Search results for: almost contraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 169

Search results for: almost contraction

169 Analysis of Chatterjea Type F-Contraction in F-Metric Space and Application

Authors: Awais Asif

Abstract:

This article investigates fixed point theorems of Chatterjea type F-contraction in the setting of F-metric space. We relax the conditions of F-contraction and define modified F-contraction for two mappings. The study provides fixed point results for both single-valued and multivalued mappings. The results are further extended to common fixed point theorems for two mappings. Moreover, to discuss the applicability of our results, an application is provided, which shows the role of our results in finding the solution to functional equations in dynamic programming. Our results generalize and extend the existing results in the literature.

Keywords: Chatterjea type F-contraction, F-cauchy sequence, F-convergent, multi valued mappings

Procedia PDF Downloads 105
168 Contraction and Membrane Potential of C2C12 with GTXs

Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto

Abstract:

Culture techniques of skeletal muscle cells are advanced in the field of regenerative medicine and applied research of cultured muscle. As applied research of cultured muscle, myopathy (muscles disease) treatment is expected and development bio of actuator is also expected in biomedical engineering. Grayanotoxins (GTXs) is known as neurotoxins that enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as well as a phytotoxin. In this study, we investigated the effect of GTXs on muscle cells (C2C12) contraction and membrane potential. Contraction of myotubes is induced by applied external electrical stimulation. Contraction and membrane potential change of skeletal muscle cells are induced by injection of current. We, therefore, concluded that effect of Grayanotoxins on contraction and membrane potential of C2C12 relate to acute toxicity of GTXs.

Keywords: skeletal muscle cells C2C12, grayanotoxins, contraction, membrane potential, acute toxicity, pytotoxin, motubes

Procedia PDF Downloads 476
167 Effect of Different Muscle Contraction Mode on the Expression of Myostatin, IGF-1, and PGC-1 Alpha Family Members in Human Vastus Lateralis Muscle

Authors: Pejman Taghibeikzadehbadr

Abstract:

Muscle contraction stimulates a transient change of myogenic factors, partly related to the mode of contractions. Here, we assessed the response of Insulin-like growth factor 1Ea (IGF-1Ea), Insulin-like growth factor 1Eb (IGF-1Eb), Insulin-like growth factor 1Ec (IGF-1Ec), Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α-1), Peroxisome proliferator-activated receptor gamma coactivator 4-alpha (PGC1α-4), and myostatin to the eccentric Vs the concentric contraction in human skeletal muscle. Ten healthy males were performed an acute eccentric and concentric exercise bout (n = 5 per group). For each contraction type, participants performed 12 sets of 10 repetitions knee extension by the dominant leg. Baseline and post-exercise muscle biopsy were taken 4 weeks before and immediately after experimental sessions from Vastus Lateralis muscle. Genes expression was measured by real-time PCR technique. There was a significant increase in PGC1α-1, PGC1α-4, IGF-1Ea and, IGF-1Eb mRNA after concentric contraction (p ≤ 0.05), while the PGC1α-4 and IGF-1Ec significantly increased after eccentric contraction (p ≤ 0.05). It is intriguing to highlight that; no significant differences between groups were evident for changes in any variables following exercise bouts (p ≥ 0.05). Our results found that concentric and eccentric contractions presented different responses in PGC1α-1, IGF-1Ea, IGF-1Eb, and IGF-1Ec mRNA. However, a similar significant increase in mRNA content was observed in PGC1α-4. Further, no apparent differences could be found between the response of genes to eccentric and concentric contraction.

Keywords: eccentric contraction, concentric contraction, gene expression, PGC-1 alpha, IGF-1 Myostatin

Procedia PDF Downloads 132
166 Effect of Grayanotoxins on Skeletal Muscle Cell C2C12

Authors: Bayan Almofty, Yuto Yamaki, Tadamasa Terai, Sadahito Uto

Abstract:

Myopathy (muscles disease) treatment are expected in the field of regenerative medicine and applied research of cultured muscle to bio actuator is performed in Biomedical Engineering as applied research of cultured muscle. This study is about cultured myoblast C2C12 from mouse skeletal muscle and a mechanism of cultured muscle contraction by electric stimulation is investigated. Grayanotoxins (GTXs) belong to neurotoxins known to enhance the permeability of cell membrane for Na ions. Grayanotoxins are extracted from a famous Pieris japonica and Ericaceae as a phytotoxin. We investigated the functional role of GTXs on muscle cells (C2C12) contraction and membrane potential. A change in membrane potential is measured using a micro glass tube electrode contraction of myotubes is induced by applying an external electrical stimulation. The contraction and membrane potential change induced by injection of current using the micro glass electrode are also measured. From the result, contraction and membrane potential of muscle cells was affected by GTXs treatment, suggesting that the diverse chemical structures of GTXs are responsible for contraction and membrane potential of muscle cells.

