Search results for: hydrophilic surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6597

Search results for: hydrophilic surface

3657 Electro Magnetic Tractor (E. M. Tractor)

Authors: Sijo Varghese

Abstract:

A space craft (E. M. Tractor) which is intended to deflect or tug the asteroids which possesses threat towards the planets is the whole idea behind this paper. In this case "Electro Magnetic Induction" is used where it is known that when two separate circuits are connected to the electro magnet and on application of electric current through the one circuit in to the coil induces magnetic fields which repels the other circuit.( Faraday's law of Electromagnetic Induction). Basically a Spacecraft is used to attach a large sheet of aluminum on to the surface of the asteroid, the Spacecraft acts as an electro magnet and the induced magnetic field would eventually repel the aluminum intern repelling the asteroid. This method would take less time as compared to use of gravity( which requires a larger spacecraft and process will take a long time).

Keywords: asteroids, electro magnetic induction, gravity, electro magnetic tractor

Procedia PDF Downloads 473
3656 Benzimidazole as Corrosion Inhibitor for Heat Treated 6061 Al-SiCp Composite in Acetic Acid

Authors: Melby Chacko, Jagannath Nayak

Abstract:

6061 Al-SiCp composite was solutionized at 350 °C for 30 minutes and water quenched. It was then underaged at 140 °C (T6 treatment). The aging behaviour of the composite was studied using Rockwell B hardness measurement. Corrosion behaviour of the underaged sample was studied in different concentrations of acetic acid and at different temperatures. Benzimidazole at different concentrations was used for the inhibition studies. Inhibition efficiency of benzimidazole was calculated for different experimental conditions. Thermodynamic parameters were found out which suggested benzimidazole is an efficient inhibitor and it adsorbed onto the surface of composite by mixed adsorption where chemisorption is predominant.

Keywords: 6061 Al-SiCp composite, T6 treatment, corrosion inhibition, chemisorption

Procedia PDF Downloads 374
3655 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.

Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability

Procedia PDF Downloads 130
3654 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: artificial neural network, low series manufacturing, polymer cutting, setup period estimation

Procedia PDF Downloads 228
3653 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 158
3652 Laser Paint Stripping on Large Zones on AA 2024 Based Substrates

Authors: Selen Unaldi, Emmanuel Richaud, Matthieu Gervais, Laurent Berthe

Abstract:

Aircrafts are painted with several layers to guarantee their protection from external attacks. For aluminum AA 2024-T3 (metallic structural part of the plane), a protective primer is applied to ensure its corrosion protection. On top of this layer, the top coat is applied for aesthetic aspects. During the lifetime of an aircraft, top coat stripping has an essential role which should be operated as an average of every four years. However, since conventional stripping processes create hazardous disposals and need long hours of labor work, alternative methods have been investigated. Amongst them, laser stripping appears as one of the most promising techniques not only because of the reasons mentioned above but also its controllable and monitorable aspects. The application of a laser beam from the coated side provides stripping, but the depth of the process should be well controlled in order to prevent damage to a substrate and the anticorrosion primer. Apart from that, thermal effects should be taken into account on the painted layers. As an alternative, we worked on developing a process that includes the usage of shock wave propagation to create the stripping via mechanical effects with the application of the beam from the substrate side (back face) of the samples. Laser stripping was applied on thickness-specified samples with a thickness deviation of 10-20%. First, the stripping threshold is determined as a function of power density which is the first flight off of the top coats. After obtaining threshold values, the same power densities were applied to specimens to create large stripping zones with a spot overlap of 10-40%. Layer characteristics were determined on specimens in terms of physicochemical properties and thickness range both before and after laser stripping in order to validate the substrate material health and coating properties. The substrate health is monitored by measuring the roughness of the laser-impacted zones and free surface energy tests (both before and after laser stripping). Also, Hugoniot Elastic Limit (HEL) is determined from VISAR diagnostic on AA 2024-T3 substrates (for the back face surface deformations). In addition, the coating properties are investigated as a function of adhesion levels and anticorrosion properties (neutral salt spray test). The influence of polyurethane top-coat thickness is studied in order to verify the laser stripping process window for industrial aircraft applications.

