Search results for: Lee metric
306 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs
Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli
Abstract:
We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.Keywords: diffusion processes, metric graphs, invariant measure, reversibility
Procedia PDF Downloads 170305 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result
Authors: Hemant Kumar Pathak
Abstract:
In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.Keywords: fixed point, partial metric space, homotopy, physical sciences
Procedia PDF Downloads 441304 Metric Suite for Schema Evolution of a Relational Database
Authors: S. Ravichandra, D. V. L. N. Somayajulu
Abstract:
Requirement of stakeholders for adding more details to the database is the main cause of the schema evolution in the relational database. Further, this schema evolution causes the instability to the database. Hence, it is aimed to define a metric suite for schema evolution of a relational database. The metric suite will calculate the metrics based on the features of the database, analyse the queries on the database and measures the coupling, cohesion and component dependencies of the schema for existing and evolved versions of the database. This metric suite will also provide an indicator for the problems related to the stability and usability of the evolved database. The degree of change in the schema of a database is presented in the forms of graphs that acts as an indicator and also provides the relations between various parameters (metrics) related to the database architecture. The acquired information is used to defend and improve the stability of database architecture. The challenges arise in incorporating these metrics with varying parameters for formulating a suitable metric suite are discussed. To validate the proposed metric suite, an experimentation has been performed on publicly available datasets.Keywords: cohesion, coupling, entropy, metric suite, schema evolution
Procedia PDF Downloads 448303 Cognitive Weighted Polymorphism Factor: A New Cognitive Complexity Metric
Authors: T. Francis Thamburaj, A. Aloysius
Abstract:
Polymorphism is one of the main pillars of the object-oriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric.Keywords: cognitive complexity metric, object-oriented metrics, polymorphism factor, software metrics
Procedia PDF Downloads 457302 Some Classes of Lorentzian Alpha-Sasakian Manifolds with Respect to Quarter-Symmetric Metric Connection
Authors: Santu Dey, Arindam Bhattacharyya
Abstract:
The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively at, Φ-symmetric, Φ-projectively at Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quartersymmetric metric connection satisfying P.S = 0, where P denote the projective curvature tensor with respect to quarter-symmetric metric connection.Keywords: quarter-symmetric metric connection, Lorentzian alpha-Sasakian manifold, quasi-projectively flat Lorentzian alpha-Sasakian manifold, phi-symmetric manifold
Procedia PDF Downloads 237301 Metric Dimension on Line Graph of Honeycomb Networks
Authors: M. Hussain, Aqsa Farooq
Abstract:
Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network.Keywords: Resolving set, Metric dimension, Honeycomb network, Line graph
Procedia PDF Downloads 199300 A Basic Metric Model: Foundation for an Evidence-Based HRM System
Authors: K. M. Anusha, R. Krishnaveni
Abstract:
Crossing a decade of the 21st century, the paradigm of human resources can be seen evolving with the strategic gene induced into it. There seems to be a radical shift descending as the corporate sector calls on its HR team to become strategic rather than administrative. This transferal eventually requires the metrics employed by these HR teams not to be just operationally reactive but to be aligned to an evidence-based strategic thinking. Realizing the growing need for a prescriptive metric model for effective HR analytics, this study has designed a conceptual framework for a basic metric model that can assist IT-HRM professionals to transition to a practice of evidence-based decision-making to enhance organizational performance.Keywords: metric model, evidence based HR, HR analytics, strategic HR practices, IT sector
Procedia PDF Downloads 403299 On the Influence of the Metric Space in the Critical Behavior of Magnetic Temperature
Authors: J. C. Riaño-Rojas, J. D. Alzate-Cardona, E. Restrepo-Parra
Abstract:
In this work, a study of generic magnetic nanoparticles varying the metric space is presented. As the metric space is changed, the nanoparticle form and the inner product are also varied, since the energetic scale is not conserved. This study is carried out using Monte Carlo simulations combined with the Wolff embedding and Metropolis algorithms. The Metropolis algorithm is used at high temperature regions to reach the equilibrium quickly. The Wolff embedding algorithm is used at low and critical temperature regions in order to reduce the critical slowing down phenomenon. The ions number is kept constant for the different forms and the critical temperatures using finite size scaling are found. We observed that critical temperatures don't exhibit significant changes when the metric space was varied. Additionally, the effective dimension according the metric space was determined. A study of static behavior for reaching the static critical exponents was developed. The objective of this work is to observe the behavior of the thermodynamic quantities as energy, magnetization, specific heat, susceptibility and Binder's cumulants at the critical region, in order to demonstrate if the magnetic nanoparticles describe their magnetic interactions in the Euclidean space or if there is any correspondence in other metric spaces.Keywords: nanoparticles, metric, Monte Carlo, critical behaviour
Procedia PDF Downloads 514298 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 46297 The Role of Tempo in the Perception of Musical Grouping
Authors: Marina B. Cottrell
Abstract:
Tempo plays a significant role in the perception of metrical groupings, with faster tempi tending to increase the number of beats in a given metrical unit. Previous research has shown a correlation between the perception of metric grouping and native language, but little is currently known about other possible musical factors that contribute to metric grouping tendencies. This study aims to find the tempo boundaries at which the perceptual groupings of a melodic pattern changes and to correlate these regions with self-reported musical experience. Participants were presented with looping melodies (divided between major and minor keys). Using a slider bar that controlled the tempo, subjects were asked to locate the point at which they heard the metric grouping doubled or halved. This region was shown to primarily be affected by the mode and time signature of the stimulus. The results also suggest a correlation between the level of musical training and the region of perceived grouping change.Keywords: meter, metric grouping, mode, tempo
Procedia PDF Downloads 140296 A New Fixed Point Theorem for Almost θ-Contraction
Authors: Hichem Ramoul
Abstract:
In this work, we introduce a new type of contractive maps and we establish a new fixed point theorem for the class of almost θ-contractions (more general than the class of almost contractions) in a complete generalized metric space. The major novelty of our work is to prove a new fixed point result by weakening some hypotheses imposed on the function θ which will change completely the classical technique used in the literature review to prove fixed point theorems for almost θ-contractions in a complete generalized metric space.Keywords: almost contraction, almost θ-contraction, fixed point, generalized metric space
Procedia PDF Downloads 302295 A Multimodal Approach to Improve the Performance of Biometric System
Authors: Chander Kant, Arun Kumar
Abstract:
Biometric systems automatically recognize an individual based on his/her physiological and behavioral characteristics. There are also some traits like weight, age, height etc. that may not provide reliable user recognition because of there common and temporary nature. These traits are called soft bio metric traits. Although soft bio metric traits are lack of permanence to uniquely and reliably identify an individual, yet they provide some beneficial evidence about the user identity and may improve the system performance. Here in this paper, we have proposed an approach for integrating the soft bio metrics with fingerprint and face to improve the performance of personal authentication system. In our approach we have proposed a combined architecture of three different sensors to elevate the system performance. The approach includes, soft bio metrics, fingerprint and face traits. We have also proven the efficiency of proposed system regarding FAR (False Acceptance Ratio) and total response time, with the help of MUBI (Multimodal Bio metrics Integration) software.Keywords: FAR, minutiae point, multimodal bio metrics, primary bio metric, soft bio metric
Procedia PDF Downloads 345294 Towards a Goal-Question-Metric Based Approach to Assess Social Sustainability of Software Systems
Authors: Rahma Amri, Narjès Bellamine Ben Saoud
Abstract:
Sustainable development or sustainability is one of the most urgent issues in actual debate in almost domains. Particularly the significant way the software pervades our live should make it in the center of sustainability concerns. The social aspects of sustainability haven’t been well studied in the context of software systems and still immature research field that needs more interest among researchers’ community. This paper presents a Goal-Question-Metric based approach to assess social sustainability of software systems. The approach is based on a generic social sustainability model taken from Social sciences.Keywords: software assessment approach, social sustainability, goal-question-metric paradigm, software project metrics
Procedia PDF Downloads 392293 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items
Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci
Abstract:
An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.Keywords: METRIC, inventory management, irregular demand, spare parts
Procedia PDF Downloads 346292 Experimental Options for the Role of Dynamic Torsion in General Relativity
Authors: Ivan Ravlich, Ivan Linscott, Sigrid Close
Abstract:
The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work.Keywords: general relativity, gravitation, propagating torsion, spin density
Procedia PDF Downloads 227291 A New Verification Based Congestion Control Scheme in Mobile Networks
Authors: P. K. Guha Thakurta, Shouvik Roy, Bhawana Raj
Abstract:
A congestion control scheme in mobile networks is proposed in this paper through a verification based model. The model proposed in this work is represented through performance metric like buffer Occupancy, latency and packet loss rate. Based on pre-defined values, each of the metric is introduced in terms of three different states. A Markov chain based model for the proposed work is introduced to monitor the occurrence of the corresponding state transitions. Thus, the estimation of the network status is obtained in terms of performance metric. In addition, the improved performance of our proposed model over existing works is shown with experimental results.Keywords: congestion, mobile networks, buffer, delay, call drop, markov chain
Procedia PDF Downloads 440290 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 65289 Foliation and the First Law of Thermodynamics for the Kerr Newman Black Hole
Authors: Syed M. Jawwad Riaz
Abstract:
There has been a lot of interest in exploring the thermodynamic properties at the horizon of a black hole geometry. Earlier, it has been shown, for different spacetimes, that the Einstein field equations at the horizon can be expressed as a first law of black hole thermodynamics. In this paper, considering r = constant slices, for the Kerr-Newman black hole, shown that the Einstein field equations for the induced 3-metric of the hypersurface is expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can only be written as a first law of black hole thermodynamics. It is to be mentioned here that the procedure adopted is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.Keywords: black hole space-times, Einstein's field equation, foliation, hyper-surfaces
Procedia PDF Downloads 345288 Gaze Behaviour of Individuals with and without Intellectual Disability for Nonaccidental and Metric Shape Properties
Authors: S. Haider, B. Bhushan
Abstract:
Eye Gaze behaviour of individuals with and without intellectual disability are investigated in an eye tracking study in terms of sensitivity to Nonaccidental (NAPs) and Metric (MPs) shape properties. Total fixation time is used as an indirect measure of attention allocation. Studies have found Mean reaction times for non accidental properties (NAPs) to be shorter than for metric (MPs) when the MP and NAP differences were equalized. METHODS: Twenty-five individuals with intellectual disability (mild and moderate level of Mental Retardation) and twenty-seven normal individuals were compared on mean total fixation duration, accuracy level and mean reaction time for mild NAPs, extreme NAPs and metric properties of images. 2D images of cylinders were adapted and made into forced choice match-to-sample tasks. Tobii TX300 Eye Tracker was used to record total fixation duration and data obtained from the Areas of Interest (AOI). Variable trial duration (total reaction time of each participant) and fixed trail duration (data taken at each second from one to fifteen seconds) data were used for analyses. Both groups did not differ in terms of fixation times (fixed as well as variable) across any of the three image manipulations but differed in terms of reaction time and accuracy. Normal individuals had longer reaction time compared to individuals with intellectual disability across all types of images. Both the groups differed significantly on accuracy measure across all image types. Normal individuals performed better across all three types of images. Mild NAPs vs. Metric differences: There was significant difference between mild NAPs and metric properties of images in terms of reaction times. Mild NAPs images had significantly longer reaction time compared to metric for normal individuals but this difference was not found for individuals with intellectual disability. Mild NAPs images had significantly better accuracy level compared to metric for both the groups. In conclusion, type of image manipulations did not result in differences in attention allocation for individuals with and without intellectual disability. Mild Nonaccidental properties facilitate better accuracy level compared to metric in both the groups but this advantage is seen only for normal group in terms of mean reaction time.Keywords: eye gaze fixations, eye movements, intellectual disability, stimulus properties
Procedia PDF Downloads 552287 Decision Trees Constructing Based on K-Means Clustering Algorithm