Keywords: skeletal muscle, C2C12, myoblast, myotubes, contraction, Grayanotoxins, membrane potential, neurotoxins, phytotoxin

Procedia PDF Downloads 438
165 A New Fixed Point Theorem for Almost θ-Contraction

Authors: Hichem Ramoul

Abstract:

In this work, we introduce a new type of contractive maps and we establish a new fixed point theorem for the class of almost θ-contractions (more general than the class of almost contractions) in a complete generalized metric space. The major novelty of our work is to prove a new fixed point result by weakening some hypotheses imposed on the function θ which will change completely the classical technique used in the literature review to prove fixed point theorems for almost θ-contractions in a complete generalized metric space.

Keywords: almost contraction, almost θ-contraction, fixed point, generalized metric space

Procedia PDF Downloads 265
164 The Clinical Manifestations of Myocardial Bridging in Patients with Coronary Artery Disease

Authors: Alexey Yu. Martynov, Sulejman Bayramov

Abstract:

Introduction: The myocardial bridging is the most common anomaly of the coronary arteries (CA). Depending on the examination method, the frequency of detected myocardial bridges (MB) varies in a rather wide range. The typical clinical manifestations of MB are angina pectoris, arrhythmias, sudden cardiac death. Objective: To study the incidence of MB in patients hospitalized with coronary artery disease (CAD). To assess clinical manifestations of MB in patients admitted with CAD. Materials and methods: A retrospective analysis of 19159 case histories of patients admitted at clinical city hospital in Moscow from 01.01.2018 to 31.12 2019 with CAD was performed. 9384 patients’ coronary angiographies (CAG) were examined for MB. The localization of MB, the degree of coronary contraction by MB, the number of MB, isolated MB and combined with CAD were assessed. The clinical manifestations of MB were determined. Results: MB was detected in 52 patients all with one myocardial bridge. 20 patients with MB have intact CA, and 32 patients have MB combined with CAD. Among 20 patients with intact CA: I degree of MB contraction (up to 50%) was detected in 9 patients. Clinical manifestations in five cases were angina pectoris, in 3 myocardial infarction (MI) - 1 patients with ST segment elevation MI (STEMI), 2 without ST segment elevation MI (NSTEMI), 1 post-infarction cardiosclerosis (PICS). Stable angina II FC in 3, III FC in 1, vasospastic angina (VSA) in 1 patient. II degree of MB contraction (up to 50-70%) was determined in 9 patients: in seven cases angina pectoris was detected, 1 NSTEMI, 1 PICS. Stable angina II FC in 3, III FC in 1, VSA in 3 patients. III degree of MB contraction (> 70%) detected in 2 patients. II FC stable angina in one case, PICS in another. Among 32 patients having MB combined with CAD I degree of MB contraction was observed in 20 patients. Clinical manifestations in 12 cases were angina pectoris in 8 II FC and in 4 III FC, 7 MI 6 with STEMI and 1 NSTEMI, 1 PICS. II degree of MB contraction was detected in 7 patients, 4 of them had angina pectoris, 3 MI 2 with STEMI and 1 NSTEMI. Stable angina II FC in 3, VSA in 1 patients. III degree of MB contraction was diagnosed in five patients. In two cases, II FC and III FC stable angina were observed, 2 MI with STEMI and NSTEMI, 1 PICS. Conclusions: MB incidence is one in 368 patients with CAD. The most common involvement (68%) is MB combined with CA atherosclerotic lesions. MB with intact CA are detected in one-third (32%) of patients. The first-degree MB contraction is most frequent condition. MI is more often detected in intact CA with first degree MB than in the second degree. The degree of MB contraction was not correlated with the severity of the clinical manifestations.

