Search results for: Non-ST elevation myocardial infarction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 552

Search results for: Non-ST elevation myocardial infarction

72 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens

Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick

Abstract:

Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.

Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery

Procedia PDF Downloads 110
71 The Effects of Myelin Basic Protein Charge Isomers on the Methyl Cycle Metabolites in Glial Cells

Authors: Elene Zhuravliova, Tamar Barbakadze, Irina Kalandadze, Elnari Zaalishvili, Lali Shanshiashvili, David Mikeladze

Abstract:

Background: Multiple sclerosis (MS) is an inflammatory, neurodegenerative disease, which is accompanied by demyelination and autoimmune response to myelin proteins. Among post-translational modifications, which mediate the modulation of inflammatory pathways during MS, methylation is the main one. The methylation of DNA, also amino acids lysine and arginine, occurs in the cell. It was found that decreased trans-methylation is associated with neuroinflammatory diseases. Therefore, abnormal regulation of the methyl cycle could induce demyelination through the action on PAD (peptidyl-arginine-deiminase) gene promoter. PAD takes part in protein citrullination and targets myelin basic protein (MBP), which is affected during demyelination. To determine whether MBP charge isomers are changing the methyl cycle, we have estimated the concentrations of methyl cycle metabolites in MBP-activated primary astrocytes and oligodendrocytes. For this purpose, the action of the citrullinated MBP- C8 and the most cationic MBP-C1 isomers on the primary cells were investigated. Methods: Primary oligodendrocyte and astrocyte cell cultures were prepared from whole brains of 2-day-old Wistar rats. The methyl cycle metabolites, including homocysteine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH), were estimated by HPLC analysis using fluorescence detection and prior derivatization. Results: We found that the action of MBP-C8 and MBP-C1 induces a decrease in the concentration of both methyl cycle metabolites, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), in astrocytes compared to the control cells. As for oligodendrocytes, the concentration of SAM was increased by the addition of MBP-C1, while MBP-C8 has no significant effect. As for SAH, its concentration was increased compared to the control cells by the action of both MBP-C1 and MBP-C8. A significant increase in homocysteine concentration was observed by the action of the MBP-C8 isomer in both oligodendrocytes and astrocytes. Conclusion: These data suggest that MBP charge isomers change the concentration of methyl cycle metabolites. MBP-C8 citrullinated isomer causes elevation of homocysteine in astrocytes and oligodendrocytes, which may be the reason for decreased astrocyte proliferation and increased oligodendrocyte cell death which takes place in neurodegenerative processes. Elevated homocysteine levels and subsequent abnormal regulation of methyl cycles in oligodendrocytes possibly change the methylation of DNA that activates PAD gene promoter and induces the synthesis of PAD, which in turn provokes the process of citrullination, which is the accompanying process of demyelination. Acknowledgment: This research was supported by the SRNSF Georgia RF17_534 grant.

Keywords: myelin basic protein, astrocytes, methyl cycle metabolites, homocysteine, oligodendrocytes

Procedia PDF Downloads 121
70 Cognitive Performance Post Stroke Is Affected by the Timing of Evaluation

Authors: Ayelet Hersch, Corrine Serfaty, Sigal Portnoy

Abstract:

Stroke survivors commonly report persistent fatigue and sleep disruptions during rehabilitation and post-recovery. While limited research has explored the impact of stroke on a patient's chronotype, there is a gap in understanding the differences in cognitive performance based on treatment timing. Study objectives: (a) To characterize the sleep chronotype in sub-acute post-stroke individuals. (b) Explore cognitive task performance differences during preferred and non-preferred hours. (c) Examine the relationships between sleep quality and cognitive performance. For this intra-subject study, twenty participants (mean age 60.2±8.6) post-first stroke (6-12 weeks post stroke) underwent assessments at preferred and non-preferred chronotypic times. The assessment included demographic surveys, the Munich Chronotype Questionnaire, Montreal Cognitive Assessment (MoCA), Rivermead Behavioral Memory Test (RBMT), a fatigue questionnaire, and 4-5 days of actigraphy (wrist-worn wGT3X-BT, ActiGraph) to record sleep characteristics. Four sleep quality indices were extracted from actigraphy wristwatch recordings: The average of total sleep time per day (minutes), the average number of awakenings during the sleep period per day, the efficiency of sleep (total hours of sleep per day divided by hours spent in bed per day, averaged across the days and presented as percentage), and the Wake after Sleep Onset (WASO) index, indicating the average number of minutes elapsed from the onset of sleep to the first awakening. Stroke survivors exhibited an earlier sleep chronotype post-injury compared to pre-injury. Enhanced attention, as indicated by higher RBMT scores, occurred during preferred hours. Specifically, 30% of the study participants demonstrated an elevation in their final scores during their preferred hours, transitioning from the category of "mild memory impairment" to "normal memory." However, no significant differences emerged in executive functions, attention tasks, and MoCA scores between preferred and non-preferred hours. The Wake After Sleep Onset (WASO) index correlated with MoCA/RBMT scores during preferred hours (r=0.53/0.51, p=0.021/0.027, respectively). The number of awakenings correlated with MoCA letter task performance during non-preferred hours (r=0.45, p=0.044). Enhanced attention during preferred hours suggests a potential relationship between chronotype and cognitive performance, highlighting the importance of personalized rehabilitation strategies in stroke care. Further exploration of these relationships could contribute to optimizing the timing of cognitive interventions for stroke survivors.

