Search results for: 2n light dimension energy states systems effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32255

Search results for: 2n light dimension energy states systems effect

31955 FLIME - Fast Low Light Image Enhancement for Real-Time Video

Authors: Vinay P., Srinivas K. S.

Abstract:

Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.

Keywords: low light image enhancement, real-time video, computer vision, machine learning

Procedia PDF Downloads 170
31954 Differential Signaling Spread-Spectrum Modulation of the In-Door LED Visible Light Wireless Communications using Mobile-Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Visible light communication combined with spread spectrum modulation is demonstrated in this study. Differential signaling method also ensures the proposed system that can support high immunity to ambient light interference. Experiment result shows the proposed system has 6 dB gain comparing with the original On-Off Keying modulation scheme.

Keywords: Visible Light Communication (VLC), Spread Spectrum Modulation (SSM), On-Off Keying, visible light communication

Procedia PDF Downloads 491
31953 Pre and Post Mordant Effect of Alum on Gamma Rays Assisted Cotton Fabric by Using Ipomoea indica Leaves Extract

Authors: Abdul Hafeez, Shahid Adeel, Ayesha Hussain

Abstract:

There are number of plants species in the universe which give the protections from different diseases and give colour for the foods and textiles. The environmental condition of the universe suggested toward the ecofriendly textiles. The aim of the paper is to analyze the influence of pre & post mordanting of alum on radiated cotton fabric with Gamma Radiation of different doses by using Ipomoea indica leaves extract. Alum used as mordant with the concentration of 2, 4, 6, 8 and 10% as pre and post mordanting to observe the effect of light and colour fastness of radiated cotton. 6% of alum concentration in pre mordanting gave good colour strength 117.82 with darker in shade toward the greenish tone and in post mordanting 6% concentration gave good colour strength 102.19. The lab values show that the colour is darker in tone and gave bluish effect. Further results showed that alum gave good light and rubbing fastness on gamma radiated cotton fabric.

Keywords: Ipomoea indica, gamma radiation, alum, light fastness

Procedia PDF Downloads 150
31952 Impact of Light Intensity, Illumation Strategy and Self-Shading on Sustainable Algal Growth in Photo Bioreactors

Authors: Amritanshu Shriwastav, Purnendu Bose

Abstract:

Algal photo bioreactors were operated at incident light intensities of 0.24, 2.52 and 5.96 W L-1 to determine the impact of light on algal growth. Low specific Chlorophyll-a content of algae was a strong indicator of light induced stress on algal cells. It was concluded that long term operation of photo bioreactors in the continuous illumination mode was infeasible under the range of incident light intensities examined and provision of a dark period after each light period was necessary for algal cells to recover from light-induced stress. Long term operation of photo bioreactors in the intermittent illumination mode was however possible at light intensities of 0.24 and 2.52 W L-1. Further, the incident light intensity in the photo bioreactors was found to decline exponentially with increase in algal concentration in the reactor due to algal ‘self-shading’. This may be an important determinant for photo bioreactor performance at higher algal concentrations.

Keywords: Algae, algal growth, photo bioreactor, photo-inhibition, ‘self-shading’

Procedia PDF Downloads 283
31951 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 152
31950 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 41
31949 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 25
31948 Optical Properties of TlInSe₂<AU> Si̇ngle Crystals

Authors: Gulshan Mammadova

Abstract:

This paper presents the results of studying the surface microrelief in 2D and 3D models and analyzing the spectroscopy of a three-junction TlInSe₂ crystal. Analysis of the results obtained showed that with a change in the composition of the TlInSe₂ crystal, sharp changes occur in the microrelief of its surface. An X-ray optical diffraction analysis of the TlInSe₂ crystal was experimentally carried out. Based on ellipsometric data, optical functions were determined - the real and imaginary parts of the dielectric permittivity of crystals, the coefficients of optical absorption and reflection, the dependence of energy losses and electric field power on the effective density, the spectral dependences of the real (σᵣ) and imaginary (σᵢ) parts, optical electrical conductivity were experimentally studied. The fluorescence spectra of the ternary compound TlInSe₂ were isolated and analyzed when excited by light with a wavelength of 532 nm. X-ray studies of TlInSe₂ showed that this phase crystallizes into tetragonal systems. Ellipsometric measurements showed that the real (ε₁) and imaginary (ε₂) parts of the dielectric constant are components of the dielectric constant tensor of the uniaxial joints under consideration and do not depend on the angle. Analysis of the dependence of the real and imaginary parts of the refractive index of the TlInSe₂ crystal on photon energy showed that the nature of the change in the real and imaginary parts of the dielectric constant does not differ significantly. When analyzing the spectral dependences of the real (σr) and imaginary (σi) parts of the optical electrical conductivity, it was noticed that the real part of the optical electrical conductivity increases exponentially in the energy range 0.894-3.505 eV. In the energy range of 0.654-2.91 eV, the imaginary part of the optical electrical conductivity increases linearly, reaches a maximum value, and decreases at an energy of 2.91 eV. At 3.6 eV, an inversion of the imaginary part of the optical electrical conductivity of the TlInSe₂ compound is observed. From the graphs of the effective power density versus electric field energy losses, it is known that the effective power density increases significantly in the energy range of 0.805–3.52 eV. The fluorescence spectrum of the ternary compound TlInSe₂ upon excitation with light with a wavelength of 532 nm has been studied and it has been established that this phase has luminescent properties.

Keywords: optical properties, dielectric permittivity, real and imaginary dielectric permittivity, optical electrical conductivity

Procedia PDF Downloads 36
31947 Gravity Due to the Expansion of Matter and Distortion of Hyperspace

Authors: Arif Ali, Divya Raj Sapkota

Abstract:

In this paper, we explain gravitational attraction as the consequence of the dynamics of four-dimensional bodies and the consequent distortion of space. This approach provides an alternative direction to understand various physical phenomena based on the existence of the fourth spatial dimension. For this interpretation, we formulate the acceleration due to gravity and orbital velocity based on the accelerating expansion of three-dimensional symmetric bodies. It is also shown how distortion in space caused by the dynamics of four-dimensional bodies counterbalances the effect of expansion. We find that the motion of four-dimensional bodies through four-dimensional space leads to gravitational attraction, and the expansion of bodies leads to surface gravity. Thus, dynamics in the fourth spatial dimension provide an alternative explanation to gravity.

Keywords: dimensions, four, gravity, voluceleration

Procedia PDF Downloads 73
31946 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan

Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.

Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system

Procedia PDF Downloads 56
31945 Effect of Moringa Oleifera on Liveweight Reproductive Tract Dimention of Giant African Land Snail (Archachatina marginata)

Authors: J. A. Abiona, O. O. Fabinu, O. O. Ehimiyein, A. O. Ladokun, M. O. Abioja, J. O. Daramola, O. E. Oke, O. A. Osinowo, O. M. Onagbesan

Abstract:

A study was conducted on the effect of Moringa oleifera on liveweight and reproductive tract dimension of Giant African Land Snail (Archachatina marginata). Thirty two snails (32) with weight range of 100 – 150 g were used for this study. Eight snails (8) were subjected to each of the four treatments which were: Concentrate only, concentrate + 100g of Moringa oleifera, concentrate + 200g of Moringa oleifera and concentrate + 300g of Moringa oleifera. Parameters monitored were: Shell length, shell width, shell circumference and weekly live weight. Reproductive tract dimension taken include: Organ weight (ORGWT), reproductive tract weight (REPTWT), reproductive tract length (REPTLNT), ovo-tesis weight (OVOWT), edible part weight (EDPTWT), albumen weight (ALBWT) and albumen length (ALBLNT). Shell dimensions and the live weight were measured and recorded on a weekly basis with a tape rule and a sensitive weighing scale. After nine weeks, six snails were randomly selected from each treatment and dissected. Their reproductive tracts were removed and dimensions were taken. The result showed that ORGWT, OVOWT, ALBWT, ALBLNT, REPTLNT and REPTWT were not significantly affected (P>0.05) by different levels of Moringa oleifera inclusions with concentrate. However, Moringa oleifera inclusion with concentrate at different levels had significant effect (P<0.001) on Live weight, shell length and shell diameters of the animal. Snails given 300 g of Moringa oleifera per kilogramme of concentrate gave the highest live weight and shell length together with shell diameter. It was however recommended from this study that inclusion of Moringa oleifera leave meal into snail feed at 300 g per kg of concentrate would enhance live weight and shell parameters (length and width).