Keywords: clinical manifestations, coronary angiography, coronary artery disease, myocardial bridging, myocardial infarction, stable angina

Procedia PDF Downloads 94
163 Effect of Submaximal Eccentric versus Maximal Isometric Contraction on Delayed Onset Muscle Soreness

Authors: Mohamed M. Ragab, Neveen A. Abdel Raoof, Reham H. Diab

Abstract:

Background: Delayed onset muscle soreness (DOMS) is the most common symptom when ordinary individuals and athletes are exposed to unaccustomed physical activity, especially eccentric contraction which impairs athletic performance, ordinary people work ability and physical functioning. A multitude of methods have been investigated to reduce DOMS. One of the valuable method to control DOMS is repeated bout effect (RBE) as a prophylactic method. Purpose: To compare the repeated bout effect of submaximal eccentric contraction versus maximal isometric contraction on induced DOMS. Methods: Sixty normal male volunteers were assigned randomly into three groups of equal number: Group (A) “first study group”: 20 subjects received submaximal eccentric contraction on non-dominant elbow flexors as prophylactic exercise. Group (B) “second study group”: 20 subjects received maximal isometric contraction on non-dominant elbow flexors as prophylactic exercise. Group (C) “control group”: 20 subjects did not receive any prophylactic exercise. Maximal isometric contraction peak torque of elbow flexors and patient related elbow evaluation (PREE) scale were measured for each subject 3 times before, immediately after and 48 hours after induction of DOMS. Results: Post-hoc test for maximal isometric peak torque and PREE scale immediately and 48 hours after induction of DOMS revealed that group (A) and group (B) resulted in significant decrease in maximal isometric strength loss and elbow pain and disability rather than control group (C), but submaximal eccentric group (A) was more effective than maximal isometric group (B) as it showed more rapid recovery of functional strength and less degrees of elbow pain and disability. Conclusion: Both submaximal eccentric contraction and maximal isometric contraction were effective in prevention of DOMS but submaximal eccentric contraction had the greatest protective effect.

Keywords: delayed onset muscle soreness, maximal isometric peak torque, patient related elbow evaluation scale, repeated bout effect

Procedia PDF Downloads 324
162 Sustainable Smart Contraction: China Eco-district Evolution Research and Future Exploration

Authors: Xincheng He, Weijun Gao, Gangwei Cai

Abstract:

In the process of rapid urbanization, large-scale industrial production, and unreasonable planning and construction have caused various ecological and environmental problems, while hindered the sustainable development of cities. The ecological district not only realizes the coordinated development of society, economy, and environment but also conforms to the trend of smart contraction of the development of cities in China from the periphery to the center. This paper reviews the development of China's ecological district, including the full life cycle process of policy, planning, implementation, and operation. Based on sorting out the concept, connotation, and development status of China’s ecological district, the relationship between the construction of the ecological district and the sustainable city is discussed. Summarizing the development trend of the ecological district, the ecological district should combine the construction of smart cities, actively respond to the digital information era, and improve the construction of the ecological district system. It proposes that the future direction of city's sustainable development needs to change from a thematic focus on ecology to the common urbanization of humanity, society, and nature. Focusing on people-oriented, ecological, and digital future communities will become an important construction method for the city's sustainable smart contraction.

Keywords: eco-district, smart contraction, sustainable development, future community

Procedia PDF Downloads 110
161 Numerical Investigation of Effect of Throat Design on the Performance of a Rectangular Ramjet Intake

Authors: Subrat Partha Sarathi Pattnaik, Rajan N.K.S.

Abstract:

Integrated rocket ramjet engines are highly suitable for long range missile applications. Designing the fixed geometry intakes for such missiles that can operate efficiently over a range of operating conditions is a highly challenging task. Hence, the present study aims to evaluate the effect of throat design on the performance of a rectangular mixed compression intake for operation in the Mach number range of 1.8 – 2.5. The analysis has been carried out at four different Mach numbers of 1.8, 2, 2.2, 2.5 and two angle-of-attacks of +5 and +10 degrees. For the throat design, three different throat heights have been considered, one corresponding to a 3- external shock design and two heights corresponding to a 2-external shock design leading to different internal contraction ratios. The on-design Mach number for the study is M 2.2. To obtain the viscous flow field in the intake, the theoretical designs have been considered for computational fluid dynamic analysis. For which Favre averaged Navier- Stokes (FANS) equations with two equation SST k-w model have been solved. The analysis shows that for zero angle of attack at on-design and high off-design Mach number operations the three-ramp design leads to a higher total pressure recovery (TPR) compared to the two-ramp design at both contraction ratios maintaining same mass flow ratio (MFR). But at low off-design Mach numbers the total pressure shows an opposite trend that is maximum for the two-ramp low contraction ratio design due to lower shock loss across the external shocks similarly the MFR is higher for low contraction ratio design as the external ramp shocks move closer to the cowl. At both the angle of attack conditions and complete range of Mach numbers the total pressure recovery and mass flow ratios are highest for two ramp low contraction design due to lower stagnation pressure loss across the detached bow shock formed at the ramp and lower mass spillage. Hence, low contraction design is found to be suitable for higher off-design performance.

