Search results for: mixed effects models
15783 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method
Procedia PDF Downloads 35115782 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review
Authors: Hanan Algarni
Abstract:
Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.Keywords: virtual reality, treadmill, stroke, gait rehabilitation
Procedia PDF Downloads 27415781 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines
Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab
Abstract:
Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations
Procedia PDF Downloads 34215780 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine
Authors: Mohan H., C. Elajchet Senni
Abstract:
In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester
Procedia PDF Downloads 29015779 Light-Entropy Continuum Theory
Authors: Christopher Restall
Abstract:
field causing attraction between mixed charges of matter during charge exchanges with antimatter. This asymmetry is caused from none-trinary quark amount variation in matter and anti-matter during entropy progression. This document explains how a circularity critique exercise assessed scientific knowledge and develop a unified theory from the information collected. The circularity critique, creates greater intuition leaps than an individual would naturally, the information collected can be integrated and assessed thoroughly for correctness.Keywords: unified theory of everything, gravity, quantum gravity, standard model
Procedia PDF Downloads 4115778 An Investigation of Etiology of Liver Cirrhosis and Its Complications with Other Co-morbid Diseases
Authors: Tayba Akram
Abstract:
our main objective of this study is to work on the etiology of liver cirrhosis, to find basic reasons and causes of liver damage, and to find the pattern of liver cirrhosis in hepatic patients either suffering from hepatitis B/C or simple jaundice. We can evaluate medical treatment and the latest trends in patients suffering from liver cirrhosis. We can evaluate the side effects and adverse effects induced by drug therapy used to treat liver cirrhosis. The conclusion is based on the etiology of liver cirrhosis. The most common cause of liver cirrhosis is the viral Hepatitis C virus. Other common causes of liver cirrhosis that are estimated from our research are Hepatitis B virus, Diabetes Mellitus, Ascites, and very rarely found Hepatitis D virus.Keywords: etiology, liver, cirrhosis, co-morbid diseases
Procedia PDF Downloads 1415777 Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption
Authors: H. Mokaddem, D. Miroud, N. Azouaou, F. Si-Ahmed, Z. Sadaoui
Abstract:
The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution.Keywords: activated carbon, adsorption, cationic dyes, Algerian alfa
Procedia PDF Downloads 22815776 The Effects of Three Levels of Contextual Inference among adult Athletes
Authors: Abdulaziz Almustafa
Abstract:
Considering the critical role permanence has on predictions related to the contextual interference effect on laboratory and field research, this study sought to determine whether the paradigm of the effect depends on the complexity of the skill during the acquisition and transfer phases. The purpose of the present study was to investigate the effects of contextual interference CI by extending previous laboratory and field research with adult athletes through the acquisition and transfer phases. Male (n=60) athletes age 18-22 years-old, were chosen randomly from Eastern Province Clubs. They were assigned to complete blocked, random, or serial practices. Analysis of variance with repeated measures MANOVA indicated that, the results did not support the notion of CI. There were no significant differences in acquisition phase between blocked, serial and random practice groups. During the transfer phase, there were no major differences between the practice groups. Apparently, due to the task complexity, participants were probably confused and not able to use the advantages of contextual interference. This is another contradictory result to contextual interference effects in acquisition and transfer phases in sport settings. One major factor that can influence the effect of contextual interference is task characteristics as the nature of level of difficulty in sport-related skill.Keywords: contextual interference, acquisition, transfer, task difficulty
Procedia PDF Downloads 46615775 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation
Authors: Khattab Al Qaisi, Nicholas Bowring
Abstract:
This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.Keywords: DSI, SVPWM, THD, DC-AC converter, sampling frequency, performance
Procedia PDF Downloads 48515774 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine
Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu
Abstract:
The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition
Procedia PDF Downloads 32615773 Psychological Functioning of Youth Experiencing Community and Collective Violence in Post-conflict Northern Ireland
Authors: Teresa Rushe, Nicole Devlin, Tara O Neill
Abstract:
In this study, we sought to examine associations between childhood experiences of community and collective violence and psychological functioning in young people who grew up in post-conflict Northern Ireland. We hypothesized that those who grew up with such experiences would demonstrate internalizing and externalizing difficulties in early adulthood and, furthermore, that these difficulties would be mediated by adverse childhood experiences occurring within the home environment. As part of the Northern Ireland Childhood Adversity Study, we recruited 213 young people aged 18-25 years (108 males) who grew up in the post-conflict society of Northern Ireland using purposive sampling. Participants completed a digital questionnaire to measure adverse childhood experiences as well as aspects of psychological functioning. We employed the Adverse Childhood Experience -International Questionnaire (ACE-IQ¬) adaptation of the original Adverse Childhood Experiences Questionnaire (ACE) as it additionally measured aspects of witnessing community violence (e.g., seeing someone being beaten/killed, fights) and experiences of collective violence (e.g., war, terrorism, police, or gangs’ battles exposure) during the first 18 years of life. 51% of our sample reported experiences of community and/or collective violence (N=108). Compared to young people with no such experiences (N=105), they also reported significantly more adverse experiences indicative of household dysfunction (e.g., family substance misuse, mental illness or domestic violence in the family, incarceration of a family member) but not more experiences of abuse or neglect. As expected, young people who grew up with the community and/or collective violence reported significantly higher anxiety and depression scores and were more likely to engage in acts of deliberate self-harm (internalizing symptoms). They also started drinking and taking drugs at a younger age and were significantly more likely to have been in trouble with the police (externalizing symptoms). When the type of violence exposure was separated by whether the violence was witnessed (community violence) or more directly experienced (collective violence), we found community and collective violence to have similar effects on externalizing symptoms, but for internalizing symptoms, we found evidence of a differential effect. Collective violence was associated with depressive symptoms, whereas witnessing community violence was associated with anxiety-type symptoms and deliberate self-harm. However, when experiences of household dysfunction were entered into the models predicting anxiety, depression, and deliberate self-harm, none of the main effects remained significant. This suggests internalizing type symptoms are mediated by immediate family-level experiences. By contrast, significant community and collective violence effects on externalizing behaviours: younger initiation of alcohol use, younger initiation of drug use, and getting into trouble with the police persisted after controlling for family-level factors and thus are directly associated with growing up with the community and collective violence. Given the cross-sectional nature of our study, we cannot comment on the direction of the effect. However, post-hoc correlational analyses revealed associations between externalising behaviours and personal factors, including greater risk-taking and young age at puberty. The implications of the findings will be discussed in relation to interventions for young people and families living with the community and collective violence.Keywords: community and collective violence, adverse childhood experiences, youth, psychological wellbeing
Procedia PDF Downloads 8315772 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer
Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner
Abstract:
Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab
Procedia PDF Downloads 9215771 Document-level Sentiment Analysis: An Exploratory Case Study of Low-resource Language Urdu
Authors: Ammarah Irum, Muhammad Ali Tahir
Abstract:
Document-level sentiment analysis in Urdu is a challenging Natural Language Processing (NLP) task due to the difficulty of working with lengthy texts in a language with constrained resources. Deep learning models, which are complex neural network architectures, are well-suited to text-based applications in addition to data formats like audio, image, and video. To investigate the potential of deep learning for Urdu sentiment analysis, we implemented five different deep learning models, including Bidirectional Long Short Term Memory (BiLSTM), Convolutional Neural Network (CNN), Convolutional Neural Network with Bidirectional Long Short Term Memory (CNN-BiLSTM), and Bidirectional Encoder Representation from Transformer (BERT). In this study, we developed a hybrid deep learning model called BiLSTM-Single Layer Multi Filter Convolutional Neural Network (BiLSTM-SLMFCNN) by fusing BiLSTM and CNN architecture. The proposed and baseline techniques are applied on Urdu Customer Support data set and IMDB Urdu movie review data set by using pre-trained Urdu word embedding that are suitable for sentiment analysis at the document level. Results of these techniques are evaluated and our proposed model outperforms all other deep learning techniques for Urdu sentiment analysis. BiLSTM-SLMFCNN outperformed the baseline deep learning models and achieved 83%, 79%, 83% and 94% accuracy on small, medium and large sized IMDB Urdu movie review data set and Urdu Customer Support data set respectively.Keywords: urdu sentiment analysis, deep learning, natural language processing, opinion mining, low-resource language