Keywords: aircraft coatings, laser stripping, laser adhesion tests, epoxy, polyurethane

Procedia PDF Downloads 62
3651 Study of Fast Etching of Silicon for the Fabrication of Bulk Micromachined MEMS Structures

Authors: V. Swarnalatha, A. V. Narasimha Rao, P. Pal

Abstract:

The present research reports the investigation of fast etching of silicon for the fabrication of microelectromechanical systems (MEMS) structures using silicon wet bulk micromachining. Low concentration tetramethyl-ammonium hydroxide (TMAH) and hydroxylamine (NH2OH) are used as main etchant and additive, respectively. The concentration of NH2OH is varied to optimize the composition to achieve best etching characteristics such as high etch rate, significantly high undercutting at convex corner for the fast release of the microstructures from the substrate, and improved etched surface morphology. These etching characteristics are studied on Si{100} and Si{110} wafers as they are most widely used in the fabrication of MEMS structures as wells diode, transistors and integrated circuits.

Keywords: KOH, MEMS, micromachining, silicon, TMAH, wet anisotropic etching

Procedia PDF Downloads 188
3650 Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery

Authors: Irshad U. Khan, Tanmay Paul, Murali Mohan Seepana

Abstract:

This paper presents a study on synthesizing and characterizing a Copper oxide doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by linear sweep voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, which reflects improved cell performance.

Keywords: ECSA, electrocatalyst, energy storage, Tafel

Procedia PDF Downloads 67
3649 Solution of Some Boundary Value Problems of the Generalized Theory of Thermo-Piezoelectricity

Authors: Manana Chumburidze

Abstract:

We have considered a non-classical model of dynamical problems for a conjugated system of differential equations arising in thermo-piezoelectricity, which was formulated by Toupin – Mindlin. The basic concepts and the general theory of solvability for isotropic homogeneous elastic media is considered. They are worked by using the methods the Laplace integral transform, potential method and singular integral equations. Approximate solutions of mixed boundary value problems for finite domain, bounded by the some closed surface are constructed. They are solved in explicitly by using the generalized Fourier's series method.

Keywords: thermo-piezoelectricity, boundary value problems, Fourier's series, isotropic homogeneous elastic media

Procedia PDF Downloads 450
3648 Formulation and Invivo Evaluation of Salmeterol Xinafoate Loaded MDI for Asthma Using Response Surface Methodology

Authors: Paresh Patel, Priya Patel, Vaidehi Sorathiya, Navin Sheth

Abstract:

The aim of present work was to fabricate Salmeterol Xinafoate (SX) metered dose inhaler (MDI) for asthma and to evaluate the SX loaded solid lipid nanoparticles (SLNs) for pulmonary delivery. Solid lipid nanoparticles can be used to deliver particles to the lungs via MDI. A modified solvent emulsification diffusion technique was used to prepare Salmeterol Xinafoate loaded solid lipid nanoparticles by using compritol 888 ATO as lipid, tween 80 as surfactant, D-mannitol as cryoprotecting agent and L-leucine was used to improve aerosolization behaviour. Box-Behnken design was applied with 17 runs. 3-D surface response plots and contour plots were drawn and optimized formulation was selected based on minimum particle size and maximum % EE. % yield, in vitro diffusion study, scanning electron microscopy, X-ray diffraction, DSC, FTIR also characterized. Particle size, zeta potential analyzed by Zetatrac particle size analyzer and aerodynamic properties was carried out by cascade impactor. Pre convulsion time was examined for control group, treatment group and compare with marketed group. MDI was evaluated for leakage test, flammability test, spray test and content per puff. By experimental design, particle size and % EE found to be in range between 119-337 nm and 62.04-76.77% by solvent emulsification diffusion technique. Morphologically, particles have spherical shape and uniform distribution. DSC & FTIR study showed that no interaction between drug and excipients. Zeta potential shows good stability of SLNs. % respirable fraction found to be 52.78% indicating reach to the deep part of lung such as alveoli. Animal study showed that fabricated MDI protect the lungs against histamine induced bronchospasm in guinea pigs. MDI showed sphericity of particle in spray pattern, 96.34% content per puff and non-flammable. SLNs prepared by Solvent emulsification diffusion technique provide desirable size for deposition into the alveoli. This delivery platform opens up a wide range of treatment application of pulmonary disease like asthma via solid lipid nanoparticles.

