Search results for: hydrothermal stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3601

Search results for: hydrothermal stability

661 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 295
660 Portuguese Guitar Strings Characterization and Comparison

Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante

Abstract:

The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.

Keywords: damping factor, music wire, portuguese guitar, string dynamics

Procedia PDF Downloads 553
659 Effect of Humic Acids on Agricultural Soil Structure and Stability and Its Implication on Soil Quality

Authors: Omkar Gaonkar, Indumathi Nambi, Suresh G. Kumar

Abstract:

The functional and morphological aspects of soil structure determine the soil quality. The dispersion of colloidal soil particles, especially the clay fraction and rupture of soil aggregates, both of which play an important role in soil structure development, lead to degradation of soil quality. The main objective of this work was to determine the effect of the behaviour of soil colloids on the agricultural soil structure and quality. The effect of commercial humic acid and soil natural organic matter on the electrical and structural properties of the soil colloids was also studied. Agricultural soil, belonging to the sandy loam texture class from northern part of India was considered in this study. In order to understand the changes in the soil quality in the presence and absence of humic acids, the soil fabric and structure was analyzed by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). Electrical properties of natural soil colloids in aqueous suspensions were assessed by zeta potential measurements at varying pH values with and without the presence of humic acids. The influence of natural organic matter was analyzed by oxidizing the natural soil organic matter with hydrogen peroxide. The zeta potential of the soil colloids was found to be negative in the pH range studied. The results indicated that hydrogen peroxide treatment leads to deflocculation of colloidal soil particles. In addition, the humic acids undergoes effective adsorption onto the soil surface imparting more negative zeta potential to the colloidal soil particles. The soil hydrophilicity decreased in the presence of humic acids which was confirmed by surface free energy determination. Thus, it can be concluded that the presence of humic acids altered the soil fabric and structure, thereby affecting the soil quality. This study assumes significance in understanding soil aggregation and the interactions at soil solid-liquid interface.

Keywords: humic acids, natural organic matter, zeta potential, soil quality

Procedia PDF Downloads 250
658 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria

Authors: Adeleye Ebenezer Omotayo

Abstract:

The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.

Keywords: ploughing, poultry manure, yam, yield

Procedia PDF Downloads 269
657 The Effect of Technology on International Marketing Trading Researches and Analysis

Authors: Karim Monir Halim Salib

Abstract:

The article discusses the use of modern technology to achieve environmental marketing goals in business and customer relations. The purpose of this article is to show the possibilities of the application of modern technology. In B2C relationships, marketing departments face challenges arising from the need to quickly segment customers and share information across multiple systems, which seriously hinders the achievement of marketing objectives. Therefore, the Article states that modern IT solutions are used in the marketing of business activities, taking into account environmental objectives. For this reason, its importance in the economic and social development of developing countries has increased. While traditional companies emphasize profit as the most important business principle, social enterprises have to address social issues at the expense of profit. This mindset gives social enterprises more than traditional businesses to meet the needs of those at the bottom of the pyramid. This also poses a great challenge for social business, as social business works for the public good on the one hand and financial stability on the other. Otherwise, the company cannot be evacuated. Cultures are involved in business communication and research. Using the example of language in international relations, the article poses the problem of cultural discourse in management and linguistic and cultural studies. After reviewing current research on language in international relations, this article presents communication methods in the international economy from a linguistic perspective and attempts to explain communication problems in business from the perspective of linguistic research. A step towards multidisciplinary research combining research in management and linguistics.

Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing, B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis consumer behavior, experience, experience marketing, marketing employee organizational performance, internal marketing, internal customer, direct marketing, mobile phones mobile marketing, Sms advertising.

Procedia PDF Downloads 41
656 The Relation between Urbanization and Forestry Policies in Turkey

Authors: Azize Serap Tuncer

Abstract:

Turkey is one of the most outstanding figures among the Mediterranean countries from the natural and historical point at view. It is relatively rich country as regards the flora and vegetation. But at the same time as a result of improper and unplanned usage of the land for centuries, its forests and fertile soils have been exposed to great damages. While rapid and uncontrolled urbanization has important effects on the environment, urban development legislations, have become very unsufficient for the protection of these areas. Some of them have been completely eradicated, and some others have lost their fertility. Besides Turkey has a high main land with a rough surface and its soils areas exposed to heavy erosion. On the other hand as a developing country, it is not willing to endanger the goals of industrialization and avoid foreign direct investment by implementing strict environmental policies. Although this kind of pressure on forestland resources threatens the stability of forest land and land use management, in recent years, there has been an obvious increase in public concern about environmental problems like over global warming, environmental pollution, deforestation and their potential effects on natural resources. To protect the ecological balance and prevention of naturel resources from the unplanned intervention of human-beıng is only possible establishing conservation areas wıth co-operation at the national and the internatıonal levels. This study was carried out to evaluate the relation between urbanization and forestry policies in Turkey. While it elaborates the normative arrangements resulting in power conflicts, it also addresses which shortages and discrepancies are responsible for the said conflicts. The present urban reconstruction and transformation practices and their aesthetic and functional aspects were studied with some examples in a country level and evaluated within the assistance of literature researches, analyses, and observations. Atatürk Forest Farm and ODTU Forest examples were negotiated as two famous cases. Obtained findings were supported by charts and photos.