Procedia PDF Downloads 7215770 A Community-Engaged Approach to Examining Health Outcomes Potentially Related to Exposure to Environmental Contaminants in Yuma, Arizona
Authors: Julie A. Baldwin, Robert T. Trotter, Mark Remiker, C. Loren Buck, Amanda Aguirre, Trudie Milner, Emma Torres, Frank A. von Hippel
Abstract:
Introduction: In the past, there have been concerns about contaminants in the water sources in Yuma, Arizona, including the Colorado River. Prolonged exposure to contaminants, such as perchlorate and heavy metals, can lead to deleterious health effects in humans. This project examined the association between the concentration of environmental contaminants and patient health outcomes in Yuma residents, using a community-engaged approach to data collection. Methods: A community-engaged design allowed community partners and researchers to establish joint research goals, recruit participants, collect data, and formulate strategies for dissemination of findings. Key informant interviews were conducted to evaluate adherence to models of community-based research. Results: The training needs, roles, and expectations of community partners varied based on available resources, prior research experience, and perceived research challenges and ways to address them. Conclusions: Leveraging community-engaged approaches for studies of environmental contamination in marginalized communities can expedite recruitment efforts and stimulate action that can lead to improved community health.Keywords: community engaged research, environmental contaminants, underserved populations, health equity
Procedia PDF Downloads 13915769 Analysis of Global Social Responsibilities of Social Studies Pre-Service Teachers Based on Several Variables
Authors: Zafer Cakmak, Birol Bulut, Cengiz Taskiran
Abstract:
Technological advances, the world becoming smaller and increasing world population increase our interdependence with individuals that we maybe never meet face to face. It is impossible for the modern individuals to escape global developments and their impact. Furthermore, it is very unlikely for the global societies to turn back from the path they are in. These effects of globalization in fact encumber the humankind at a certain extend. We succumb to these responsibilities for we desire a better future, a habitable world and a more peaceful life. In the present study, global responsibility levels of the participants were measured and the significance of global reactions that individuals have to develop on global issues was reinterpreted under the light of the existing literature. The study was conducted with general survey model, one of the survey methodologies General survey models are surveys conducted on the whole universe or a group, sample or sampling taken from the universe to arrive at a conclusion about the universe, which includes a high number of elements. The study was conducted with data obtained from 350 pre-service teachers attending 2016 spring semester to determine 'Global Social Responsibility' levels of social studies pre-service teachers based on several variables. Collected data were analyzed using SPSS 21.0 software. T-test and ANOVA were utilized in the data analysis.Keywords: social studies, globalization, global social responsibility, education
Procedia PDF Downloads 39015768 Producing TPU/Propolis Nanofibrous Membrane as Wound Dressing
Authors: Yasin Akgül, Yusuf Polat, Emine Canbay, Ali Kılıç
Abstract:
Wound dressings have strategically and economic importance considering increase of chronic wounds in the world. In this study, TPU nanofibrous membranes containing propolis as wound dressing are produced by two different methods. Firstly, TPU solution and propolis extract were mixed and this solution was electrospun. The other method is that TPU/propolis blend was centrifugally spun. Properties of nanofibrous membranes obtained by these methods were compared. While realizing the experiments, both systems were optimized to produce nanofibers with nearly same average fiber diameter.Keywords: nanofiber, wound dressing, electrospinning, centrifugal spinning
Procedia PDF Downloads 45515767 Behavioral Stages of Change in Calorie Balanced Dietary Intake; Effects of Decisional Balance and Self–Efficacy in Obese and Overweight Women
Authors: Abdmohammad Mousavi, Mohsen Shams, Mehdi Akbartabar Toori, Ali Mousavizadeh, Mohammad Ali Morowatisharifabad
Abstract:
Introduction: The effectiveness of Transtheoretical Model constructs on dietary behavior change has been subject to questions by some studies. The objective of this study was to determine the relationship between self–efficacy and decisional balance as mediator variables and transfer obese and overweight women among the stages of behavior change of calorie balanced dietary intake. Method: In this cross-sectional study, 448 obese and overweight 20-44 years old women were selected from three health centers in Yasuj, a city in south west of Iran. Anthropometric data were measured using standard techniques. Demographic, stages of change, self-efficacy and decisional balance data were collected by questionnaires and analyzed using One–Way ANOVA and Generalized Linear Models tests. Results: Demographic and anthropometric variables were not different significantly in different stages of change related to calorie intake except the pre-high school level of education (P=.047, OR=502, 95% CI= .255 ~ .990). Mean scores of Self-efficacy ( F(4.425)= 27.09, P= .000), decisional balance (F(4.394), P= .004), and pros (F(4.430)=5.33, P=000) were different significantly in five stages of change. However, the cons did not show a significant change in this regard (F(4.400)=1.83, P=.123). Discussion: Women movement through the stages of changes for calorie intake behavior can be predicted by self efficacy, decisional balance and pros.Keywords: transtheoretical model, stages of change, self efficacy, decisional balance, calorie intake, women