Keywords: internal contraction ratio, mass flow ratio, mixed compression intake, performance, supersonic flows

Procedia PDF Downloads 71
160 Evaluation of Digital Assessment of Anal Sphincter Muscle Strength

Authors: Emmanuel Kamal Aziz Saba, Gihan Abd El-Lateif Younis El-Tantawi, Mohammed Hamdy Zahran, Ibrahim Khalil Ibrahim, Mohammed Abd El-Salam Shehata, Hussein Al-Moghazy Sultan, Medhat Mohamed Anwar

Abstract:

Examination of the external anal sphincter muscle strength of voluntary contraction is essential in initial assessment and assessment of efficacy of rehabilitation of patients with faecal incontinence (FI) and obstructed defecation (OD). The present study was conducted to evaluate the digital assessment of the external anal sphincter muscle strength of voluntary contraction by using Modified Oxford Scale (MOS) in comparison to anal manometry squeeze pressure. The present cross-sectional study included 65 patients. There were 40 patients (61.5 %) with FI and 25 patients (38.5 %) with OD. All patients were subjected to history taking, clinical examination including assessment of the external anal sphincter muscle strength of voluntary contraction by using MOS and anal manometry (mean squeeze pressure and maximal squeeze pressure). There was a statistically significant positive correlation between MOS and anal manometry squeeze pressures including mean squeeze pressure and maximal squeeze pressure among FI group and OD group. In conclusion, assessment of the external anal sphincter muscle strength of voluntary contraction by using MOS is a valid method and can substitute anal manometry assessment.

Keywords: anal manometry, external anal sphincter muscle, Modified Oxford Scale, muscle strength

Procedia PDF Downloads 369
159 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions

Authors: Sahib Dino Naseerani

Abstract:

The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.

Keywords: imaginary pressure, contraction, variation, relative motion

Procedia PDF Downloads 59
158 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 116
157 Evaluation of Excision Wound Healing Activity of Ethanolic Extract of Michelia Champaca ın Diabetic Wistar Rats

Authors: Smita Shenoy, Amoolya Gowda, Tara Shanbhag, Krishnananda Prabhu, Venumadhav Nelluri

Abstract:

The study was undertaken to assess the effect of ethanolic extract of Michelia champaca on excision wound healing in diabetic wistar rats. Excision wound was made in five groups of rats after inducing diabetes with streptozotocin in four groups. Paraffin was applied to wounds in nondiabetic and diabetic control and 2.5%, 5%, 10% ointment of extract to wounds in three diabetic test groups. Monitoring of wound contraction rate, the period of epithelization and histopathological examination of granulation tissue was done. There was a significant (p < 0.05) decrease in the period of epithelization and a significant increase in the wound contraction rate on day 12 and 16 in rats treated with 5% and 10% ointment as compared to diabetic rats. There was a better organization of collagen fibers in the granulation tissue of wounds treated with 10% ointment. The higher dose of ethanolic extract of Michelia champaca promoted wound healing in diabetic Wistar rats.

Keywords: Michelia champaca, excision wound, contraction, epithelization

Procedia PDF Downloads 319
156 Amelioration of Arsenic and Mercury Induced Vasoconstriction by Eugenol, Linalool and Carvone

Authors: Swati Kundu, Seemi Farhat Basir, Luqman A. Khan

Abstract:

Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. Pathways involved in this hypercontraction and their relative contribution are not understood. In this study, we measure agonist-induced contraction of isolated rat aorta exposed to arsenic and mercury aorta and delineate pathways mediating this effect. PE-induced hypercontraction of 37% and 32% was obtained with 25 µM As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in the presence of apocynin, verapamil and sodium nitroprusside indicates that the major cause of increased contraction is reactive oxygen species and depletion of nitric oxide. Calcium influx plays a minor role in both arsenic and mercury caused hypercontraction. In the unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since arsenic and mercury caused hypercontraction is mediated by increased ROS and depletion of nitric oxide, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we find eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone.