Keywords: deforestration, environmental policies, metropolitan, pollution, urbanization

Procedia PDF Downloads 156
655 Cross-Linked Amyloglucosidase Aggregates: A New Carrier Free Immobilization Strategy for Continuous Saccharification of Starch

Authors: Sidra Pervez, Afsheen Aman, Shah Ali Ul Qader

Abstract:

The importance of attaining an optimum performance of an enzyme is often a question of devising an effective method for its immobilization. Cross-linked enzyme aggregate (CLEAs) is a new approach for immobilization of enzymes using carrier free strategy. This method is exquisitely simple (involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules) and amenable to rapid optimization. Among many industrial enzymes, amyloglucosidase is an important amylolytic enzyme that hydrolyzes alpha (1→4) and alpha (1→6) glycosidic bonds in starch molecule and produce glucose as a sole end product. Glucose liberated by amyloglucosidase can be used for the production of ethanol and glucose syrups. Besides this amyloglucosidase can be widely used in various food and pharmaceuticals industries. For production of amyloglucosidase on commercial scale, filamentous fungi of genera Aspergillus are mostly used because they secrete large amount of enzymes extracellularly. The current investigation was based on isolation and identification of filamentous fungi from genus Aspergillus for the production of amyloglucosidase in submerged fermentation and optimization of cultivation parameters for starch saccharification. Natural isolates were identified as Aspergillus niger KIBGE-IB36, Aspergillus fumigatus KIBGE-IB33, Aspergillus flavus KIBGE-IB34 and Aspergillus terreus KIBGE-IB35 on taxonomical basis and 18S rDNA analysis and their sequence were submitted to GenBank. Among them, Aspergillus fumigatus KIBGE-IB33 was selected on the basis of maximum enzyme production. After optimization of fermentation conditions enzyme was immobilized on CLEA. Different parameters were optimized for maximum immobilization of amyloglucosidase. Data of enzyme stability (thermal and Storage) and reusability suggested the applicability of immobilized amyloglucosidase for continuous saccharification of starch in industrial processes.

Keywords: aspergillus, immobilization, industrial processes, starch saccharification

Procedia PDF Downloads 496
654 Engaging the Terrorism Problematique in Africa: Discursive and Non-Discursive Approaches to Counter Terrorism

Authors: Cecil Blake, Tolu Kayode-Adedeji, Innocent Chiluwa, Charles Iruonagbe

Abstract:

National, regional and international security threats have dominated the twenty-first century thus far. Insurgencies that utilize “terrorism” as their primary strategy pose the most serious threat to global security. States in turn adopt terrorist strategies to resist and even defeat insurgents who invoke the legitimacy of statehood to justify their action. In short, the era is dominated by the use of terror tactics by state and non-state actors. Globally, there is a powerful network of groups involved in insurgencies using Islam as the bastion for their cause. In Africa, there are Boko Haram, Al Shabaab and Al Qaeda in the Maghreb representing Islamic groups utilizing terror strategies and tactics to prosecute their wars. The task at hand is to discover and to use multiple ways of handling the present security threats, including novel approaches to policy formulation, implementation, monitoring and evaluation that would pay significant attention to the important role of culture and communication strategies germane for discursive means of conflict resolution. In other to achieve this, the proposed research would address inter alia, root causes of insurgences that predicate their mission on Islamic tenets particularly in Africa; discursive and non-discursive counter-terrorism approaches fashioned by African governments, continental supra-national and regional organizations, recruitment strategies by major non-sate actors in Africa that rely solely on terrorist strategies and tactics and sources of finances for the groups under study. A major anticipated outcome of this research is a contribution to answers that would lead to the much needed stability required for development in African countries experiencing insurgencies carried out by the use of patterned terror strategies and tactics. The nature of the research requires the use of triangulation as the methodological tool.

Keywords: counter-terrorism, discourse, Nigeria, security, terrorism

Procedia PDF Downloads 486
653 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 230
652 Design and Computational Fluid Dynamics Analysis of Aerodynamic Package of a Formula Student Car

Authors: Aniketh Ravukutam, Rajath Rao M., Pradyumna S. A.