Keywords: salmeterol xinafoate, solid lipid nanoparticles, box-behnken design, solvent emulsification diffusion technique, pulmonary delivery

Procedia PDF Downloads 433
3647 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 541
3646 Evaluation of Hydrogen Particle Volume on Surfaces of Selected Nanocarbons

Authors: M. Ziółkowska, J. T. Duda, J. Milewska-Duda

Abstract:

This paper describes an approach to the adsorption phenomena modeling aimed at specifying the adsorption mechanisms on localized or nonlocalized adsorbent sites, when applied to the nanocarbons. The concept comes from the fundamental thermodynamic description of adsorption equilibrium and is based on numerical calculations of the hydrogen adsorbed particles volume on the surface of selected nanocarbons: single-walled nanotube and nanocone. This approach enables to obtain information on adsorption mechanism and then as a consequence to take appropriate mathematical adsorption model, thus allowing for a more reliable identification of the material porous structure. Theoretical basis of the approach is discussed and newly derived results of the numerical calculations are presented for the selected nanocarbons.

Keywords: adsorption, mathematical modeling, nanocarbons, numerical analysis

Procedia PDF Downloads 249
3645 Dynamic Simulation of Disintegration of Wood Chips Caused by Impact and Collisions during the Steam Explosion Pre-Treatment

Authors: Muhammad Muzamal, Anders Rasmuson

Abstract:

Wood material is extensively considered as a raw material for the production of bio-polymers, bio-fuels and value-added chemicals. However, the shortcoming in using wood as raw material is that the enzymatic hydrolysis of wood material is difficult because the accessibility of enzymes to hemicelluloses and cellulose is hindered by complex chemical and physical structure of the wood. The steam explosion (SE) pre-treatment improves the digestion of wood material by creating both chemical and physical modifications in wood. In this process, first, wood chips are treated with steam at high pressure and temperature for a certain time in a steam treatment vessel. During this time, the chemical linkages between lignin and polysaccharides are cleaved and stiffness of material decreases. Then the steam discharge valve is rapidly opened and the steam and wood chips exit the vessel at very high speed. These fast moving wood chips collide with each other and with walls of the equipment and disintegrate to small pieces. More damaged and disintegrated wood have larger surface area and increased accessibility to hemicelluloses and cellulose. The energy required for an increase in specific surface area by same value is 70 % more in conventional mechanical technique, i.e. attrition mill as compared to steam explosion process. The mechanism of wood disintegration during the SE pre-treatment is very little studied. In this study, we have simulated collision and impact of wood chips (dimension 20 mm x 20 mm x 4 mm) with each other and with walls of the vessel. The wood chips are simulated as a 3D orthotropic material. Damage and fracture in the wood material have been modelled using 3D Hashin’s damage model. This has been accomplished by developing a user-defined subroutine and implementing it in the FE software ABAQUS. The elastic and strength properties used for simulation are of spruce wood at 12% and 30 % moisture content and at 20 and 160 OC because the impacted wood chips are pre-treated with steam at high temperature and pressure. We have simulated several cases to study the effects of elastic and strength properties of wood, velocity of moving chip and orientation of wood chip at the time of impact on the damage in the wood chips. The disintegration patterns captured by simulations are very similar to those observed in experimentally obtained steam exploded wood. Simulation results show that the wood chips moving with higher velocity disintegrate more. Moisture contents and temperature decreases elastic properties and increases damage. Impact and collision in specific directions cause easy disintegration. This model can be used to efficiently design the steam explosion equipment.