Keywords: sleep chronotype, chronobiology, circadian rhythm, rehabilitation timing

Procedia PDF Downloads 32
69 Deep Mill Level Zone (DMLZ) of Ertsberg East Skarn System, Papua; Correlation between Structure and Mineralization to Determined Characteristic Orebody of DMLZ Mine

Authors: Bambang Antoro, Lasito Soebari, Geoffrey de Jong, Fernandy Meiriyanto, Michael Siahaan, Eko Wibowo, Pormando Silalahi, Ruswanto, Adi Budirumantyo

Abstract:

The Ertsberg East Skarn System (EESS) is located in the Ertsberg Mining District, Papua, Indonesia. EESS is a sub-vertical zone of copper-gold mineralization hosted in both diorite (vein-style mineralization) and skarn (disseminated and vein style mineralization). Deep Mill Level Zone (DMLZ) is a mining zone in the lower part of East Ertsberg Skarn System (EESS) that product copper and gold. The Deep Mill Level Zone deposit is located below the Deep Ore Zone deposit between the 3125m to 2590m elevation, measures roughly 1,200m in length and is between 350 and 500m in width. DMLZ planned start mined on Q2-2015, being mined at an ore extraction rate about 60,000 tpd by the block cave mine method (the block cave contain 516 Mt). Mineralization and associated hydrothermal alteration in the DMLZ is hosted and enclosed by a large stock (The Main Ertsberg Intrusion) that is barren on all sides and above the DMLZ. Late porphyry dikes that cut through the Main Ertsberg Intrusion are spatially associated with the center of the DMLZ hydrothermal system. DMLZ orebody hosted in diorite and skarn, both dominantly by vein style mineralization. Percentage Material Mined at DMLZ compare with current Reserves are diorite 46% (with 0.46% Cu; 0.56 ppm Au; and 0.83% EqCu); Skarn is 39% (with 1.4% Cu; 0.95 ppm Au; and 2.05% EqCu); Hornfels is 8% (with 0.84% Cu; 0.82 ppm Au; and 1.39% EqCu); and Marble 7 % possible mined waste. Correlation between Ertsberg intrusion, major structure, and vein style mineralization is important to determine characteristic orebody in DMLZ Mine. Generally Deep Mill Level Zone has 2 type of vein filling mineralization from both hosted (diorite and skarn), in diorite hosted the vein system filled by chalcopyrite-bornite-quartz and pyrite, in skarn hosted the vein filled by chalcopyrite-bornite-pyrite and magnetite without quartz. Based on orientation the stockwork vein at diorite hosted and shallow vein in skarn hosted was generally NW-SE trending and NE-SW trending with shallow-moderate dipping. Deep Mill Level Zone control by two main major faults, geologist founded and verified local structure between major structure with NW-SE trending and NE-SW trending with characteristics slickenside, shearing, gauge, water-gas channel, and some has been re-healed.

Keywords: copper-gold, DMLZ, skarn, structure

Procedia PDF Downloads 479
68 Preparedness of Health System in Providing Continuous Health Care: A Case Study From Sri Lanka

Authors: Samantha Ramachandra, Avanthi Rupasinghe

Abstract:

Demographic transition from lower to higher percentage of elderly population eventually coupled with epidemiological transition from communicable to non-communicable diseases (NCD). Higher percentage of NCD overload the health system as NCD survivors claims continuous health care. The demands are challenging to a resource constrained setting but reorganizing the system may find solutions. The study focused on the facilities available and their utilization at outpatient department (OPD) setting of the public hospitals of Sri Lanka for continuous medical care. This will help in identifying steps of reorganizing the system to provide better care with the maximum utilization of available facilities. The study was conducted as a situation analysis with secondary data at hospital planning units. Variable were identified according to the world health organization (WHO) recommendation on continuous health care for elders in “age-friendly primary health care toolkit”. Data were collected from secondary and tertiary care hospitals of Sri Lanka where most of the continuous care services are available. Out of 58 secondary and tertiary care hospitals, 16 were included in the study to represent each hospital categories. Average number of patient attending for episodic treatment at OPD and Clinical follow-up of chronic conditions shows vast disparity according to the category of the hospital ranging from 3750 – 800 per day at OPD and 1250 – 200 per clinic session. Average time spent per person at OPD session is low, range from 1.54 - 2.28 minutes, the time was increasing as the hospital category goes down. 93.7% hospitals had special arrangements for providing acute care on chronic conditions such as catheter, feeding tube and wound care. 25% hospitals had special clinics for elders, 81.2% hospitals had healthy lifestyle clinics (HLC), 75% hospitals had physical rehabilitation facilities and 68.8% hospitals had facilities for counselling. Elderly clinics and HLC were mostly available at lower grade hospitals where as rehabilitation and counselling facilities were mostly available at bigger hospitals. HLC are providing health education for both patients and their family members, refer patients for screening of complication but not provide medical examinations, investigations or treatments even though they operate in the hospital setting. Physical rehabilitation is basically offered for patients with rheumatological conditions but utilization of centers for injury rehabilitation and rehabilitation of survivors following major illness such as myocardial infarctions, stroke, cancer is not satisfactory (12.5%). Human Resource distribution within hospital shows vast disparity and there are 103 physiotherapists in the biggest hospital where only 36 physiotherapists available at the next level hospital. Counselling facilities also provided mainly for the patient with psychological conditions (100%) but they were not providing counselling for newly diagnosed patients with major illnesses (0%). According to results, most of the public-sector hospitals in Sri Lanka have basic facilities required in providing continuous care but the utilization of services need more focus. Hospital administration or the government need to have initial steps in proper utilization of them in improving continuous health care incorporating team approach of rehabilitation. The author wishes to acknowledge that this paper was made possible by the support and guidance given by the “Australia Awards Fellowships Program for Sri Lanka – 2017,” which was funded by the Department of Foreign Affairs and Trade, Australia, and co-hosted by Monash University, Australia and the Sri Lanka Institute of Development Administration.