Abstract:

In the past few decades there has been great advancement in use of aerodynamics in cars. Now its use has been evident from commercial cars to race cars for achieving higher speeds, stability and efficiency. This paper focusses on studying the effects of aerodynamics in Formula Student car. These cars weigh around 200kgs with an average speed of 60kmph. With increasing competition every year, developing a competitive car is a herculean task. The race track comprises mostly of tight corners and little or no straights thus testing the car’s cornering capabilities. Higher cornering speeds can be achieved by increasing traction at the tires. Studying the aerodynamics helps in achieving higher traction without much addition in overall weight of car. The main focus is to develop an aerodynamic package involving front wing, under tray and body to obtain an optimum value of down force. The initial process involves the detail study of geometrical constraints mentioned in the rule book and calculating the limiting value of drag as per the engine specifications. The successive steps involve conduction of various iterations in ANSYS for selection of airfoils, deciding the number of elements, designing the nose for low drag, channelizing the flow under the body and obtain an optimum value of down force within the limits defined in the initial process. The final step involves design of model using these results in Virtual environment called OptimumLap® for detailed study of performance with and without the presence of aerodynamics. The CFD analysis results showed an overall down force of 377.44N with a drag of 164.08N. The corresponding parameters of the last model were applied in OptimumLap® and an improvement of 3.5 seconds in lap times was observed.

Keywords: aerodynamics, formula student, traction, front wing, undertray, body, rule book, drag, down force, virtual environment, computational fluid dynamics (CFD)

Procedia PDF Downloads 241
651 Agro-Measures Influence Soil Physical Parameters in Alternative Farming

Authors: Laura Masilionyte, Danute Jablonskyte-Rasce, Kestutis Venslauskas, Zita Kriauciuniene

Abstract:

Alternative farming systems are used to cultivate high-quality food products and sustain the viability and fertility of the soil. Plant nutrition in all ecosystems depends not only on fertilization intensity or soil richness in organic matter but also on soil physical parameters –bulk density, structure, pores with the optimum moisture and air ratio available to plants. The field experiments of alternative (sustainable and organic) farming systems were conducted at Joniskelis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In alternative farming systems, farmyard manure, straw and catch crops for green manure were used for fertilization both in the soil with low and moderate humus contents. It had a more significant effect in the 0–20 cm depth layer on soil moisture than on other physical soil properties. In the agricultural systems, where catch crops were grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil of farming systems without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil with moderate humus content, compared with the soil with low humus content, bulk density was by 1.4% lower, and porosity by 1.8% higher. The research findings allow to make improvements in alternative farming systems by choosing appropriate combinations of organic fertilizers and catch crops that have a sustainable effect on soil and maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote the development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 127
650 Applications of Engineering Geology in Hydro Power Tunnel Projects in Himalayan Geological Regime

Authors: Rameh Chauhan

Abstract:

Tunnel construction in Himalayan rock is a challenging task due to fragile nature of the strata. Tunnel excavation carried out from lower Himalayas to high Himalayas in different metamorphic rock. Therefore application of engineering geology plays a vital role during various stage of the tunneling projects. Engineering geology is defined as application of geology to construction of civil structures through engineering practice. It is applied to the design, construction and performance aspects of engineering structure on the surface or sub-surface like dam, underground and surface power house, cut slopes, tunnels and underground storage cavern for nuclear material. But this paper emphasized mostly on underground structures like big caverns of Power house, desilting chambers, and tunnels of various sizes. Construction of these structures in the fragile rock conditions of Himalayan geology from Western Himalayas to Eastern Himalayas necessitated the application of the engineering geology on the micro-scale base for the stability, performance, and longevity of the civil structures. Number of hydropower projects have been constructed, some of them are under construction and under investigation stage. These projects are located in various parts of Himalayas under various seismic-tectonic zones. Tunneling works are involved in these projects. This paper represents the various engineering geological practices adopted in investigation and construction stage of various projects based on experiences gained during past construction histories in Himalayan geology of young mountains in very fragile geological conditions. Highlighting and sharing of use of these techniques on various platforms will definitely enhance the knowledge for carrying out the construction of various projects for the development of society. Construction of the tunnels, surface, and sub-surface caverns, dams, highway, metro, highway tunnels are all based on engineering geological parameters in combinations with other engineering considerations.

Keywords: cavern-power house, desilting chambers and tunnels, seismic-tectonic-zones, earthquake-prone zones based on intensities

Procedia PDF Downloads 223
649 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 128
648 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency

Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia

Abstract:

This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.

Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide

Procedia PDF Downloads 131
647 Production Process for Diesel Fuel Components Polyoxymethylene Dimethyl Ethers from Methanol and Formaldehyde Solution

Authors: Xiangjun Li, Huaiyuan Tian, Wujie Zhang, Dianhua Liu

Abstract:

Polyoxymethylene dimethyl ethers (PODEn) as clean diesel additive can improve the combustion efficiency and quality of diesel fuel and alleviate the problem of atmospheric pollution. Considering synthetic routes, PODE production from methanol and formaldehyde is regarded as the most economical and promising synthetic route. However, methanol used for synthesizing PODE can produce water, which causes the loss of active center of catalyst and hydrolysis of PODEn in the production process. Macroporous strong acidic cation exchange resin catalyst was prepared, which has comparative advantages over other common solid acid catalysts in terms of stability and catalytic efficiency for synthesizing PODE. Catalytic reactions were carried out under 353 K, 1 MPa and 3mL·gcat-1·h-1 in a fixed bed reactor. Methanol conversion and PODE3-6 selectivity reached 49.91% and 23.43%, respectively. Catalyst lifetime evaluation showed that resin catalyst retained its catalytic activity for 20 days without significant changes and catalytic activity of completely deactivated resin catalyst can basically return to previous level by simple acid regeneration. The acid exchange capacities of original and deactivated catalyst were 2.5191 and 0.0979 mmol·g-1, respectively, while regenerated catalyst reached 2.0430 mmol·g-1, indicating that the main reason for resin catalyst deactivation is that Brønsted acid sites of original resin catalyst were temporarily replaced by non-hydrogen ion cations. A separation process consisting of extraction and distillation for PODE3-6 product was designed for separation of water and unreacted formaldehyde from reactive mixture and purification of PODE3-6, respectively. The concentration of PODE3-6 in final product can reach up to 97%. These results indicate that the scale-up production of PODE3-6 from methanol and formaldehyde solution is feasible.

Keywords: inactivation, polyoxymethylene dimethyl ethers, separation process, sulfonic cation exchange resin

Procedia PDF Downloads 137
646 Cannabis Sativa L as Natural Source of Promising Anti-Alzheimer Drug Candidates: A Comprehensive Computational Approach Including Molecular Docking, Molecular Dynamics, Admet and MM-PBSA Studies

Authors: Hassan Nour, Nouh Mounadi, Oussama Abchir, Belaidi Salah, Samir Chtita

Abstract:

Cholinesterase enzymes are biological catalysts essential for the transformation of acetylcholine, which is a neurotransmitter implicated in memory and learning, into acetic acid and choline, altering the neurotransmission process in Alzheimer’s disease patients. Therefore, inhibition of cholinesterase enzymes is a relevant strategy for the symptomatic treatment of Alzheimer’s disease. The current investigation aims to explore potential Cholinesterase (ChE) inhibitors through a comprehensive computational approach. Forty-nine phytoconstituents extracted from Cannabis sativa L were in-silico screened using molecular docking, pharmacokinetic and toxicological analysis to evaluate their possible inhibitory effect towards the cholinesterase enzymes. Two phytoconstituents belonging to cannabinoid derivatives were revealed to be promising candidates for Alzheimer therapy by acting as cholinesterase inhibitors. They have exhibited high binding affinities towards the cholinesterase enzymes and showed their ability to interact with key residues involved in cholinesterase enzymatic activity. In addition, they presented good ADMET profiles allowing them to be promising oral drug candidates. Furthermore, molecular dynamics (MD) simulations were executed to explore their interactions stability under mimetic biological conditions and thus support our findings. To corroborate the docking results, the binding free energy corresponding to the more stable ligand-ChE complexes was re-estimated by applying the MM-PBSA method. MD and MM-PBSA studies affirmed that the ligand-ChE recognition is spontaneous reaction leading to stable complexes. The conducted investigations have led to great findings that would strongly guide the pharmaceutical industries towards the rational development of potent anti-Alzheimer agents.

Keywords: alzheimer’s disease, molecular docking, cannabis sativa l, cholinesterase inhibitors

Procedia PDF Downloads 73
645 A New Binder Mineral for Cement Stabilized Road Pavements Soils

Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner

Abstract:

Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.