Keywords: reproductive tract, giant African land snails, Moringa oleifera, live weight, shell dimension

Procedia PDF Downloads 455
31944 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production

Authors: Anna Crivellari, Valerio Cozzani

Abstract:

Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.

Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy

Procedia PDF Downloads 107
31943 Analysis of Influence of Geometrical Set of Nozzles on Aerodynamic Drag Level of a Hero’s Based Steam Turbine

Authors: Mateusz Paszko, Miroslaw Wendeker, Adam Majczak

Abstract:

High temperature waste energy offers a number of management options. The most common energy recuperation systems, that are actually used to utilize energy from the high temperature sources are steam turbines working in a high pressure and temperature closed cycles. Due to the high costs of production of energy recuperation systems, especially rotary turbine discs equipped with blades, currently used solutions are limited in use with waste energy sources of temperature below 100 °C. This study presents the results of simulating the flow of the water vapor in various configurations of flow ducts in a reaction steam turbine based on Hero’s steam turbine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted with use of the water vapor as an internal agent powering the turbine, which is fully safe for an environment in case of a device failure. The conclusions resulting from the conducted numerical computations should allow for optimization of the flow ducts geometries, in order to achieve the greatest possible efficiency of the turbine. It is expected that the obtained results should be useful for further works related to the development of the final version of a low drag steam turbine dedicated for low cost energy recuperation systems.

Keywords: energy recuperation, CFD analysis, waste energy, steam turbine

Procedia PDF Downloads 187
31942 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 360
31941 Status Check: Journey of India’s Energy Sustainability through Renewable Sources

Authors: Santosh Ghosh, Vinod Kumar Yadav, Vivekananda Mukherjee, Ishta Garg

Abstract:

India, akin to the rest of the world today, is grappling with balancing act between ever increasing demand for energy and alarmingly high level of green house gas emission, which is inevitable corollary of energy production in the conventional way. Researchers and energy policy makers around the world are now focusing on renewable energy (RE) technologies to find solution to this crisis. In India various agencies at both national and state level has been set up and bestowed with responsibility of development of renewable energy technologies, viz. Ministry of New Renewable Energy (MNRE), National Vidyut Vyapar Nigam Ltd. (NVVNL), Indian Renewable Energy Development Agency Limited (IREDA) and RE Development Agencies in respective states. In the present work, the preparedness of India in terms of forming institutional and policy frame work briefly discussed. Status of implementation of RE technologies state wise and of India as a whole, critically reviewed.

Keywords: energy policy, energy sustainability, renewable energy, IREDA

Procedia PDF Downloads 600
31940 Stimulation of Stevioside Accumulation on Stevia rebaudiana (Bertoni) Shoot Culture Induced with Red LED Light in TIS RITA® Bioreactor System

Authors: Vincent Alexander, Rizkita Esyanti

Abstract:

Leaves of Stevia rebaudiana contain steviol glycoside which mainly comprise of stevioside, a natural sweetener compound that is 100-300 times sweeter than sucrose. Current cultivation method of Stevia rebaudiana in Indonesia has yet to reach its optimum efficiency and productivity to produce stevioside as a safe sugar substitute sweetener for people with diabetes. An alternative method that is not limited by environmental factor is in vitro temporary immersion system (TIS) culture method using recipient for automated immersion (RITA®) bioreactor. The aim of this research was to evaluate the effect of red LED light induction towards shoot growth and stevioside accumulation in TIS RITA® bioreactor system, as an endeavour to increase the secondary metabolite synthesis. The result showed that the stevioside accumulation in TIS RITA® bioreactor system induced with red LED light for one hour during night was higher than that in TIS RITA® bioreactor system without red LED light induction, i.e. 71.04 ± 5.36 μg/g and 42.92 ± 5.40 μg/g respectively. Biomass growth rate reached as high as 0.072 ± 0.015/day for red LED light induced TIS RITA® bioreactor system, whereas TIS RITA® bioreactor system without induction was only 0.046 ± 0.003/day. Productivity of Stevia rebaudiana shoots induced with red LED light was 0.065 g/L medium/day, whilst shoots without any induction was 0.041 g/L medium/day. Sucrose, salt, and inorganic consumption in both bioreactor media increased as biomass increased. It can be concluded that Stevia rebaudiana shoot in TIS RITA® bioreactor induced with red LED light produces biomass and accumulates higher stevioside concentration, in comparison to bioreactor without any light induction.