Keywords: carvone, eugenol, linalool, mercury

Procedia PDF Downloads 291
155 Cyclic Evolution of a Two Fluid Diffusive Universe

Authors: Subhayan Maity

Abstract:

Complete scenario of cosmic evolution from emergent phase to late time acceleration (i.e. non-singular ever expanding Universe) is a popular preference in the recent cosmology. Yet one can’t exclude the idea that other type of evolution pattern of the Universe may also be possible. Especially, the bouncing scenario is becoming a matter of interest now a days. The present work is an exhibition of such a different pattern of cosmic evolution where the evolution of Universe has been shown as a cyclic thermodynamic process. Under diffusion mechanism (non-equilibrium thermodynamic process), the cosmic evolution has been modelled as [ emergent - accelerated expansion - decelerated expansion - decelerated contraction - accelerated contraction - emergent] .

Keywords: non-equilibrium thermodynamics, non singular evolution of universe, cyclic evolution, diffusive fluid

Procedia PDF Downloads 108
154 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 172
153 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 296
152 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 25
151 The Effects of English Contractions on the Application of Syntactic Theories

Authors: Wakkai Hosanna Hussaini

Abstract:

A formal structure of the English clause is composed of at least two elements – subject and verb, in structural grammar and at least one element – predicate, in systemic (functional) and generative grammars. Each of the elements can be represented by a word or group (of words). In modern English structure, very often speakers merge two words as one with the use of an apostrophe. Each of the two words can come from different elements or belong to the same element. In either case, result of the merger is called contraction. Although contractions constitute a part of modern English structure, they are considered informal in nature (more frequently used in spoken than written English) that is why they were initially viewed as constituting an evidence of language deterioration. To our knowledge, no formal syntactic theory yet has been particular on the contractions because of its deviation from the formal rules of syntax that seek to identify the elements that form a clause in English. The inconsistency between the formal rules and a contraction is established when two words representing two elements in a non-contraction are merged as one element to form a contraction. Thus the paper presents the various syntactic issues as effects arising from converting non-contracted to contracted forms. It categorizes English contractions and describes each category according to its syntactic relations (position and relationship) and morphological formation (form and content) as integral part of modern structure of English. This is a position paper as such the methodology is observational, descriptive and explanatory/analytical based on existing related literature. The inventory of English contractions contained in books on syntax forms the data from where specific examples are drawn. It is noted as conclusion that the existing syntactic theories were not originally established to account for English contractions. The paper, when published, will further expose the inadequacies of the existing syntactic theories by giving more reasons for the establishment of a more comprehensive syntactic theory for analyzing English clause/sentence structure involving contractions. The method used reveals the extent of the inadequacies in applying the three major syntactic theories: structural, systemic (functional) and generative, on the English contractions. Although no theory is without scope, shying away from the three major theories from recognizing the English contractions need to be broken because of the increasing popularity of its use in modern English structure. The paper, therefore, recommends that as use of contraction gains more popular even in formal speeches today, there is need to establish a syntactic theory to handle its patterns of syntactic relations and morphological formation.

Keywords: application, effects, English contractions, syntactic theories

Procedia PDF Downloads 211
150 Relation of Electromyography, Strength and Fatigue During Ramp Isometric Contractions

Authors: Cesar Ferreira Amorim, Tamotsu Hirata, Runer Augusto Marson

Abstract:

The purpose of this study was to determine the effect of strength ramp isometric contraction on changes in surface electromyography (sEMG) signal characteristics of the hamstrings muscles. All measurements were obtained from 20 healthy well trained healthy adults (age 19.5 ± 0.8 yrs, body mass 63.4 ± 1.5 kg, height: 1.65 ± 0.05 m). Subjects had to perform isometric ramp contractions in knee flexion with the force gradually increasing from 0 to 40% of the maximal voluntary contraction (MVC) in a 20s period. The root mean square (RMS) amplitude of sEMG signals obtained from the biceps femoris (caput longum) were calculated at four different strength levels (10, 20, 30, and 40% MVC) from the ramp isometric contractions (5s during the 20s task %MVC). The main results were a more pronounced increase non-linear in sEMG-RMS amplitude for the muscles. The protocol described here may provide a useful index for measuring of strength neuromuscular fatigue.