Keywords: soil, stabilization, cement, binder, Novocrete, additive

Procedia PDF Downloads 221
644 A Systematic Review of the Predictors, Mediators and Moderators of the Uncanny Valley Effect in Human-Embodied Conversational Agent Interaction

Authors: Stefanache Stefania, Ioana R. Podina

Abstract:

Background: Embodied Conversational Agents (ECAs) are revolutionizing education and healthcare by offering cost-effective, adaptable, and portable solutions. Research on the Uncanny Valley effect (UVE) involves various embodied agents, including ECAs. Achieving the optimal level of anthropomorphism, no consensus on how to overcome the uncanniness problem. Objectives: This systematic review aims to identify the user characteristics, agent features, and context factors that influence the UVE. Additionally, this review provides recommendations for creating effective ECAs and conducting proper experimental studies. Methods: We conducted a systematic review following the PRISMA 2020 guidelines. We included quantitative, peer-reviewed studies that examined human-ECA interaction. We identified 17,122 relevant records from ACM Digital Library, IEE Explore, Scopus, ProQuest, and Web of Science. The quality of the predictors, mediators, and moderators adheres to the guidelines set by prior systematic reviews. Results: Based on the included studies, it can be concluded that females and younger people perceive the ECA as more attractive. However, inconsistent findings exist in the literature. ECAs characterized by extraversion, emotional stability, and agreeableness are considered more attractive. Facial expressions also play a role in the UVE, with some studies indicating that ECAs with more facial expressions are considered more attractive, although this effect is not consistent across all studies. Few studies have explored contextual factors, but they are nonetheless crucial. The interaction scenario and exposure time are important circumstances in human-ECA interaction. Conclusions: The findings highlight a growing interest in ECAs, which have seen significant developments in recent years. Given this evolving landscape, investigating the risk of the UVE can be a promising line of research.

Keywords: human-computer interaction, uncanny valley effect, embodied conversational agent, systematic review

Procedia PDF Downloads 81
643 Exploring the Design of Prospective Human Immunodeficiency Virus Type 1 Reverse Transcriptase Inhibitors through a Comprehensive Approach of Quantitative Structure Activity Relationship Study, Molecular Docking, and Molecular Dynamics Simulations

Authors: Mouna Baassi, Mohamed Moussaoui, Sanchaita Rajkhowa, Hatim Soufi, Said Belaaouad

Abstract:

The objective of this paper is to address the challenging task of targeting Human Immunodeficiency Virus type 1 Reverse Transcriptase (HIV-1 RT) in the treatment of AIDS. Reverse Transcriptase inhibitors (RTIs) have limitations due to the development of Reverse Transcriptase mutations that lead to treatment resistance. In this study, a combination of statistical analysis and bioinformatics tools was adopted to develop a mathematical model that relates the structure of compounds to their inhibitory activities against HIV-1 Reverse Transcriptase. Our approach was based on a series of compounds recognized for their HIV-1 RT enzymatic inhibitory activities. These compounds were designed via software, with their descriptors computed using multiple tools. The most statistically promising model was chosen, and its domain of application was ascertained. Furthermore, compounds exhibiting comparable biological activity to existing drugs were identified as potential inhibitors of HIV-1 RT. The compounds underwent evaluation based on their chemical absorption, distribution, metabolism, excretion, toxicity properties, and adherence to Lipinski's rule. Molecular docking techniques were employed to examine the interaction between the Reverse Transcriptase (Wild Type and Mutant Type) and the ligands, including a known drug available in the market. Molecular dynamics simulations were also conducted to assess the stability of the RT-ligand complexes. Our results reveal some of the new compounds as promising candidates for effectively inhibiting HIV-1 Reverse Transcriptase, matching the potency of the established drug. This necessitates further experimental validation. This study, beyond its immediate results, provides a methodological foundation for future endeavors aiming to discover and design new inhibitors targeting HIV-1 Reverse Transcriptase.

Keywords: QSAR, ADMET properties, molecular docking, molecular dynamics simulation, reverse transcriptase inhibitors, HIV type 1

Procedia PDF Downloads 92
642 Biomechanics of Atalantoaxial Complex for Various Posterior Fixation Techniques

Authors: Arun C. O., Shrijith M. B., Thakur Rajesh Singh

Abstract:

The study aims to analyze and understand the biomechanical stability of the atlantoaxial complex under different posterior fixation techniques using the finite element method in the Indian context. The conventional cadaveric studies performed show heterogeneity in biomechanical properties. The finite element method being a versatile numerical tool, is being wisely used for biomechanics analysis of atlantoaxial complex. However, the biomechanics of posterior fixation techniques for an Indian subject is missing in the literature. It is essential to study in this context as the bone density and geometry of vertebrae vary from region to region, thereby requiring different screw lengths and it can affect the range of motion(ROM), stresses generated. The current study uses CT images for developing a 3D finite element model with C1-C2 geometry without ligaments. Instrumentation is added to this geometry to develop four models for four fixation techniques, namely C1-C2 TA, C1LM-C2PS, C1LM-C2Pars, C1LM-C2TL. To simulate Flexion, extension, lateral bending, axial rotation, 1.5 Nm is applied to C1 while the bottom nodes of C2 are fixed. Then Range of Motion (ROM) is compared with the unstable model(without ligaments). All the fixation techniques showed more than 97 percent reduction in the Range of Motion. The von-mises stresses developed in the screw constructs are obtained. From the studies, it is observed that Transarticular technique is most stable in Lateral Bending, C1LM-C2 Translaminar is found most stable in Flexion/extension. The Von-Mises stresses developed minimum in Trasarticular technique in lateral bending and axial rotation, whereas stress developed in C2 pars construct minimum in Flexion/ Extension. On average, the TA technique is stable in all motions and also stresses in constructs are less in TA. Tarnsarticular technique is found to be the best fixation technique for Indian subjects among the 4 methods.