Keywords: LED, Stevia rebaudiana, Stevioside, TIS RITA

Procedia PDF Downloads 341
31939 Study of Trend, Dimension and Effect of Organizational Politics on Workers Performance in Public Organizations

Authors: Eniola Simbiat Ibude

Abstract:

Work politics could be referred to as office politics or organizational politics. Work place politics take different form, direction, and dimensions. Studies of these features of organizational politics have been conducted in the private sector and much has been left to be studied on the other side of the fence, namely in larger bureaucracies and in public sector system. This is the gap the study tried to fill. This study also focuses on the negative effects that perceptions of politics seem to have on job attitudes (i.e., job satisfaction, organizational commitment) and on affective performance. This was with a view to understanding the relevance of its effects on job performance. The descriptive survey research design of the ex-post facto type was adopted for this study since the variables being studied had already occurred and were, therefore, not manipulated. Data were analyzed using the descriptive and inferential statistics of frequency counts, simple percentages, ANOVA, and multiple regression. Findings show that the joint and relative effect of organizational politics on workers performance, planning, coordination and supervision of work (B 0.71), delaying information for carrying out work (B 0.67), criticizing and wasting time for work done (B 0.56) has contributed to workers performance. The effect could be seen as negative on workers performance. Conclusively, every employee will not react to organizational politics the same way. The 'social arsenal' or the 'social skills' of the individual are a good buffer against the potential aftermaths of organizational politics. Also, from this study, it could be concluded that the perceptions of politics have a more complex relationship with job performance, a relationship that may be different for various types of employees.

Keywords: bureaucracies, dimension, politics, trend

Procedia PDF Downloads 206
31938 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 583
31937 Energy Consumption and Energy Conservation Potential for HVAC System in Commercial Buildings Sector in India

Authors: Rishabh Agrawal, S. C. Kaushik, T. S. Bhatti

Abstract:

In order to reduce energy consumption for sustainable development, continuous energy consumption tracking of building energy systems are essential. In this paper an assessment study has been done to identify the energy consumption & energy conservation potential for commercial buildings sector in Karnataka state, India. There are a total of 326 commercial buildings in the state of Karnataka who has qualified as designated consumers (i.e., having a Contract Demand ≥ 600 KVA), was consider for the study. It has estimated that the annual electricity sale to commercial sector is 3.62 Billion Units (BU) in alone Karnataka State, India, which is an account for 9.57 % of the total electricity sold. The commercial sector constitutes Government & private establishments, hospitals, hotels, restaurants, educational institutions, malls etc. Total 326 commercial buildings in the state accounting for annual energy consumption of 1295.72 Million Units (MU) which works out to about 35% of the sectoral consumption. The annual energy savings potential for 326 commercial buildings is assessed to be 0.25 BU.

Keywords: commercial buildings, connected load, energy conservation studies, energy savings, energy efficiency, energy conservation strategy, energy efficiency, thermal energy, HVAC system

Procedia PDF Downloads 559
31936 Performance of Nine Different Types of PV Modules in the Tropical Region

Authors: Jiang Fan

Abstract:

With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.

Keywords: monocrystalline, multicrystalline, amorphous silicon, cadmium telluride, thin film PV

Procedia PDF Downloads 475
31935 Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor.