Keywords: biosignal, surface electromyography, ramp contractions, strength

Procedia PDF Downloads 452
149 The Use of a Rabbit Model to Evaluate the Influence of Age on Excision Wound Healing

Authors: S. Bilal, S. A. Bhat, I. Hussain, J. D. Parrah, S. P. Ahmad, M. R. Mir

Abstract:

Background: The wound healing involves a highly coordinated cascade of cellular and immunological response over a period including coagulation, inflammation, granulation tissue formation, epithelialization, collagen synthesis and tissue remodeling. Wounds in aged heal more slowly than those in younger, mainly because of comorbidities that occur as one age. The present study is about the influence of age on wound healing. 1x1cm^2 (100 mm) wounds were created on the back of the animal. The animals were divided into two groups; one group had animals in the age group of 3-9 months while another group had animals in the age group of 15-21 months. Materials and Methods: 24 clinically healthy rabbits in the age group of 3-21 months were used as experimental animals and divided into two groups viz A and B. All experimental parameters, i.e., Excision wound model, Measurement of wound area, Protein extraction and estimation, Protein extraction and estimation and DNA extraction and estimation were done by standard methods. Results: The parameters studied were wound contraction, hydroxyproline, glucosamine, protein, and DNA. A significant increase (p<0.005) in the hydroxyproline, glucosamine, protein and DNA and a significant decrease in wound area (p<0.005) was observed in the age group of 3-9 months when compared to animals of an age group of 15-21 months. Wound contraction together with hydroxyproline, glucosamine, protein and DNA estimations suggest that advanced age results in retarded wound healing. Conclusion: The decrease wound contraction and accumulation of hydroxyproline, glucosamine, protein and DNA in group B animals may be associated with the reduction or delay in growth factors because of the advancing age.

Keywords: age, wound healing, excision wound, hydroxyproline, glucosamine

Procedia PDF Downloads 620
148 Fatty Acid Metabolism in Hypertension

Authors: Yin Hua Zhang

Abstract:

Cardiac metabolism is essential in myocardial contraction. In addition to glucose, fatty acids (FA) are essential in producing energy in the myocardium since FA-dependent beta-oxidation accounts for > 70-90% of cellular ATP under resting conditions. However, metabolism shifts from FAs to glucose utilization during disease progression (e.g. hypertrophy and ischemic myocardium), where glucose oxidation and glycolysis become the predominant sources of cellular ATP. At advanced failing stage, both glycolysis and beta-oxidation are dysregulated, result in insufficient supply of intracellular ATP and weakened myocardial contractility. Undeniably, our understandings of myocyte function in healthy and diseased hearts are based on glucose (10 mM)-dependent metabolism because glucose is the “sole” metabolic substrate in most of the physiological experiments. In view of the importance of FAs in cardiovascular health and diseases, we aimed to elucidate the impacts of FA supplementation on myocyte contractility and evaluate cellular mechanisms those mediate the functions in normal heart and with pathological stress. In particular, we have investigated cardiac excitation-contraction (E-C) coupling in the presence and absence of FAs in normal and hypertensive rat left ventricular (LV) myocytes. Our results reveal that FAs increase mitochondrial activity, intracellular [Ca²+]i, and LV myocyte contraction in healthy LV myocytes, whereas FA-dependent cardiac inotropyis attenuated in hypertension. FA-dependent myofilament Ca²+ desensitization could be fundamental in regulating [Ca²+]i. Collectively, FAs supplementation resets cardiac E-C coupling scheme in healthy and diseased hearts.

Keywords: hypertension, fatty acid, heart, calcium

Procedia PDF Downloads 73
147 Correlation of Strength and Change in the Thickness of Back Extensor Muscles during Maximal Isometric Contraction in Healthy and Osteoporotic Postmenopausal Women

Authors: Mohammad Jan-Nataj Zeinab, Kahrizi Sedighe, Bayat Noshin, Giti Torkaman

Abstract:

According to the importance of the back extensor muscle strength in postmenopausal women, this study aimed to determine the relationship between strength and changes in the thickness of back extensor muscles during isometric contraction in healthy and osteoporotic postmenopausal women. Strength and thickness of the muscles of 42 postmenopausal women were measured respectively, using a handheld dynamometer and ultrasonography. Also, the Pearson correlation coefficient was used to analyze the relationship between the strength and thickness. The results indicated a high reproducibility dynamometer test and ultrasonography. The decrease of strength in people with osteoporosis, occurred more through changes in muscle structure such as reducing the number and size of muscle fibers than changes in the nervous system part.