Keywords: continuous care, outpatient department, non communicable diseases, rehabilitation

Procedia PDF Downloads 137
67 Examination of Calpurnia Aurea Seed Extract Activity Against Hematotoxicity and Hepatotoxicity in HAART Drug Induced Albino Wistar Rat

Authors: Haile Nega Mulata, Seifu Daniel, Umeta Melaku, Wendwesson Ergete, Natesan Gnanasekaran

Abstract:

Background: In Ethiopia, medicinal plants have been used for various human and animal diseases. In this study, we have examined the potential effect of hydroethanolic extract of Calpurnia aurea seed against hepatotoxicity and haematotoxicity induced by Highly Active Antiretroviral Therapy (HAART) drugs in Albino Wistar rats. Methods: We collected Matured dried seeds of Calpurnia aurea from northern Ethiopia (south Tigray and south Gondar) in June 2013. The powder of the dried seed sample was macerated with 70% ethanol and dried using rotavapor. We have investigated the Preliminary phytochemical tests and in-vitro antioxidant properties. Then, we induced toxicity with HAART drugs and gave the experimental animals different doses of the crude extract orally for thirty-five days. On the 35th day, the animals were fasted overnight and sacrificed by cervical dislocation. We collected the blood samples by cardiac puncture. We excised the liver and brain tissues for further histopathological studies. Subsequently, we analysed serum levels of the liver enzymes- Alanine Aminotransferase, Aspartate Aminotransferase, Alkaline Phosphatase, Total Bilirubin, and Serum Albumin, using commercial kits in Cobas Integra 400 Plus Roche Analyzer Germany. We have also assessed the haematological profile using an automated haematology Analyser (Sysmex KX-2IN). Results: A significant (P<0.05) decrease in serum enzymes (ALT and AST) and total bilirubin were observed in groups that received the highest dose (300mg/kg) of the seed extract. And significant (P<0.05) elevation of total red blood cell count, haemoglobin, and hematocrit percentage was observed in the groups that received the seed extract compared to the HAART-treated groups. The WBC count mean values showed a statistically significant increase (p<0.05) in groups that received HAART and 200 and 300mg/kg extract, respectively. The histopathological observations also showed that the oral administration of varying doses of the crude extract of the seed reversed to a normal state. Conclusion: The hydroethanolic extract of the Calpurnia aurea seed lowered the hepatotoxicity and haematotoxicity in a dose-dependent manner. The antioxidant properties of the Calpurnia aurea seed extract may have possible protective effects against the drug's toxicity.

Keywords: calpurnia aurea, hepatotoxicity, haematotoxicity, antioxidant, histopathology, HAART

Procedia PDF Downloads 67
66 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France

Authors: Aiman Mazhar Qureshi, Ahmed Rachid

Abstract:

Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.

Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation

Procedia PDF Downloads 120
65 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India

Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia

Abstract:

Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.

Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore

Procedia PDF Downloads 103
64 Effect of Climate Changing Pattern on Aquatic Biodiversity of Bhimtal Lake at Kumaun Himalaya (India)

Authors: Davendra S. Malik

Abstract:

Bhimtal lake is located between 290 21’ N latitude and 790 24’ E longitude, at an elevation of 1332m above mean sea level in the Kumaun region of Uttarakhand of Indian subcontinent. The lake surface area is decreasing in water area, depth level in relation to ecological and biological characteristics due to climatic variations, invasive land use pattern, degraded forest zones and changed agriculture pattern in lake catchment basin. The present study is focused on long and short term effects of climate change on aquatic biodiversity and productivity of Bhimtal lake. The meteorological data of last fifteen years of Bhimtal lake catchment basin revealed that air temperature has been increased 1.5 to 2.1oC in summer, 0.2 to 0.8 C in winter, relative humidity increased 4 to 6% in summer and rainfall pattern changed erratically in rainy seasons. The surface water temperature of Bhimtal lake showed an increasing pattern as 0.8 to 2.6 C, pH value decreased 0.5 to 0.2 in winter and increased 0.4 to 0.6 in summer. Dissolved oxygen level in lake showed a decreasing trend as 0.7 to 0.4mg/l in winter months. The mesotrophic nature of Bhimtal lake is changing towards eutrophic conditions and contributed for decreasing biodiversity. The aquatic biodiversity of Bhimtal lake consisted mainly phytoplankton, zooplankton, benthos and fish species. In the present study, a total of 5 groups of phytoplankton, 3 groups of zooplankton, 11 groups of benthos and 15 fish species were recorded from Bhimtal lake. The comparative data of biodiversity of Bhimtal lake since January, 2000 indicated the changing pattern of phytoplankton biomass were decreasing as 1.99 and 1.08% of Chlorophyceae and Bacilleriophyceae families respectively. The biomass of Cynophyceae was increasing as 0.45% and contributing the algal blooms during summer season in lake. The biomass of zooplankton and benthos were found decreasing in winter season and increasing during summer season. The endemic fish species (18 no.) were found in year 2000-05, as while the fish species (15 no.) were recorded in present study. The relative fecundity of major fish species were observed decreasing trends during their breeding periods in lake. The natural and anthropogenic factors were identified as ecological threats for existing aquatic biodiversity of Bhimtal lake. The present research paper emphasized on the effect of changing pattern of different climatic variables on species composition, biomass of phytoplankton, zooplankton, benthos, and fishes in Bhimtal lake of Kumaun region. The present research data will be contributed significantly to assess the changing pattern of aquatic biodiversity and productivity of Bhimtal lake with different time scale.

Keywords: aquatic biodiversity, Bhimtal lake, climate change, lake ecology

Procedia PDF Downloads 190
63 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 19
62 Oxidative Damage to Lipids, Proteins, and DNA during Differentiation of Mesenchymal Stem Cells Derived from Umbilical Cord into Biologically Active Hepatocytes

Authors: Abdolamir Allameh, Shahnaz Esmaeili, Mina Allameh, Safoura Khajeniazi

Abstract:

Stem cells with therapeutic applications can be isolated from human placenta/umblical cord blood (UCB) as well as the cord tissue (UC). Stem cells in culture are vulnerable to oxidative stress, particularly when subjected to differentiation process. The aim of this study was to examine the chnages in the rate of oxidation that occurs to cellular macromolecules during hepatic differentiation of mononuclear cells (MSCs). In addition, the impact of the hepatic differentiation process of MSC on cellular and biological activity of the cells will be undertaken. For this purpose, first mononuclear cells (MNCs) were isolated from human UCB which was obtained from a healthy full-term infant. The cells were cultured at a density of 3×10⁵ cells/cm² in DMEM- low-glucose culture media supplemented with 20% FBS, 2 mM L-glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. Cell cultures were then incubated at 37°C in a humidified 5% CO₂ incubator. After removing non-adherent cells by replacing culture medium, fibroblast-like adherent cells were resuspended in 0.25% trypsin-EDTA and plated in 25 cm² flasks (1×10⁴/ml). Characterization of the MSCs was routinely done by observing their morphology and growth curve. MSCs were subjected to a 2-step hepatocyte differentiation protocol in presence of hepatocyte growth factor (HGF), dexamethazone (DEX) and oncostatin M (OSM). The hepatocyte-like cells derived from MSCs were checked every week for 3 weeks for changes in lipid peroxidation, protein carbonyl formation and DNA oxidation i.e., 8-hydroxy-2'-deoxyguanosine (8-OH-dG) assay. During the 3-week differentiation process of MSCs to hepatocyte-like cells we found that expression liver-specific markers such as albumin, was associated with increased levels of lipid peroxidation and protein carbonyl formation. Whereas, undifferentiated MSCs has relatively low levels of lipid peroxidation products. There was a significant increase ( p < 0.05) in lipid peroxidation products in hepatocytes on days 7, 14, and 21 of differentiation. Likewise, the level of protein carbonyls in the cells was elevated during the differentiation. The level of protein carbonyls measured in hepatocyte-like cells obtained 3 weeks after differentiation induction was estimated to be ~6 fold higher compared to cells recovered on day 7 of differentiation. On the contrary, there was a small but significant decrease in DNA damage marker (8-OH-dG) in hepatocytes recovered 3 weeks after differentiation onset. The level of 8-OHdG which was in consistent with formation of reactive oxygen species (ROS). In conclusion, this data suggest that despite the elevation in oxidation of lipid and protein molecules during hepatocyte development, the cells were normal in terms of DNA integrity, morphology, and biologically activity.

Keywords: adult stem cells, DNA integrity, free radicals, hepatic differentiation

Procedia PDF Downloads 129
61 Post COVID-19 Multi-System Inflammatory Syndrome Masquerading as an Acute Abdomen

Authors: Ali Baker, Russel Krawitz

Abstract:

This paper describes a rare occurrence where a potentially fatal complication of COVID-19 infection (MIS-A) was misdiagnosed as an acute abdomen. As most patients with this syndrome present with fever and gastrointestinal symptoms, they may inadvertently fall under the care of the surgical unit. However, unusual imaging findings and a poor response to anti-microbial therapy should prompt clinicians to suspect a non-surgical etiology. More than half of MIS-A patients require ICU admission and vasopressor support. Prompt referral to a physician is key, as the cornerstone of treatment is IVIG and corticosteroid therapy. A 32 year old woman presented with right sided abdominal pain and fevers. She had also contracted COVID-19 two months earlier. Abdominal examination revealed generalised right sided tenderness. The patient had raised inflammatory markers, but other blood tests were unremarkable. CT scan revealed extensive lymphadenopathy along the ileocolic chain. The patient proved to be a diagnostic dilemma. She was reviewed by several surgical consultants and discussed with several inpatient teams. Although IV antibiotics were commenced, the right sided abdominal pain, and fevers persisted. Pan-culture returned negative. A mild cholestatic derangement developed. On day 5, the patient underwent preparation for colonoscopy to assess for a potential intraluminal etiology. The following day, the patient developed sinus tachycardia and hypotension that was refractory to fluid resuscitation. That patient was transferred to ICU and required vasopressor support. Repeat CT showed peri-portal edema and a thickened gallbladder wall. On re-examination, the patient was Murphy’s sign positive. Biliary ultrasound was equivocal for cholecystitis. The patient was planned for diagnostic laparoscopy. The following morning, a marked rise in cardiac troponin was discovered, and a follow-up echocardiogram revealed moderate to severe global systolic dysfunction. The impression was post-COVID MIS with myocardial involvement. IVIG and Methylprednisolone infusions were commenced. The patient had a great response. Vasopressor support was weaned, and the patient was discharged from ICU. The patient continued to improve clinically with oral prednisolone, and was discharged on day 17. Although MIS following COVID-19 infection is well-described syndrome in children, only recently has it come to light that it can occur in adults. The exact incidence is unknown, but it is thought to be rare. A recent systematic review found only 221 cases of MIS-A, which could be included for analysis. Symptoms vary, but the most frequent include fever, gastrointestinal, and mucocutaneous. Many patients progress to multi-organ failure and require vasopressor support. 7% succumb to the illness. The pathophysiology of MIS is only partly understood. It shares similarities with Kawasaki disease, macrophage activation syndrome, and cytokine release syndrome. Importantly, by definition, the patient must have an absence of severe respiratory symptoms. It is thought to be due to a dysregulated immune response to the virus. Potential mechanisms include reduced levels of neutralising antibodies and autoreactive antibodies that promote inflammation. Further research into MIS-A is needed. Although rare, this potentially fatal syndrome should be considered in the unwell surgical patient who has recently contracted COVID-19 and poses a diagnostic dilemma.