Procedia PDF Downloads 42815766 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW
Procedia PDF Downloads 18315765 Dividend Payout and Capital Structure: A Family Firm Perspective
Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra
Abstract:
Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.Keywords: dividend, family firms, leverage, ownership structure
Procedia PDF Downloads 28015764 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 16415763 [Keynote Talk]: Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles
Authors: I. McAndrew, K. L. Witcher, E. Navarro
Abstract:
This paper presents the theory and application of low speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.Keywords: aerodynamics, low speed flight, unmanned vehicles, environmental influences
Procedia PDF Downloads 43715762 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society
Authors: Irene Yi
Abstract:
Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.Keywords: gendered grammar, misogynistic language, natural language processing, neural networks
Procedia PDF Downloads 12015761 Wake Effects of Wind Turbines and Its Impacts on Power Curve Measurements
Authors: Sajan Antony Mathew, Bhukya Ramdas
Abstract:
Abstract—The impetus of wind energy deployment over the last few decades has seen potential sites being harvested very actively for wind farm development. Due to the scarce availability of highly potential sites, the turbines are getting more optimized in its location wherein minimum spacing between the turbines are resorted without comprising on the optimization of its energy yield. The optimization of the energy yield from a wind turbine is achieved by effective micrositing techniques. These time-tested techniques which are applied from site to site on terrain conditions that meet the requirements of the International standard for power performance measurements of wind turbines result in the positioning of wind turbines for optimized energy yields. The international standard for Power Curve Measurements has rules of procedure and methodology to evaluate the terrain, obstacles and sector for measurements. There are many challenges at the sites for complying with the requirements for terrain, obstacles and sector for measurements. Studies are being attempted to carry out these measurements within the scope of the international standard as various other procedures specified in alternate standards or the integration of LIDAR for Power Curve Measurements are in the nascent stage. The paper strives to assist in the understanding of the fact that if positioning of a wind turbine at a site is based on an optimized output, then there are no wake effects seen on the power curve of an adjacent wind turbine. The paper also demonstrates that an invalid sector for measurements could be used in the analysis in alteration to the requirement as per the international standard for power performance measurements. Therefore the paper strives firstly to demonstrate that if a wind turbine is optimally positioned, no wake effects are seen and secondly the sector for measurements in such a case could include sectors which otherwise would have to be excluded as per the requirements of International standard for power performance measurements.Keywords: micrositing, optimization, power performance, wake effects
Procedia PDF Downloads 46115760 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy
Authors: B. J. Babalola, M. B. Shongwe
Abstract:
Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature
Procedia PDF Downloads 40215759 Receptor-Independent Effects of Endocannabinoid Anandamide on Contractility and Electrophysiological Properties of Rat Ventricular Myocytes
Authors: Lina T. Al Kury, Oleg I. Voitychuk, Ramiz M. Ali, Sehamuddin Galadari, Keun-Hang Susan Yang, Frank Christopher Howarth, Yaroslav M. Shuba, Murat Oz
Abstract:
A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier studies. In the present work, we have hypothesized that the antiarrhythmic effects reported for AEA are due to its negative inotropic effect and altered action potential (AP) characteristics. Therefore, we tested the effects of AEA on contractility and electrophysiological properties of rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca2+ was measured in cells loaded with the fluorescent indicator fura-2 AM. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1 μM) caused a significant decrease in the amplitudes of electrically-evoked myocyte shortening and Ca2+ transients and significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2 µg/ml for 4 h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists). Furthermore, AEA inhibited voltage-activated inward Na+ (INa) and Ca2+ (IL,Ca) currents; major ionic currents shaping the APs in ventricular myocytes, in a voltage and PTX-independent manner. Collectively, the results suggest that AEA depresses ventricular myocyte contractility, by decreasing the action potential duration (APD), and inhibits the function of voltage-dependent Na+ and L-type Ca2+ channels in a manner independent of cannabinoid receptors. This mechanism may be importantly involved in the antiarrhythmic effects of anandamide.Keywords: action potential, anandamide, cannabinoid receptor, endocannabinoid, ventricular myocytes