Keywords: back extensor muscles, strength, thickness, osteoporosis

Procedia PDF Downloads 227
146 Open Channel Flow Measurement of Water by Using Width Contraction

Authors: Arun Goel, D. V. S. Verma, Sanjeev Sangwan

Abstract:

The present study was aimed to develop a discharge measuring device for irrigation and laboratory channels. Experiments were conducted on a sharp edged constricted flow meters having four types of width constrictions namely 2:1, 1.5:1, 1:1, and 90o in the direction of flow. These devices were made of MS sheets and installed separately in a rectangular flume. All these four devices were tested under free and submerged flow conditions. Eight different discharges varying from 2 lit/sec to 30 lit/sec were passed through each device. In total around 500 observations of upstream and downstream depths were taken in the present work. For each discharge, free submerged and critical submergence under different flow conditions were noted and plotted. Once the upstream and downstream depths of flow over any of the device are known, the discharge can be easily calculated with the help of the curves developed for free and submerged flow conditions. The device having contraction 2:1 is the most efficient one as it allows maximum critical submergence.

Keywords: flowrate, flowmeter, open channels, submergence

Procedia PDF Downloads 386
145 Effect of Fast and Slow Tempo Music on Muscle Endurance Time

Authors: Rohit Kamal, Devaki Perumal Rajaram, Rajam Krishna, Sai Kumar Pindagiri, Silas Danielraj

Abstract:

Introduction: According to WHO, Global health observatory at least 2.8 million people die each year because of obesity and overweight. This is mainly because of the adverse metabolic effects of obesity and overweight on blood pressure, lipid profile especially cholesterol and insulin resistance. To achieve optimum health WHO has set the BMI in the range of 18.5 to 24.9 kg/m2. Due to modernization of life style, physical exercise in the form of work is no longer a possibility and hence an effective way to burn out calories to achieve the optimum BMI is the need of the hour. Studies have shown that exercising for more than 60 minutes /day helps to maintain the weight and to reduce the weight exercise should be done for 90 minutes a day. Moderate exercise for about 30 min is essential for burning up of calories. People with low endurance fail to perform even the low intensity exercise for minimal time. Hence, it is necessary to find out some effective method to increase the endurance time. Methodology: This study was approved by the Institutional Ethical committee of our college. After getting written informed consent, 25 apparently healthy males between the age group 18-20 years were selected. Subjects are with muscular disorder, subjects who are Hypertensive, Diabetes, Smokers, Alcoholics, taking drugs affecting the muscle strength. To determine the endurance time: Maximum voluntary contraction (MVC) was measured by asking the participants to squeeze the hand grip dynamometer as hard as possible and hold it for 3 seconds. This procedure was repeated thrice and the average of the three reading was taken as the maximum voluntary contraction. The participant was then asked to squeeze the dynamometer and hold it at 70% of the maximum voluntary contraction while hearing fast tempo music which was played for about ten minutes then the participant was asked to relax for ten minutes and was made to hold the hand grip dynamometer at 70% of the maximum voluntary contraction while hearing slow tempo music. To avoid the bias of getting habituated to the procedure the order of hearing for the fast and slow tempo music was changed. The time for which they can hold it at 70% of MVC was determined by using a stop watch and that was taken as the endurance time. Results: The mean value of the endurance time during fast and slow tempo music was compared in all the subjects. The mean MVC was 34.92 N. The mean endurance time was 21.8 (16.3) seconds with slow tempo music which was more then with fast tempo music with which the mean endurance time was 20.6 (11.7) seconds. The preference was more for slow tempo music then for fast tempo music. Conclusion: Music when played during exercise by some unknown mechanism helps to increase the endurance time by alleviating the symptoms of lactic acid accumulation.

Keywords: endurance time, fast tempo music, maximum voluntary contraction, slow tempo music

Procedia PDF Downloads 269
144 A Parametric Study on the Backwater Level Due to a Bridge Constriction

Authors: S. Atabay, T. A. Ali, Md. M. Mortula

Abstract:

This paper presents the results and findings from a parametric study on the water surface elevation at upstream of bridge constriction for subcritical flow. In this study, the influence of Manning's Roughness Coefficient of main channel (nmc) and of floodplain (nfp), and bridge opening (b) flow rate (Q), contraction (kcon), and expansion coefficients (kexp) were investigated on backwater level. The DECK bridge models with different span widths and without any pier were investigated within the two stage channel having various roughness conditions. One of the most commonly used commercial one-dimensional HEC-RAS model was used in this parametric study. This study showed that the effects of main channel roughness (nmc) and flow rate (Q) on the backwater level are much higher than those of the floodplain roughness (nfp). Bridge opening (b) with contraction (kcon) and expansion coefficients (kexp) have very little effect on the backwater level within this range of parameters.