Keywords: acute-abdomen, MIS, COVID-19, ICU

Procedia PDF Downloads 100
60 Aloe vera Prevents Injuries Induced by Whole Body X-ray Irradiation in Rodents

Authors: Shashi Bala, Neha A. Chugh, Subhash C. Bansal, Mohal L. Garg, Ashwani Koul

Abstract:

Purpose: The present study was designed to evaluate the radioprotective efficacy of Aloe vera from whole body X-ray exposure in rodents. Materials and Methods: For this purpose, after on week’s acclimatization, male balb/c mice procured from Central Animal House, Panjab University, Chandigarh (India), were divided into four groups: Group I mice served as control. Group II mice were orally administrated Aloe vera pulp extract (50 mg/ kg body weight) on alternate days for 30 days. Group III mice were subjected to whole body X-ray irradiation to cumulative dose of 2Gy (0.258Gy twice a day for four days in the last week). Group IV animals were pretreated with Aloe vera pulp extract on alternate days as in Group II and in the last week of the study, they were exposed to X-ray as in Group III. Results: Spleen of X-ray irradiated mice showed histopathological alterations accompanied with enhanced activity of lactate dehydrogenase (LDH) in serum. Elevated levels of reactive oxygen species (ROS), lipid peroxidation (LPO), enhanced activities in Glutathione based enzymes such as Glutathione peroxidase (GSH-Px), Glutathione reductase (GR), Catalase (CAT), Superoxide dismutase (SOD) associated with depletion in reduced Glutathione (GSH) concentration were observed after X-ray exposure in blood plasma and spleen.. Pro-inflammatory cytokines like tumor necrosis factors (TNF-α) and Inteleukin-6 (IL-6) levels were also found to be enhanced in serum of irradiated mice. Irradiation-induced significant elevation in Total leucocyte counts (TLC), neutrophil counts and decline in platelet counts, associated with unaltered levels of red blood cell counts (RBC’s) and haemoglobin (Hb) in various treatment groups. Clastogenic damage and apoptosis was also found to be increase in splenic tissue of X-ray exposed mice as assessed by micronucleus and TUNEL assay. However, X-ray irradiated animals administered with Aloe vera revealed significant improvement in levels of ROS/ LPO, LDH activity, and antioxidant mechanism. Aloe vera pretreated animals exhibited less severe damage, and early recovery in micronucleated cells, hematological parameters, apoptotic cells and inflammatory markers as compared to X-ray exposed mice. Conclusion: These results indicate that the radioprotective potential of Aloe vera against X-ray induced damage. This may be due to its free radical scavenging, antioxidant, anti-apoptotic and anti-inflammatory properties.

Keywords: aloe vera, antioxidant defense system, lactate dehydrogenase (LDH), micronucleus assay, x-ray

Procedia PDF Downloads 156
59 Nephroprotective Effect of Asparagus falcatus Leaf Extract on Adriamycin Induced Nephrotoxicity in Wistar Rats: A Dose Response Study

Authors: A. M. S. S. Amarasiri, A. P. Attanayake, K. A. P. W. Jayatilaka, L. K. B. Mudduwa

Abstract:

Adriamycin (ADR) is an effective anthracyclin antitumor drug, but its clinical use is limited due to renal toxicity. The leaves of Asparagus falcatus (Family: Liliaceae) have been used in the management of renal diseases since antiquity. In the present investigation, the aqueous leaf extract of A. falcatus was evaluated for acute nephroprotective activity in ADR induced nephrotoxic rats. Nephrotoxicity was induced in healthy male Wistar rats by intraperitoneal administration of ADR 20 mg/kg. The lyophilized powder of the aqueous refluxed (4h) leaf extract of A. falcatus was administered orally at three selected doses; 200, 400 and 600 mg/kg for three consecutive days. Fosinopril sodium (0.09 mg/kg) was used as the standard drug. Administration of the plant extract and the standard drug was commenced 24 hours after the induction of nephrotoxicity to rats. The nephroprotective effect was determined by selected biochemical parameters and by the assessment of histopathology on H and E stained kidney sections. The results were compared to a group of control rats with ADR induced nephrotoxicity. A group of rats administered with the equivalent volume of normal saline served as the healthy control. Administration of ADR 20 mg/kg produced a significant increase in the concentrations of serum creatinine (61%) and urine protein (73%) followed by a significant decrease in serum total protein (21%) and albumin (44%) of the plant extract treated animals compared to the healthy control group (p < 0.05). The aqueous extract of Asparagus falcatus at the three doses; 200, 400 and 600 mg/kg and the standard drug were found to decrease the elevation of concentrations of serum creatinine (33%, 51%, 54% and 42%) and urine protein (8%, 63%, 80% and 86%) respectively. The serum concentrations of total protein (12%, 17%, 29% and 12%) and albumin (3%, 17%, 17% and 16%) were significantly increased compared to the nephrotoxic control group respectively. Assessment of histopathology on H and E stained kidney sections demonstrated that ADR induced renal injury, as evidenced by loss of brush border, cytoplasmic vacuolization, pyknosis in renal tubular epithelial cells, haemorrhages, glomerular congestion and presence of hyaline casts. Treatment with the plant extract and the standard drug resulted in attenuation of the morphological destruction in rats. The results of the present study revealed that the aqueous leaf extract of A. falcatus possesses significant nephroprotective activity against adriamycin induced acute nephrotoxicity. The improved kidney functions were supported with the results of selected biochemical parameters and histological changes observed on H and E stained sections of the kidney tissues in Wistar rats.

Keywords: adriamycin induced nephrotoxicity, asparagus falcatus, biochemical assessment, histopathological assessment, nephroprotective activity

Procedia PDF Downloads 139
58 Assessment of Rainfall Erosivity, Comparison among Methods: Case of Kakheti, Georgia

Authors: Mariam Tsitsagi, Ana Berdzenishvili

Abstract:

Rainfall intensity change is one of the main indicators of climate change. It has a great influence on agriculture as one of the main factors causing soil erosion. Splash and sheet erosion are one of the most prevalence and harmful for agriculture. It is invisible for an eye at first stage, but the process will gradually move to stream cutting erosion. Our study provides the assessment of rainfall erosivity potential with the use of modern research methods in Kakheti region. The region is the major provider of wheat and wine in the country. Kakheti is located in the eastern part of Georgia and characterized quite a variety of natural conditions. The climate is dry subtropical. For assessment of the exact rate of rainfall erosion potential several year data of rainfall with short intervals are needed. Unfortunately, from 250 active metro stations running during the Soviet period only 55 of them are active now and 5 stations in Kakheti region respectively. Since 1936 we had data on rainfall intensity in this region, and rainfall erosive potential is assessed, in some old papers, but since 1990 we have no data about this factor, which in turn is a necessary parameter for determining the rainfall erosivity potential. On the other hand, researchers and local communities suppose that rainfall intensity has been changing and the number of haily days has also been increasing. However, finding a method that will allow us to determine rainfall erosivity potential as accurate as possible in Kakheti region is very important. The study period was divided into three sections: 1936-1963; 1963-1990 and 1990-2015. Rainfall erosivity potential was determined by the scientific literature and old meteorological stations’ data for the first two periods. And it is known that in eastern Georgia, at the boundary between steppe and forest zones, rainfall erosivity in 1963-1990 was 20-75% higher than that in 1936-1963. As for the third period (1990-2015), for which we do not have data of rainfall intensity. There are a variety of studies, where alternative ways of calculating the rainfall erosivity potential based on lack of data are discussed e.g.based on daily rainfall data, average annual rainfall data and the elevation of the area, etc. It should be noted that these methods give us a totally different results in case of different climatic conditions and sometimes huge errors in some cases. Three of the most common methods were selected for our research. Each of them was tested for the first two sections of the study period. According to the outcomes more suitable method for regional climatic conditions was selected, and after that, we determined rainfall erosivity potential for the third section of our study period with use of the most successful method. Outcome data like attribute tables and graphs was specially linked to the database of Kakheti, and appropriate thematic maps were created. The results allowed us to analyze the rainfall erosivity potential changes from 1936 to the present and make the future prospect. We have successfully implemented a method which can also be use for some another region of Georgia.

Keywords: erosivity potential, Georgia, GIS, Kakheti, rainfall

Procedia PDF Downloads 201
57 The Effects of Above-Average Precipitation after Extended Drought on Phytoplankton in Southern California Surface Water Reservoirs

Authors: Margaret K. Spoo-Chupka

Abstract:

The Metropolitan Water District of Southern California (MWDSC) manages surface water reservoirs that are a source of drinking water for more than 19 million people in Southern California. These reservoirs experience periodic planktonic cyanobacteria blooms that can impact water quality. MWDSC imports water from two sources – the Colorado River (CR) and the State Water Project (SWP). The SWP brings supplies from the Sacramento-San Joaquin Delta that are characterized as having higher nutrients than CR water. Above average precipitation in 2017 after five years of drought allowed the majority of the reservoirs to fill. Phytoplankton was analyzed during the drought and after the drought at three reservoirs: Diamond Valley Lake (DVL), which receives SWP water exclusively, Lake Skinner, which can receive a blend of SWP and CR water, and Lake Mathews, which generally receives only CR water. DVL experienced a significant increase in water elevation in 2017 due to large SWP inflows, and there were no significant changes to total phytoplankton biomass, Shannon-Wiener diversity of the phytoplankton, or cyanobacteria biomass in 2017 compared to previous drought years despite the higher nutrient loads. The biomass of cyanobacteria that could potentially impact DVL water quality (Microcystis spp., Aphanizomenon flos-aquae, Dolichospermum spp., and Limnoraphis birgei) did not differ significantly between the heavy precipitation year and drought years. Compared to the other reservoirs, DVL generally has the highest concentration of cyanobacteria due to the water supply having greater nutrients. Lake Mathews’ water levels were similar in drought and wet years due to a reliable supply of CR water and there were no significant changes in the total phytoplankton biomass, phytoplankton diversity, or cyanobacteria biomass in 2017 compared to previous drought years. The biomass of cyanobacteria that could potentially impact water quality at Lake Mathews (L. birgei and Microcystis spp.) did not differ significantly between 2017 and previous drought years. Lake Mathews generally had the lowest cyanobacteria biomass due to the water supply having lower nutrients. The CR supplied most of the water to Lake Skinner during drought years, while the SWP was the primary source during 2017. This change in water source resulted in a significant increase in phytoplankton biomass in 2017, no significant change in diversity, and a significant increase in cyanobacteria biomass. Cyanobacteria that could potentially impact water quality at Skinner included: Microcystis spp., Dolichospermum spp., and A.flos-aquae. There was no significant difference in Microcystis spp. biomass in 2017 compared to previous drought years, but biomass of Dolichospermum spp. and A.flos-aquae were significantly greater in 2017 compared to previous drought years. Dolichospermum sp. and A. flos-aquae are two cyanobacteria that are more sensitive to nutrients than Microcystis spp., which are more sensitive to temperature. Patterns in problem cyanobacteria abundance among Southern California reservoirs as a result of above-average precipitation after more than five years of drought were most closely related to nutrient loading.

Keywords: drought, reservoirs, cyanobacteria, and phytoplankton ecology

Procedia PDF Downloads 252
56 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal

Authors: Linta Rose, Prasad K. Bhaskaran

Abstract:

Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.

Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind

Procedia PDF Downloads 195
55 Modeling of Tsunami Propagation and Impact on West Vancouver Island, Canada

Authors: S. Chowdhury, A. Corlett

Abstract:

Large tsunamis strike the British Columbia coast every few hundred years. The Cascadia Subduction Zone, which extends along the Pacific coast from Vancouver Island to Northern California is one of the most seismically active regions in Canada. Significant earthquakes have occurred in this region, including the 1700 Cascade Earthquake with an estimated magnitude of 9.2. Based on geological records, experts have predicted a 'great earthquake' of a similar magnitude within this region may happen any time. This earthquake is expected to generate a large tsunami that could impact the coastal communities on Vancouver Island. Since many of these communities are in remote locations, they are more likely to be vulnerable, as the post-earthquake relief efforts would be impacted by the damage to critical road infrastructures. To assess the coastal vulnerability within these communities, a hydrodynamic model has been developed using MIKE-21 software. We have considered a 500 year probabilistic earthquake design criteria including the subsidence in this model. The bathymetry information was collected from Canadian Hydrographic Services (CHS), and National Oceanic Atmospheric and Administration (NOAA). The arial survey was conducted using a Cessna-172 aircraft for the communities, and then the information was converted to generate a topographic digital elevation map. Both survey information was incorporated into the model, and the domain size of the model was about 1000km x 1300km. This model was calibrated with the tsunami occurred off the west coast of Moresby Island on October 28, 2012. The water levels from the model were compared with two tide gauge stations close to the Vancouver Island and the output from the model indicates the satisfactory result. For this study, the design water level was considered as High Water Level plus the Sea Level Rise for 2100 year. The hourly wind speeds from eight directions were collected from different wind stations and used a 200-year return period wind speed in the model for storm events. The regional model was set for 12 hrs simulation period, which takes more than 16 hrs to complete one simulation using double Xeon-E7 CPU computer plus a K-80 GPU. The boundary information for the local model was generated from the regional model. The local model was developed using a high resolution mesh to estimate the coastal flooding for the communities. It was observed from this study that many communities will be effected by the Cascadia tsunami and the inundation maps were developed for the communities. The infrastructures inside the coastal inundation area were identified. Coastal vulnerability planning and resilient design solutions will be implemented to significantly reduce the risk.