Keywords: dynamic simulation, disintegration of wood, impact, steam explosion pretreatment

Procedia PDF Downloads 387
3644 Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts

Authors: Debdut Roy, Vidyasagar Guggilla

Abstract:

In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength.

Keywords: catalytic cracking, zeolite, propylene, structure-activity correlation

Procedia PDF Downloads 196
3643 A Clinician’s Perspective on Electroencephalography Annotation and Analysis for Driver Drowsiness Estimation

Authors: Ruxandra Aursulesei, David O’Callaghan, Cian Ryan, Diarmaid O’Cualain, Viktor Varkarakis, Alina Sultana, Joseph Lemley

Abstract:

Human errors caused by drowsiness are among the leading causes of road accidents. Neurobiological research gives information about the electrical signals emitted by neurons firing within the brain. Electrical signal frequencies can be determined by attaching bio-sensors to the head surface. By observing the electrical impulses and the rhythmic interaction of neurons with each other, we can predict the mental state of a person. In this paper, we aim to better understand intersubject and intrasubject variability in terms of electrophysiological patterns that occur at the onset of drowsiness and their evolution with the decreasing of vigilance. The purpose is to lay the foundations for an algorithm that detects the onset of drowsiness before the physical signs become apparent.

Keywords: electroencephalography, drowsiness, ADAS, annotations, clinician

Procedia PDF Downloads 90
3642 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 334
3641 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 66
3640 Temperature-Dependent Barrier Characteristics of Inhomogeneous Pd/n-GaN Schottky Barrier Diodes Surface

Authors: K. Al-Heuseen, M. R. Hashim

Abstract:

The current-voltage (I-V) characteristics of Pd/n-GaN Schottky barrier were studied at temperatures over room temperature (300-470K). The values of ideality factor (n), zero-bias barrier height (φB0), flat barrier height (φBF) and series resistance (Rs) obtained from I-V-T measurements were found to be strongly temperature dependent while (φBo) increase, (n), (φBF) and (Rs) decrease with increasing temperature. The apparent Richardson constant was found to be 2.1x10-9 Acm-2K-2 and mean barrier height of 0.19 eV. After barrier height inhomogeneities correction, by assuming a Gaussian distribution (GD) of the barrier heights, the Richardson constant and the mean barrier height were obtained as 23 Acm-2K-2 and 1.78eV, respectively. The corrected Richardson constant was very closer to theoretical value of 26 Acm-2K-2.

Keywords: electrical properties, Gaussian distribution, Pd-GaN Schottky diodes, thermionic emission

Procedia PDF Downloads 260
3639 A Study on the Water and Oil Repellency Characteristics of Plasma-Treated Pet and Pet/Elastane Fabrics

Authors: Mehtap Çalışkan, Nilüfer Yıldız Varan, Volkan Kaplan

Abstract:

New orientations have emerged in the textile sector as a result of increasing global competition and environmental problems. Under the scope of new understandings, it is required to bring forward multi-functional, simple and environmentally friendly methods that will meet tight economic and ecological demands of today. Plasma technology has become a significant alternative in this sense. This technology may provide great advantages in case it is developed, however, it does not receive adequate consideration. In this study, plasma treatment was applied by using glow discharge plasma system to 100% polyethylene terephthalate (PET) and 95% PET/5% elastane fabrics and then the effects of plasma polymerization on fabric surface was tested and analyzed using water and oil repellent finishes.