Keywords: nano-particle, photo-acoustic effect, polymer, dye, in vivo imaging

Procedia PDF Downloads 127
31934 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A.F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 18
31933 Effect of Piston and its Weight on the Performance of a Gun Tunnel via Computational Fluid Dynamics

Authors: A. A. Ahmadi, A. R. Pishevar, M. Nili

Abstract:

As the test gas in a gun tunnel is non-isentropically compressed and heated by a light weight piston. Here, first consideration is the optimum piston weight. Although various aspects of the influence of piston weight on gun tunnel performance have been studied, it is not possible to decide from the existing literature what piston weight is required for optimum performance in various conditions. The technique whereby the piston is rapidly brought to rest at the end of the gun tunnel barrel, and the resulted peak pressure is equal in magnitude to the final equilibrium pressure, is called the equilibrium piston technique. The equilibrium piston technique was developed to estimate the equilibrium piston mass; but this technique cannot give an appropriate estimate for the optimum piston weight. In the present work, a gun tunnel with diameter of 3 in. is described and its performance is investigated numerically to obtain the effect of piston and its weight. Numerical results in the present work are in very good agreement with experimental results. Significant influence of the existence of a piston is shown by comparing the gun tunnel results with results of a conventional shock tunnel in the same dimension and same initial condition. In gun tunnel, an increase of around 250% in running time is gained relative to shock tunnel. Also, Numerical results show that equilibrium piston technique is not a good way to estimate suitable piston weight and there will be a lighter piston which can increase running time of the gun tunnel around 60%.

Keywords: gun tunnel, hypersonic flow, piston, shock tunnel

Procedia PDF Downloads 350
31932 Quantum Coherence Sets the Quantum Speed Limit for Mixed States

Authors: Debasis Mondal, Chandan Datta, S. K. Sazim

Abstract:

Quantum coherence is a key resource like entanglement and discord in quantum information theory. Wigner- Yanase skew information, which was shown to be the quantum part of the uncertainty, has recently been projected as an observable measure of quantum coherence. On the other hand, the quantum speed limit has been established as an important notion for developing the ultra-speed quantum computer and communication channel. Here, we show that both of these quantities are related. Thus, cast coherence as a resource to control the speed of quantum communication. In this work, we address three basic and fundamental questions. There have been rigorous attempts to achieve more and tighter evolution time bounds and to generalize them for mixed states. However, we are yet to know (i) what is the ultimate limit of quantum speed? (ii) Can we measure this speed of quantum evolution in the interferometry by measuring a physically realizable quantity? Most of the bounds in the literature are either not measurable in the interference experiments or not tight enough. As a result, cannot be effectively used in the experiments on quantum metrology, quantum thermodynamics, and quantum communication and especially in Unruh effect detection et cetera, where a small fluctuation in a parameter is needed to be detected. Therefore, a search for the tightest yet experimentally realisable bound is a need of the hour. It will be much more interesting if one can relate various properties of the states or operations, such as coherence, asymmetry, dimension, quantum correlations et cetera and QSL. Although, these understandings may help us to control and manipulate the speed of communication, apart from the particular cases like the Josephson junction and multipartite scenario, there has been a little advancement in this direction. Therefore, the third question we ask: (iii) Can we relate such quantities with QSL? In this paper, we address these fundamental questions and show that quantum coherence or asymmetry plays an important role in setting the QSL. An important question in the study of quantum speed limit may be how it behaves under classical mixing and partial elimination of states. This is because this may help us to choose properly a state or evolution operator to control the speed limit. In this paper, we try to address this question and show that the product of the time bound of the evolution and the quantum part of the uncertainty in energy or quantum coherence or asymmetry of the state with respect to the evolution operator decreases under classical mixing and partial elimination of states.