Keywords: tsunami, coastal flooding, coastal vulnerable, earthquake, Vancouver, wave propagation

Procedia PDF Downloads 111
54 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower

Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam

Abstract:

Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.

Keywords: CFD, performance, VAWT, wind power tower

Procedia PDF Downloads 359
53 Suggestion of Methodology to Detect Building Damage Level Collectively with Flood Depth Utilizing Geographic Information System at Flood Disaster in Japan

Authors: Munenari Inoguchi, Keiko Tamura

Abstract:

In Japan, we were suffered by earthquake, typhoon, and flood disaster in 2019. Especially, 38 of 47 prefectures were affected by typhoon #1919 occurred in October 2019. By this disaster, 99 people were dead, three people were missing, and 484 people were injured as human damage. Furthermore, 3,081 buildings were totally collapsed, 24,998 buildings were half-collapsed. Once disaster occurs, local responders have to inspect damage level of each building by themselves in order to certificate building damage for survivors for starting their life reconstruction process. At that disaster, the total number to be inspected was so high. Based on this situation, Cabinet Office of Japan approved the way to detect building damage level efficiently, that is collectively detection. However, they proposed a just guideline, and local responders had to establish the concrete and infallible method by themselves. Against this issue, we decided to establish the effective and efficient methodology to detect building damage level collectively with flood depth. Besides, we thought that the flood depth was relied on the land height, and we decided to utilize GIS (Geographic Information System) for analyzing the elevation spatially. We focused on the analyzing tool of spatial interpolation, which is utilized to survey the ground water level usually. In establishing the methodology, we considered 4 key-points: 1) how to satisfy the condition defined in the guideline approved by Cabinet Office for detecting building damage level, 2) how to satisfy survivors for the result of building damage level, 3) how to keep equitability and fairness because the detection of building damage level was executed by public institution, 4) how to reduce cost of time and human-resource because they do not have enough time and human-resource for disaster response. Then, we proposed a methodology for detecting building damage level collectively with flood depth utilizing GIS with five steps. First is to obtain the boundary of flooded area. Second is to collect the actual flood depth as sampling over flooded area. Third is to execute spatial analysis of interpolation with sampled flood depth to detect two-dimensional flood depth extent. Fourth is to divide to blocks by four categories of flood depth (non-flooded, over the floor to 100 cm, 100 cm to 180 cm and over 180 cm) following lines of roads for getting satisfaction from survivors. Fifth is to put flood depth level to each building. In Koriyama city of Fukushima prefecture, we proposed the methodology of collectively detection for building damage level as described above, and local responders decided to adopt our methodology at typhoon #1919 in 2019. Then, we and local responders detect building damage level collectively to over 1,000 buildings. We have received good feedback that the methodology was so simple, and it reduced cost of time and human-resources.

Keywords: building damage inspection, flood, geographic information system, spatial interpolation

Procedia PDF Downloads 102
52 Evaluation of Groundwater Quality and Contamination Sources Using Geostatistical Methods and GIS in Miryang City, Korea

Authors: H. E. Elzain, S. Y. Chung, V. Senapathi, Kye-Hun Park

Abstract:

Groundwater is considered a significant source for drinking and irrigation purposes in Miryang city, and it is attributed to a limited number of a surface water reservoirs and high seasonal variations in precipitation. Population growth in addition to the expansion of agricultural land uses and industrial development may affect the quality and management of groundwater. This research utilized multidisciplinary approaches of geostatistics such as multivariate statistics, factor analysis, cluster analysis and kriging technique in order to identify the hydrogeochemical process and characterizing the control factors of the groundwater geochemistry distribution for developing risk maps, exploiting data obtained from chemical investigation of groundwater samples under the area of study. A total of 79 samples have been collected and analyzed using atomic absorption spectrometer (AAS) for major and trace elements. Chemical maps using 2-D spatial Geographic Information System (GIS) of groundwater provided a powerful tool for detecting the possible potential sites of groundwater that involve the threat of contamination. GIS computer based map exhibited that the higher rate of contamination observed in the central and southern area with relatively less extent in the northern and southwestern parts. It could be attributed to the effect of irrigation, residual saline water, municipal sewage and livestock wastes. At wells elevation over than 85m, the scatter diagram represents that the groundwater of the research area was mainly influenced by saline water and NO3. Level of pH measurement revealed low acidic condition due to dissolved atmospheric CO2 in the soil, while the saline water had a major impact on the higher values of TDS and EC. Based on the cluster analysis results, the groundwater has been categorized into three group includes the CaHCO3 type of the fresh water, NaHCO3 type slightly influenced by sea water and Ca-Cl, Na-Cl types which are heavily affected by saline water. The most predominant water type was CaHCO3 in the study area. Contamination sources and chemical characteristics were identified from factor analysis interrelationship and cluster analysis. The chemical elements that belong to factor 1 analysis were related to the effect of sea water while the elements of factor 2 associated with agricultural fertilizers. The degree level, distribution, and location of groundwater contamination have been generated by using Kriging methods. Thus, geostatistics model provided more accurate results for identifying the source of contamination and evaluating the groundwater quality. GIS was also a creative tool to visualize and analyze the issues affecting water quality in the Miryang city.