Keywords: biomechanics, cervical spine, finite element model, posterior fixation

Procedia PDF Downloads 143
641 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads

Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo

Abstract:

Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.

Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads

Procedia PDF Downloads 245
640 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method

Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami

Abstract:

Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.

Keywords: adsorption-cross linking, immobilization, lipase, resin

Procedia PDF Downloads 369
639 Canada's "Flattened Curve": A Geospatial Temporal Analysis of Canada's Amelioration of the Sars-COV-2 Pandemic Through Coordinated Government Intervention

Authors: John Ahluwalia

Abstract:

As an affluent first-world nation, Canada took swift and comprehensive action during the outbreak of the SARS-CoV-2 (COVID-19) pandemic compared to other countries in the same socio-economic cohort. The United States has stumbled to overcome obstacles most developed nations have faced, which has led to significantly more per capita cases and deaths. The initial outbreaks of COVID-19 occurred in the US and Canada within days of each other and posed similar potentially catastrophic threats to public health, the economy, and governmental stability. On a macro level, events that take place in the US have a direct impact on Canada. For example, both countries tend to enter and exit economic recessions at approximately the same time, they are each other’s largest trading partners, and their currencies are inexorably linked. Why is it that Canada has not shared the same fate as the US (and many other nations) that have realized much worse outcomes relative to the COVID-19 pandemic? Variables intrinsic to Canada’s national infrastructure have been instrumental in the country’s efforts to flatten the curve of COVID-19 cases and deaths. Canada’s coordinated multi-level governmental effort has allowed it to create and enforce policies related to COVID-19 at both the national and provincial levels. Canada’s policy of universal healthcare is another variable. Health care and public health measures are enforced on a provincial level, and it is within each province’s jurisdiction to dictate standards for public safety based on scientific evidence. Rather than introducing confusion and the possibility of competition for resources such as PPE and vaccines, Canada’s multi-level chain of government authority has provided consistent policies supporting national public health and local delivery of medical care. This paper will demonstrate that the coordinated efforts on provincial and federal levels have been the linchpin in Canada’s relative success in containing the deadly spread of the COVID-19 virus.

Keywords: COVID-19, Canada, GIS, temporal analysis, ESRI

Procedia PDF Downloads 147
638 Banking Union: A New Step towards Completing the Economic and Monetary Union

Authors: Marijana Ivanov, Roman Šubić

Abstract:

The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, represent important steps towards completing the Economic and Monetary Union. It should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim that a former practice of the bail-out is replaced with the bail-in system through which bank failures will be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. It has to reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities, and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the single interbank money market. However, contrary to all the positive expectations related to the future functioning of the banking union, low and unbalanced economic growth rates remain a challenge for the maintenance of financial stability in the euro area, and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times, and large banks are still a matter of concern because of their systemic importance for individual countries and the euro zone as a whole. The creation of the SSM and the SRM should increase transparency of the banking system in the euro area and restore confidence that have been disturbed during the depression. It would provide a new opportunity to strengthen economic and financial systems in the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented to the large and significant banks (whereby one half of them operate in the core and most important euro area countries), while it is questionable to what extent the common resolution funds will be used for rescue of less important institutions.

Keywords: banking union, financial integration, single supervision mechanism (SSM)

Procedia PDF Downloads 470
637 Edible and Ecofriendly Packaging – A Trendsetter of the Modern Era – Standardization and Properties of Films and Cutleries from Food Starch

Authors: P. Raajeswari, S. M. Devatha, R. Pragatheeswari

Abstract:

The edible packaging is a new trendsetter in the era of modern packaging. The researchers and food scientist recognise edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability. Starch was extracted from different sources that contains abundantly like potato, tapioca, rice, wheat, and corn. The starch based edible films and cutleries are developed as an alternative for conventional packages providing the nutritional benefit when consumed along with the food. The development of starch based edible films by the extraction of starch from various raw ingredients at lab scale level. The films are developed by the employment of plasticiser at different concentrations of 1.5ml and 2ml. The films developed using glycerol as a plasticiser in filmogenic solution to increase the flexibility and plasticity of film. It reduces intra and intermolecular forces in starch, and it increases the mobility of starch based edible films. The films developed are tested for its functional properties such as thickness, tensile strength, elongation at break, moisture permeability, moisture content, and puncture strength. The cutleries like spoons and cups are prepared by making dough and rolling the starch along with water. The overall results showed that starch based edible films absorbed less moisture, and they also contributed to the low moisture permeability with high tensile strength. Food colorants extracted from red onion peel, pumpkin, and red amaranth adds on the nutritive value, colour, and attraction when incorporated in edible cutleries, and it doesn’t influence the functional properties. Addition of a low quantity of glycerol in edible films and colour extraction from onion peel, pumpkin, and red amaranth enhances biodegradability and provides a good quantity of nutrients when consumed. Therefore, due to its multiple advantages, food starch can serve as the best response for eco-friendly industrial products aimed to replace single use plastics at low cost.

Keywords: edible films, edible cutleries, plasticizer, glycerol, starch, functional property

Procedia PDF Downloads 185
636 Perfectionism, Self-Compassion, and Emotion Dysregulation: An Exploratory Analysis of Mediation Models in an Eating Disorder Sample

Authors: Sarah Potter, Michele Laliberte

Abstract:

As eating disorders are associated with high levels of chronicity, impairment, and distress, it is paramount to evaluate factors that may improve treatment outcomes in this group. Individuals with eating disorders exhibit elevated levels of perfectionism and emotion dysregulation, as well as reduced self-compassion. These variables are related to eating disorder outcomes, including shape/weight concerns and psychosocial impairment. Thus, these factors may be tenable targets for treatment within eating disorder populations. However, the relative contributions of perfectionism, emotion dysregulation, and self-compassion to the severity of shape/weight concerns and psychosocial impairment remain largely unexplored. In the current study, mediation analyses were conducted to clarify how perfectionism, emotion dysregulation, and self-compassion are linked to shape/weight concerns and psychosocial impairment. The sample was comprised of 85 patients from an outpatient eating disorder clinic. The patients completed self-report measures of perfectionism, self-compassion, emotion dysregulation, eating disorder symptoms, and psychosocial impairment. Specifically, emotion dysregulation was assessed as a mediator in the relationships between (1) perfectionism and shape/weight concerns, (2) self-compassion and shape/weight concerns, (3) perfectionism and psychosocial impairment, and (4) self-compassion and psychosocial impairment. It was postulated that emotion dysregulation would significantly mediate relationships in the former two models. An a priori hypothesis was not constructed in reference to the latter models, as these analyses were preliminary and exploratory in nature. The PROCESS macro for SPSS was utilized to perform these analyses. Emotion dysregulation fully mediated the relationships between perfectionism and eating disorder outcomes. In the link between self-compassion and psychosocial impairment, emotion dysregulation partially mediated this relationship. Finally, emotion dysregulation did not significantly mediate the relationship between self-compassion and shape/weight concerns. The results suggest that emotion dysregulation and self-compassion may be suitable targets to decrease the severity of psychosocial impairment and shape/weight concerns in individuals with eating disorders. Further research is required to determine the stability of these models over time, between diagnostic groups, and in nonclinical samples.

Keywords: eating disorders, emotion dysregulation, perfectionism, self-compassion

Procedia PDF Downloads 145
635 The Comparative Electroencephalogram Study: Children with Autistic Spectrum Disorder and Healthy Children Evaluate Classical Music in Different Ways

Authors: Galina Portnova, Kseniya Gladun

Abstract:

In our EEG experiment participated 27 children with ASD with the average age of 6.13 years and the average score for CARS 32.41 and 25 healthy children (of 6.35 years). Six types of musical stimulation were presented, included Gluck, Javier-Naida, Kenny G, Chopin and other classic musical compositions. Children with autism showed orientation reaction to the music and give behavioral responses to different types of music, some of them might assess stimulation by scales. The participants were instructed to remain calm. Brain electrical activity was recorded using a 19-channel EEG recording device, 'Encephalan' (Russia, Taganrog). EEG epochs lasting 150 s were analyzed using EEGLab plugin for MatLab (Mathwork Inc.). For EEG analysis we used Fast Fourier Transform (FFT), analyzed Peak alpha frequency (PAF), correlation dimension D2 and Stability of rhythms. To express the dynamics of desynchronizing of different rhythms we've calculated the envelope of the EEG signal, using the whole frequency range and a set of small narrowband filters using Hilbert transformation. Our data showed that healthy children showed similar EEG spectral changes during musical stimulation as well as described the feelings induced by musical fragments. The exception was the ‘Chopin. Prelude’ fragment (no.6). This musical fragment induced different subjective feeling, behavioral reactions and EEG spectral changes in children with ASD and healthy children. The correlation dimension D2 was significantly lower in autists compared to healthy children during musical stimulation. Hilbert envelope frequency was reduced in all group of subjects during musical compositions 1,3,5,6 compositions compared to the background. During musical fragments 2 and 4 (terrible) lower Hilbert envelope frequency was observed only in children with ASD and correlated with the severity of the disease. Alfa peak frequency was lower compared to the background during this musical composition in healthy children and conversely higher in children with ASD.