Keywords: completely positive trace preserving maps, quantum coherence, quantum speed limit, Wigner-Yanase Skew information

Procedia PDF Downloads 322
31931 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 228
31930 TiO2 Adsorbed on Cement Balls for Effective Photomineralization of Organic Pollutants under UV Light Irradiation

Authors: Tarun Jain, Lovnish Gupta, Soumen Basu

Abstract:

Organic pollutants like phenols and organic dyes present in industrial waste water are posing a hazardous threat to aquatic ecosystem. Several measures have been adopted for the neutralization and photodecomposition of these harmful organic moieties, among these semiconductor photocatalysis has been provided a major thrust after the discovery of Honda-Fujishema effect. Present study demonstrates the adsorption of TiO2- P25 in nano size (~36 nm) on cement balls for effective photodegradation of Alizarin and penta chlorophenol (PCP) under UV light illumination. Triton-X was used as a stabilizer for effective adsorption of TiO2 on cement balls (TCB) followed by calcination at ~300oC for 4 h. The TCB’s were dispersed randomly in a self designed reactor for phototcatalytic performance as shown in scheme 1. The change in concentration of alizarin and PCP was observed under UV-Vis spectroscopy, PCP was detoxified within 40 min while alizarin photodecomposed within 15 min of UV light irradiation. Taking into consideration the go green slogan and future prospective this technique can be also utilized under visible light and on mass scale because this is an effective tool for environmental remediation and waste water treatment.

Keywords: organic pollutants, TiO2 cement balls, photodegradation, UV light irradiation

Procedia PDF Downloads 231
31929 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange

Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari

Abstract:

The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.

Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution

Procedia PDF Downloads 42
31928 Distributional and Dynamic impact of Energy Subsidy Reform

Authors: Ali Hojati Najafabadi, Mohamad Hosein Rahmati, Seyed Ali Madanizadeh

Abstract:

Governments execute energy subsidy reforms by either increasing energy prices or reducing energy price dispersion. These policies make less use of energy per plant (intensive margin), vary the total number of firms (extensive margin), promote technological progress (technology channel), and make additional resources to redistribute (resource channel). We estimate a structural dynamic firm model with endogenous technology adaptation using data from the manufacturing firms in Iran and a country ranked the second-largest energy subsidy plan by the IMF. The findings show significant dynamics and distributional effects due to an energy reform plan. The price elasticity of energy consumption in the industrial sector is about -2.34, while it is -3.98 for large firms. The dispersion elasticity, defined as the amounts of changes in energy consumption by a one-percent reduction in the standard error of energy price distribution, is about 1.43, suggesting significant room for a distributional policy. We show that the intensive margin is the main driver of energy price elasticity, whereas the other channels mostly offset it. In contrast, the labor response is mainly through the extensive margin. Total factor productivity slightly improves in light of the reduction in energy consumption if, at the same time, the redistribution policy boosts the aggregate demands.

Keywords: energy reform, firm dynamics, structural estimation, subsidy policy

Procedia PDF Downloads 72
31927 Elements of a Culture of Quality in the Implementation of Quality Assurance Systems of Countries in the European Higher Education Area

Authors: Laura Mion

Abstract:

The implementation of quality management systems in higher education in different countries is determined by national regulatory choices and supranational indications (such as the European Standard Guidelines for Quality Assurance). The effective functioning and transformative capacity of these quality management systems largely depend on the organizational context in which they are applied and, more specifically, on the culture of quality developed in single universities or in single countries. The University's concept of quality culture integrates the structural dimension of QA (quality management manuals, process definitions, tools) with the value dimension of an organization (principles, skills, and attitudes). Within the EHEA (European Higher Education Area), countries such as Portugal, the Netherlands, the UK, and Norway demonstrate a greater integration of QA principles in the various organizational levels and areas of competence of university institutions or have greater experience in implementation or scientific and political debate on the matter. Therefore, the study, through an integrative literature review, of the quality management systems of these countries is aimed at determining a framework of the culture of quality, helpful in defining the elements which, both in structural-organizational terms and in terms of values and skills and attitudes, have proved to be factors of success in the effective implementation of quality assurance systems in universities and in the countries considered in the research. In order for a QA system to effectively aim for continuous improvement in a complex and dynamic context such as the university one, it must embrace a holistic vision of quality from an integrative perspective, focusing on the objective of transforming the reality being evaluated.

Keywords: higher education, quality assurance, quality culture, Portugal, Norway, Netherlands, United Kingdom

Procedia PDF Downloads 45
31926 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks

Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas

Abstract:

The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, wind energy conversion systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.

Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system

Procedia PDF Downloads 715