Keywords: groundwater characteristics, GIS chemical maps, factor analysis, cluster analysis, Kriging techniques

Procedia PDF Downloads 147
51 Coastal Vulnerability Index and Its Projection for Odisha Coast, East Coast of India

Authors: Bishnupriya Sahoo, Prasad K. Bhaskaran

Abstract:

Tropical cyclone is one among the worst natural hazards that results in a trail of destruction causing enormous damage to life, property, and coastal infrastructures. In a global perspective, the Indian Ocean is considered as one of the cyclone prone basins in the world. Specifically, the frequency of cyclogenesis in the Bay of Bengal is higher compared to the Arabian Sea. Out of the four maritime states in the East coast of India, Odisha is highly susceptible to tropical cyclone landfall. Historical records clearly decipher the fact that the frequency of cyclones have reduced in this basin. However, in the recent decades, the intensity and size of tropical cyclones have increased. This is a matter of concern as the risk and vulnerability level of Odisha coast exposed to high wind speed and gusts during cyclone landfall have increased. In this context, there is a need to assess and evaluate the severity of coastal risk, area of exposure under risk, and associated vulnerability with a higher dimension in a multi-risk perspective. Changing climate can result in the emergence of a new hazard and vulnerability over a region with differential spatial and socio-economic impact. Hence there is a need to have coastal vulnerability projections in a changing climate scenario. With this motivation, the present study attempts to estimate the destructiveness of tropical cyclones based on Power Dissipation Index (PDI) for those cyclones that made landfall along Odisha coast that exhibits an increasing trend based on historical data. The study also covers the futuristic scenarios of integral coastal vulnerability based on the trends in PDI for the Odisha coast. This study considers 11 essential and important parameters; the cyclone intensity, storm surge, onshore inundation, mean tidal range, continental shelf slope, topo-graphic elevation onshore, rate of shoreline change, maximum wave height, relative sea level rise, rainfall distribution, and coastal geomorphology. The study signifies that over a decadal scale, the coastal vulnerability index (CVI) depends largely on the incremental change in variables such as cyclone intensity, storm surge, and associated inundation. In addition, the study also performs a critical analysis on the modulation of PDI on storm surge and inundation characteristics for the entire coastal belt of Odisha State. Interestingly, the study brings to light that a linear correlation exists between the storm-tide with PDI. The trend analysis of PDI and its projection for coastal Odisha have direct practical applications in effective coastal zone management and vulnerability assessment.

Keywords: Bay of Bengal, coastal vulnerability index, power dissipation index, tropical cyclone

Procedia PDF Downloads 204
50 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt

Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish

Abstract:

Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.

Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt

Procedia PDF Downloads 49
49 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 79
48 Modelling of Groundwater Resources for Al-Najaf City, Iraq

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.

Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW

Procedia PDF Downloads 177
47 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 167
46 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation

Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras

Abstract:

The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.

Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure

Procedia PDF Downloads 206
45 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 531
44 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 101
43 Evidence for Replication of an Unusual G8P[14] Human Rotavirus Strain in the Feces of an Alpine Goat: Zoonotic Transmission from Caprine Species

Authors: Amine Alaoui Sanae, Tagjdid Reda, Loutfi Chafiqa, Melloul Merouane, Laloui Aziz, Touil Nadia, El Fahim, E. Mostafa

Abstract:

Background: Rotavirus group A (RVA) strains with G8P[14] specificities are usually detected in calves and goats. However, these strains have been reported globally in humans and have often been characterized as originating from zoonotic transmissions, particularly in area where ruminants and humans live side-by-side. Whether human P[14] genotypes are two-way and can be transmitted to animal species remains to be established. Here we describe VP4 deduced amino-acid relationships of three Moroccan P[14] genotypes originating from different species and the receptiveness of an alpine goat to a human G8P[14] through an experimental infection. Material/methods: the human MA31 RVA strain was originally identified in a four years old girl presenting an acute gastroenteritis hospitalized at the pediatric care unit in Rabat Hospital in 2011. The virus was isolated and propagated in MA104 cells in the presence of trypsin. Ch_10S and 8045_S animal RVA strains were identified in fecal samples of a 2-week-old native goat and 3-week-old calf with diarrhea in 2011 in Bouaarfa and My Bousselham respectively. Genomic RNAs of all strains were subjected to a two-step RT-PCR and sequenced using the consensus primers VP4. The phylogenetic tree for MA31, Ch_10S and 8045_S VP4 and a set of published P[14] genotypes was constructed using MEGA6 software. The receptivity of MA31 strain by an eight month-old alpine goat was assayed. The animal was orally and intraperitonally inoculated with a dose of 8.5 TCID50 of virus stock at passage level 3. The shedding of the virus was tested by a real time RT-PCR assay. Results: The phylogenetic tree showed that the three Moroccan strains MA31, Ch_10S and 8045_S VP4 were highly related to each other (100% similar at the nucleotide level). They were clustered together with the B10925, Sp813, PA77 and P169 strains isolated in Belgium, Spain and Italy respectively. The Belgian strain B10925 was the most closely related to the Moroccan strains. In contrast, the 8045_S and Ch_10S strains were clustered distantly from the Tunisian calf strain B137 and the goat strain cap455 isolated in South Africa respectively. The human MA31 RVA strain was able to induce bloody diarrhea at 2 days post infection (dpi) in the alpine goat kid. RVA virus shedding started by 2 dpi (Ct value of 28) and continued until 5 dpi (Ct value of 25) with a concomitant elevation in the body temperature. Conclusions: Our study while limited to one animal, is the first study proving experimentally that a human P[14] genotype causes diarrhea and virus shedding in the goat. This result reinforce the potential role of inter- species transmission in generating novel and rare rotavirus strains such G8P[14] which infect humans.

Keywords: interspecies transmission, rotavirus, goat, human

Procedia PDF Downloads 258