity processing of nonsensical puns (nonsensical > neutral); the left medial frontal gyrus in case of incongruity resolution processing of funny puns (funny > nonsensical) and the interhemispheric ACC in case of elaboration of funny puns (funny > neutral). Additionally, the SCH group revealed weaker activation during funniness ratings in the left ventro-medial prefrontal cortex, the medial frontal gyrus, the angular and the supramarginal gyrus, and the right temporal pole. In comprehension ratings the SCH group showed suppressed activity in the left superior and medial frontal gyri. Interestingly, these differences were accompanied by protraction of time in both types of rating responses in the SCH group, a lower level of comprehension for funny punchlines and a higher funniness for absurd punchlines. Presented results indicate that, in comparison to healthy controls, schizophrenia is characterized by difficulties in humor processing revealed by longer reaction times, impairments of understanding jokes and finding nonsensical punchlines more funny. This is accompanied by attenuated brain activations, especially in the left fronto-parietal and the right temporal cortices. Disturbances of the humor processing seem to be impaired at the all three stages of the humor comprehension process, from incongruity detection, through its resolution to elaboration. The neural correlates revealed diminished neural activity of the schizophrenia brain, as compared with the control group. The study was supported by the National Science Centre, Poland (grant no 2014/13/B/HS6/03091).

Keywords: communication skills, functional magnetic resonance imaging, humor, schizophrenia

Procedia PDF Downloads 185