Authors: Loai Abdallah, Malik Yousef
Abstract:
A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.Keywords: ensemble clustering, decision trees, classification, K nearest neighbors
Procedia PDF Downloads 189286 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.Keywords: few-shot learning, triplet network, adaptive margin, deep learning
Procedia PDF Downloads 168285 Degree of Approximation by the (T.E^1) Means of Conjugate Fourier Series in the Hölder Metric
Authors: Kejal Khatri, Vishnu Narayan Mishra
Abstract:
We compute the degree of approximation of functions\tilde{f}\in H_w, a new Banach space using (T.E^1) summability means of conjugate Fourier series. In this paper, we extend the results of Singh and Mahajan which in turn generalizes the result of Lal and Yadav. Some corollaries have also been deduced from our main theorem and particular cases.Keywords: conjugate Fourier series, degree of approximation, Hölder metric, matrix summability, product summability
Procedia PDF Downloads 418284 Right Solution of Geodesic Equation in Schwarzschild Metric and Overall Examination of Physical Laws
Authors: Kwan U. Kim, Jin Sim, Ryong Jin Jang, Sung Duk Kim
Abstract:
108 years have passed since a great number of physicists explained astronomical and physical phenomena by solving geodesic equations in Schwarzschild metric. However, when solving the geodesic equations in Schwarzschild metric, they did not correctly solve one branch of the component of space among spatial and temporal components of four-dimensional force and did not come up with physical laws correctly by means of physical analysis from the results obtained by solving the geodesic equations. In addition to it, they did not treat the astronomical and physical phenomena in a physical way based on the correct physical laws obtained from the solution of the geodesic equations in Schwarzschild metric. Therefore, some former scholars mentioned that Einstein’s theoretical basis of the general theory of relativity was obscure and incorrect, but they have not given a correct physical solution to the problems. Furthermore, since the general theory of relativity has not given a quantitative solution to obscure and incorrect problems, the generalization of gravitational theory has not been successfully completed yet, although the former scholars thought of it and tried to do it. In order to solve the problems it is necessary to explore the obscure and incorrect problems in general theory of relativity based on the physical laws and to find out the methodology of solving the problems. Therefore, first of all, as the first step for achieving the purpose, the right solution of the geodesic equation in Schwarzschild metric has been presented. Next, the correct physical laws found by making a physical analysis of the results have been presented, the obscure and incorrect problems have been shown, and an analysis of them has been made based on the physical laws. In addition, the experimental verification of the physical laws found by us has been made.Keywords: equivalence principle, general relativity, geometrodynamics, Schwarzschild, Poincaré
Procedia PDF Downloads 78283 Right Solution of Geodesic Equation in Schwarzschild Metric and Overall Examination of Physical Laws
Authors: Kwan U. Kim, Jin Sim, Ryong Jin Jang, Sung Duk Kim
Abstract:
108 years have passed since a great number of physicists explained astronomical and physical phenomena by solving geodesic equations in the Schwarzschild metric. However, when solving the geodesic equations in Schwarzschild metric, they did not correctly solve one branch of the component of space among spatial and temporal components of four-dimensional force and did not come up with physical laws correctly by means of physical analysis from the results obtained by solving the geodesic equations. In addition, they did not treat the astronomical and physical phenomena in a physical way based on the correct physical laws obtained from the solution of the geodesic equations in the Schwarzschild metric. Therefore, some former scholars mentioned that Einstein’s theoretical basis of a general theory of relativity was obscure and incorrect, but they did not give a correct physical solution to the problems. Furthermore, since the general theory of relativity has not given a quantitative solution to obscure and incorrect problems, the generalization of gravitational theory has not yet been successfully completed, although former scholars have thought of it and tried to do it. In order to solve the problems, it is necessary to explore the obscure and incorrect problems in a general theory of relativity based on the physical laws and to find out the methodology for solving the problems. Therefore, as the first step toward achieving this purpose, the right solution of the geodesic equation in the Schwarzschild metric has been presented. Next, the correct physical laws found by making a physical analysis of the results have been presented, the obscure and incorrect problems have been shown, and an analysis of them has been made based on the physical laws. In addition, the experimental verification of the physical laws found by us has been made.Keywords: equivalence principle, general relativity, geometrodynamics, Schwarzschild, Poincaré