Keywords: bridge backwater, parametric study, waterways, HEC-RAS model

Procedia PDF Downloads 256
143 Simulation of Stretching and Fragmenting DNA by Microfluidic for Optimizing Microfluidic Devices

Authors: Shuyi Wu, Chuang Li, Quanshui Zheng, Luping Xu

Abstract:

Stretching and snipping DNA molecule by microfluidic has important application value in gene analysis by lab on a chip. Movement, deformation and fragmenting of DNA in microfluidic are typical fluid-solid coupling problems. An efficient and common simulation system for researching the movement, deformation and fragmenting of DNA by microfluidic has not been well developed. In our study, Brownian dynamics-finite element method (BD-FEM) is used to simulate the dynamic process of stretching and fragmenting DNA by contraction flow. The shape and parameters of micro-channels are changed to optimize the stretching and fragmenting properties of DNA. Our results indicate that strain rate, resulting from contraction microchannel, is the main control parameter for stretching and fragmenting DNA. There is good consistency between the simulation data and previous experimental result about the single DNA molecule behavior and averaged fragmenting properties in this study. BD-FEM method is an efficient calculating tool to research stretching and fragmenting behavior of single DNA molecule and optimize microfluidic devices for manipulating, stretching and fragmenting DNA.

Keywords: fragmenting, DNA, microfluidic, optimize.

Procedia PDF Downloads 289
142 Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading

Authors: Yongzhe Zhao, Ying Liu, Zhiyong Liu, Hui You

Abstract:

The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement.

Keywords: physical model tests, reinforced retaining wall, cyclic loading, footing

Procedia PDF Downloads 124
141 Myoelectric Analysis for the Assessment of Muscle Functions and Fatigue Monitoring of Upper Extremity for Stroke Patients Performing Robot-Assisted Bilateral Training

Authors: Hsiao-Lung Chan, Ching-Yi Wu, Yan-Zou Lin, Yo Chiao, Ya-Ju Chang

Abstract:

Robot-assisted bilateral arm training has demonstrated useful to improve motor control in stroke patients and save human resources. In clinics, the efficiency of this treatment is mostly performed by comparing functional scales before and after rehabilitation. However, most of these assessments are based on behavior evaluation. The underlying improvement of muscle activation and coordination is unknown. Moreover, stroke patients are easier to have muscle fatigue under robot-assisted rehabilitation due to the weakness of muscles. This safety issue is still less studied. In this study, EMG analysis was applied during training. Our preliminary results showed the co-contraction index and co-contraction area index can delineate the improved muscle coordination of biceps brachii vs. flexor carpiradialis. Moreover, the smoothed, normalized cycle-by-cycle median frequency of left and right extensor carpiradialis decreased as the training progress, implying the occurrence of muscle fatigue.

Keywords: robot-assisted rehabilitation, strokes, muscle coordination, muscle fatigue

Procedia PDF Downloads 437
140 Effect of Hand Grip Strength on Shoulder Muscles Activity in Patients with Subacromial Impingement

Authors: Mohamed E. Abdelrahamn, Mahmoud Aly Hassan, Mohamed Sarhan

Abstract:

Subacromial impingement syndrome (SIS) is a common shoulder disorder. Patients often complain from a decrease in electromyography (EMG) activity of the rotator cuff muscles especially the supraspinatus muscle during glenohumeral elevation. Objective: The purpose of the study is to assess the effect of applying 50% of maximum voluntary contraction of hand grip strength on the EMG activity of the shoulder muscles in patients with SIS. Methods: Thirty male and female patients participated in this study. Their ages ranged from 25 to 40 years. EMG activity of supraspinatus muscle and middle deltoid muscle was assessed without and with applying 50% of maximum voluntary contraction (MVC). Results: A significant difference was found for both supraspinatus and middle deltoid muscles, indicating that the gripping resulted in increasing muscle activity. Conclusion: Applying 50% MVC of hand grip strength could increase the supraspinatus and middle deltoid muscles activity in patients of SIS. This might be useful in the development and monitoring of shoulder rehabilitation strategies.

Keywords: electromyography, supraspinatus muscle, deltoid muscle, subacromial impingement syndrome

Procedia PDF Downloads 272