Procedia PDF Downloads 35515758 NFC Kenaf Core Graphene Paper: In-situ Method Application
Authors: M. A. Izzati, R. Rosazley, A. W. Fareezal, M. Z. Shazana, I. Rushdan, M. Jani
Abstract:
Ultrasonic probe were using to produce nanofibrillated cellulose (NFC) kenaf core. NFC kenaf core and graphene was mixed using in-situ method with the 5V voltage for 24 hours. The resulting NFC graphene paper was characterized by field emission scanning electron microscopy (FESEM), fourier transformed infrared (FTIR) spectra and thermogavimetric analysis (TGA). The properties of NFC kenaf core graphene paper are compared with properties of pure NFC kenaf core paper.Keywords: NFC, kenaf core, graphene, in-situ method
Procedia PDF Downloads 39415757 Investigating Data Normalization Techniques in Swarm Intelligence Forecasting for Energy Commodity Spot Price
Authors: Yuhanis Yusof, Zuriani Mustaffa, Siti Sakira Kamaruddin
Abstract:
Data mining is a fundamental technique in identifying patterns from large data sets. The extracted facts and patterns contribute in various domains such as marketing, forecasting, and medical. Prior to that, data are consolidated so that the resulting mining process may be more efficient. This study investigates the effect of different data normalization techniques, which are Min-max, Z-score, and decimal scaling, on Swarm-based forecasting models. Recent swarm intelligence algorithms employed includes the Grey Wolf Optimizer (GWO) and Artificial Bee Colony (ABC). Forecasting models are later developed to predict the daily spot price of crude oil and gasoline. Results showed that GWO works better with Z-score normalization technique while ABC produces better accuracy with the Min-Max. Nevertheless, the GWO is more superior that ABC as its model generates the highest accuracy for both crude oil and gasoline price. Such a result indicates that GWO is a promising competitor in the family of swarm intelligence algorithms.Keywords: artificial bee colony, data normalization, forecasting, Grey Wolf optimizer
Procedia PDF Downloads 47615756 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct
Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz
Abstract:
Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing
Procedia PDF Downloads 7315755 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques
Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev
Abstract:
Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.Keywords: data analysis, demand modeling, healthcare, medical facilities
Procedia PDF Downloads 14415754 A Statistical Approach to Predict and Classify the Commercial Hatchability of Chickens Using Extrinsic Parameters of Breeders and Eggs
Authors: M. S. Wickramarachchi, L. S. Nawarathna, C. M. B. Dematawewa
Abstract:
Hatchery performance is critical for the profitability of poultry breeder operations. Some extrinsic parameters of eggs and breeders cause to increase or decrease the hatchability. This study aims to identify the affecting extrinsic parameters on the commercial hatchability of local chicken's eggs and determine the most efficient classification model with a hatchability rate greater than 90%. In this study, seven extrinsic parameters were considered: egg weight, moisture loss, breeders age, number of fertilised eggs, shell width, shell length, and shell thickness. Multiple linear regression was performed to determine the most influencing variable on hatchability. First, the correlation between each parameter and hatchability were checked. Then a multiple regression model was developed, and the accuracy of the fitted model was evaluated. Linear Discriminant Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with a linear kernel, and Random Forest (RF) algorithms were applied to classify the hatchability. This grouping process was conducted using binary classification techniques. Hatchability was negatively correlated with egg weight, breeders' age, shell width, shell length, and positive correlations were identified with moisture loss, number of fertilised eggs, and shell thickness. Multiple linear regression models were more accurate than single linear models regarding the highest coefficient of determination (R²) with 94% and minimum AIC and BIC values. According to the classification results, RF, CART, and kNN had performed the highest accuracy values 0.99, 0.975, and 0.972, respectively, for the commercial hatchery process. Therefore, the RF is the most appropriate machine learning algorithm for classifying the breeder outcomes, which are economically profitable or not, in a commercial hatchery.Keywords: classification models, egg weight, fertilised eggs, multiple linear regression
Procedia PDF Downloads 87