Procedia PDF Downloads 14282 A New Concept for Deriving the Expected Value of Fuzzy Random Variables
Authors: Liang-Hsuan Chen, Chia-Jung Chang
Abstract:
Fuzzy random variables have been introduced as an imprecise concept of numeric values for characterizing the imprecise knowledge. The descriptive parameters can be used to describe the primary features of a set of fuzzy random observations. In fuzzy environments, the expected values are usually represented as fuzzy-valued, interval-valued or numeric-valued descriptive parameters using various metrics. Instead of the concept of area metric that is usually adopted in the relevant studies, the numeric expected value is proposed by the concept of distance metric in this study based on two characters (fuzziness and randomness) of FRVs. Comparing with the existing measures, although the results show that the proposed numeric expected value is same with those using the different metric, if only triangular membership functions are used. However, the proposed approach has the advantages of intuitiveness and computational efficiency, when the membership functions are not triangular types. An example with three datasets is provided for verifying the proposed approach.Keywords: fuzzy random variables, distance measure, expected value, descriptive parameters
Procedia PDF Downloads 342281 Resilience Assessment for Power Distribution Systems
Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang
Abstract:
Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters
Procedia PDF Downloads 221280 Biohydrogen Production Derived from Banana Pseudo Stem of Agricultural Residues by Dark Fermentation
Authors: Kholik
Abstract:
Nowadays, the demand of renewable energy in general is increasing due to the crisis of fossil fuels. Biohydrogen is an alternative fuel with zero emission derived from renewable resources such as banana pseudo stem of agricultural residues. Banana plant can be easily found in tropical and subtropical areas, so the resource is abundant and readily available as a biohydrogen substrate. Banana pseudo stem has not been utilised as a resource or substrate of biohydrogen production and it mainly contains 45-65% cellulose (α-cellulose), 5-15% hemicellulose and 20-30% Lignin, which indicates that banana pseudo stem will be renewable, sustainable and promising resource as lignocellulosic biomass. In this research, biohydrogen is derived from banana pseudo stem by dark fermentation. Dark fermentation is the most suitable approach for practical biohydrogen production from organic solid wastes. The process has several advantages including a fast reaction rate, no need of light, and a smaller footprint. 321 million metric tonnes banana pseudo stem of 428 million metric tonnes banana plantation residues in worldwide for 2013 and 22.5 million metric tonnes banana pseudo stem of 30 million metric tonnes banana plantation residues in Indonesia for 2015 will be able to generate 810.60 million tonne mol H2 and 56.819 million tonne mol H2, respectively. In this paper, we will show that the banana pseudo stem is the renewable, sustainable and promising resource to be utilised and to produce biohydrogen as energy generation with high yield and high contain of cellulose in comparison with the other substrates.Keywords: banana pseudo stem, biohydrogen, dark fermentation, lignocellulosic
Procedia PDF Downloads 351279 Gravitational Wave Solutions in Modified Gravity Theories
Authors: Hafiza Rizwana Kausar
Abstract:
In this paper, we formulate the wave equation in modified theories, particularly in f(R) theory, scalar-tensor theory, and metric palatine f(X) theory. We solve the wave equation in each case and try to find maximum possible solutions in the form polarization modes. It is found that modified theories present at most six modes however the mentioned metric theories allow four polarization modes, two of which are tensor in nature and other two are scalars.Keywords: gravitational waves, modified theories, polariozation modes, scalar tensor theories
Procedia PDF Downloads 361278 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric
Authors: Geetika Barman, B. S. Daya Sagar
Abstract:
In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology
Procedia PDF Downloads 83277 On Projective Invariants of Spherically Symmetric Finsler Spaces in Rn
Authors: Nasrin Sadeghzadeh
Abstract:
In this paper we study projective invariants of spherically symmetric Finsler metrics in Rn. We find the necessary and sufficient conditions for the metrics to be Douglas and Generalized Douglas-Weyl (GDW) types. Also we show that two classes of GDW and Douglas spherically symmetric Finsler metrics coincide.Keywords: spherically symmetric finsler metrics in Rn, finsler metrics, douglas metric, generalized Douglas-Weyl (GDW) metric
Procedia PDF Downloads 357