Keywords: electroencephalogram (EEG), emotional perception, ASD, musical perception, childhood Autism rating scale (CARS)

Procedia PDF Downloads 284
634 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 234
633 Adolescent Sleep Hygiene Scale and Adolescent Sleep Wake Scale: Factorial Analysis and Validation for Indian Population

Authors: Sataroopa Mishra, Mona Basker, Sneha Varkki, Ram Kumar Pandian, Grace Rebekah

Abstract:

Background: Sleep deprivation is a matter of public health importance among adolescents. We used adolescent sleep wake scale and adolescent sleep hygiene scale to determine the sleep quality and sleep hygiene respectively of school going adolescents in Vellore city of India. The objective of the study was to do factorial analysis of the scales and validate it for use in local population. Methods: Observational questionnaire based cross sectional study. Setting: Community based school survey in a semi-urban setting in three schools in Vellore city. Data collection: Non probability sample was collected form students studying in standard 9 and 11. Students filled Adolescent Sleep Wake scale (ASWS) and Adolescent Sleep Hygiene Scale (ASHS) translated into vernacular language. Data Analysis: Exploratory Factorial Analysis was used to see the factor loading of various components of the two scales. Confirmatory factorial analysis is subsequently planned for assessing the internal validity of the scales.Results: 557 adolescents were included in the study of 12 – 17 years old. Exploratory factorial analysis of adolescent sleep hygiene scale indicated significant factor loading for 18 items from 28 items originally devised by the authors and has been reconstructed to four domains instead of 9 domains in the original scale namely sleep stability, cognitive – emotional, Physiological - bed time routine - behavioural arousal factor (activites before bedtime and during bed time), Sleep environment (lighting and bed sharing). Factorial analysis of Adolescent sleep wake scale showed factor loading of 18 items out of 28 items in original scale reconstructed into 5 aspects of sleep quality. Conclusions: The factorial analysis gives a reconstructed scale useful for the local population. Further a confirmatory factorial analysis has been subsequently planned to determine the internal consistency of the scale for local population.

Keywords: factorial analysis, sleep hygiene, sleep quality, adolescent sleep scale

Procedia PDF Downloads 292
632 Geopolymerization Methods for Clay Soils Treatment

Authors: Baba Hassane Ahmed Hisseini, Abdelkrim Bennabi, Rabah Hamzaoui, Lamis Makki, Gaetan Blanck

Abstract:

Most of the clay soils are known as problematic soils due to their water content, which varies greatly over time. It is observed that they are used to be subject to shrinkage and swelling, thus causing a problem of stability on the structures of civil engineering construction work. They are often excavated and placed in a storage area giving rise to the opening of new quarries. This method has become obsolete today because to protect the environment, we are leading to think differently and opening the way to new research for the improvement of the performance of this type of clay soils to reuse them in the construction field. The solidification and stabilization technique is used to improve the properties of poor quality soils to transform them into materials with a suitable performance for a new use in the civil engineering field rather than to excavate them and store them in the discharge area. In our case, the polymerization method is used for bad clay soils classified as high plasticity soil class A4 according to the French standard NF P11-300, where classical treatment methods with cement or lime are not efficient. Our work concerns clay soil treatment study using raw materials as additives for solidification and stabilization. The geopolymers are synthesized by aluminosilicates materials like fly ash, metakaolin, or blast furnace slag and activated by alkaline solution based on sodium hydroxide (NaOH), sodium silicate (Na2SiO3) or a mixture of both of them. In this study, we present the mechanical properties of the soil clay (A4 type) evolution with geopolymerisation methods treatment. Various mix design of aluminosilicates materials and alkaline solutions were carried at different percentages and different curing times of 1, 7, and 28 days. The compressive strength of the untreated clayey soil could be increased from simple to triple. It is observed that the improvement of compressive strength is associated with a geopolymerization mechanism. The highest compressive strength was found with metakaolin at 28 days.

Keywords: treatment and valorization of clay-soil, solidification and stabilization, alkali-activation of co-product, geopolymerization

Procedia PDF Downloads 160