Keywords: plasma, polyester, elastane, water repellency, oil repellency

Procedia PDF Downloads 307
3638 Analysis of Tactile Perception of Textiles by Fingertip Skin Model

Authors: Izabela L. Ciesielska-Wrόbel

Abstract:

This paper presents finite element models of the fingertip skin which have been created to simulate the contact of textile objects with the skin to gain a better understanding of the perception of textiles through the skin, so-called Hand of Textiles (HoT). Many objective and subjective techniques have been developed to analyze HoT, however none of them provide exact overall information concerning the sensation of textiles through the skin. As the human skin is a complex heterogeneous hyperelastic body composed of many particles, some simplifications had to be made at the stage of building the models. The same concerns models of woven structures, however their utilitarian value was maintained. The models reflect only friction between skin and woven textiles, deformation of the skin and fabrics when “touching” textiles and heat transfer from the surface of the skin into direction of textiles.

Keywords: fingertip skin models, finite element models, modelling of textiles, sensation of textiles through the skin

Procedia PDF Downloads 450
3637 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness

Procedia PDF Downloads 392
3636 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: ignition transient, solid rockets, starting transient, thrust transient

Procedia PDF Downloads 425
3635 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros

Abstract:

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.

Keywords: adsorption, activated carbon, babassu, dende

Procedia PDF Downloads 348
3634 Sludge Marvel (Densification): The Ultimate Solution For Doing More With Less Effort!

Authors: Raj Chavan

Abstract:

At present, the United States is home to more than 14,000 Water Resource Recovery Facilities (WRRFs), of which approximately 35% have implemented nutrient limits of some kind. These WRRFs contribute 10 to 15% of the total nutrient burden to surface rivers in the United States and account for approximately 1% of total power demand and 2% of total greenhouse gas emissions (GHG). There are several factors that have influenced the development of densification technologies in the direction of more compact and energy-efficient nutrient removal processes. Prior to surface water discharge, existing facilities that necessitate capacity expansion or biomass densification for greater treatability within the same footprint are being subjected to stricter nutrient removal requirements. Densification of activated sludge as a method for nutrient removal and process intensification at WRRFs has garnered considerable attention in recent times. The biological processes take place within the aerobic sediment granules, which form the basis of the technology. The possibility of generating granular sludge through continuous (or conventional) activated sludge processes (CAS) or densification of biomass through the transfer of activated sludge flocs to a denser biomass aggregate as an exceptionally efficient intensification technique has generated considerable interest. This presentation aims to furnish attendees with a foundational comprehension of densification through the illustration of practical concerns and insights. The subsequent subjects will be deliberated upon. What are some potential techniques for producing and preserving densified granules? What processes are responsible for the densification of biological flocs? How do physical selectors contribute to the process of biological flocs becoming denser? What viable strategies exist for the management of densified biological flocs, and which design parameters of physical selection influence the retention of densified biological flocs? determining operational solutions for floc and granule customization in order to meet capacity and performance objectives? The answers to these pivotal questions will be derived from existing full-scale treatment facilities, bench-scale and pilot-scale investigations, and existing literature data. By the conclusion of the presentation, the audience will possess a fundamental comprehension of the densification concept and its significance in attaining effective effluent treatment. Additionally, case studies pertaining to the design and operation of densification procedures will be incorporated into the presentation.

Keywords: densification, intensification, nutrient removal, granular sludge

Procedia PDF Downloads 57
3633 Comparison between Photogrammetric and Structure from Motion Techniques in Processing Unmanned Aerial Vehicles Imageries

Authors: Ahmed Elaksher

Abstract:

Over the last few years, significant progresses have been made and new approaches have been proposed for efficient collection of 3D spatial data from Unmanned aerial vehicles (UAVs) with reduced costs compared to imagery from satellite or manned aircraft. In these systems, a low-cost GPS unit provides the position, velocity of the vehicle, a low-quality inertial measurement unit (IMU) determines its orientation, and off-the-shelf cameras capture the images. Structure from Motion (SfM) and photogrammetry are the main tools for 3D surface reconstruction from images collected by these systems. Unlike traditional techniques, SfM allows the computation of calibration parameters using point correspondences across images without performing a rigorous laboratory or field calibration process and it is more flexible in that it does not require consistent image overlap or same rotation angles between successive photos. These benefits make SfM ideal for UAVs aerial mapping. In this paper, a direct comparison between SfM Digital Elevation Models (DEM) and those generated through traditional photogrammetric techniques was performed. Data was collected by a 3DR IRIS+ Quadcopter with a Canon PowerShot S100 digital camera. Twenty ground control points were randomly distributed on the ground and surveyed with a total station in a local coordinate system. Images were collected from an altitude of 30 meters with a ground resolution of nine mm/pixel. Data was processed with PhotoScan, VisualSFM, Imagine Photogrammetry, and a photogrammetric algorithm developed by the author. The algorithm starts with performing a laboratory camera calibration then the acquired imagery undergoes an orientation procedure to determine the cameras’ positions and orientations. After the orientation is attained, correlation based image matching is conducted to automatically generate three-dimensional surface models followed by a refining step using sub-pixel image information for high matching accuracy. Tests with different number and configurations of the control points were conducted. Camera calibration parameters estimated from commercial software and those obtained with laboratory procedures were comparable. Exposure station positions were within less than few centimeters and insignificant differences, within less than three seconds, among orientation angles were found. DEM differencing was performed between generated DEMs and few centimeters vertical shifts were found.

Keywords: UAV, photogrammetry, SfM, DEM

Procedia PDF Downloads 270
3632 Analysis of Ancient and Present Lightning Protection Systems of Large Heritage Stupas in Sri Lanka

Authors: J.R.S.S. Kumara, M.A.R.M. Fernando, S.Venkatesh, D.K. Jayaratne

Abstract:

Protection of heritage monuments against lightning has become extremely important as far as their historical values are concerned. When such structures are large and tall, the risk of lightning initiated from both cloud and ground can be high. This paper presents a lightning risk analysis of three giant stupas in Anuradhapura era (fourth century BC onwards) in Sri Lanka. The three stupas are Jethawaaramaya (269-296 AD), Abayagiriya (88-76 BC) and Ruwanweliseya (161-137 BC), the third, fifth and seventh largest ancient structures in the world. These stupas are solid brick structures consisting of a base, a near hemispherical dome and a conical spire on the top. The ancient stupas constructed with a dielectric crystal on the top and connected to the ground through a conducting material, was considered as the hypothesis for their original lightning protection technique. However, at present, all three stupas are protected with Franklin rod type air termination systems located on top of the spire. First, a risk analysis was carried out according to IEC 62305 by considering the isokeraunic level of the area and the height of the stupas. Then the standard protective angle method and rolling sphere method were used to locate the possible touching points on the surface of the stupas. The study was extended to estimate the critical current which could strike on the unprotected areas of the stupas. The equations proposed by (Uman 2001) and (Cooray2007) were used to find the striking distances. A modified version of rolling sphere method was also applied to see the effects of upward leaders. All these studies were carried out for two scenarios: with original (i.e. ancient) lightning protection system and with present (i.e. new) air termination system. The field distribution on the surface of the stupa in the presence of a downward leader was obtained using finite element based commercial software COMSOL Multiphysics for further investigations of lightning risks. The obtained results were analyzed and compared each other to evaluate the performance of ancient and new lightning protection methods and identify suitable methods to design lightning protection systems for stupas. According to IEC standards, all three stupas with new and ancient lightning protection system has Level IV protection as per protection angle method. However according to rolling sphere method applied with Uman’s equation protection level is III. The same method applied with Cooray’s equation always shows a high risk with respect to Uman’s equation. It was found that there is a risk of lightning strikes on the dome and square chamber of the stupa, and the corresponding critical current values were different with respect to the equations used in the rolling sphere method and modified rolling sphere method.

Keywords: Stupa, heritage, lightning protection, rolling sphere method, protection level

Procedia PDF Downloads 225
3631 [Keynote Talk]: Monitoring of Ultrafine Particle Number and Size Distribution at One Urban Background Site in Leicester

Authors: Sarkawt M. Hama, Paul S. Monks, Rebecca L. Cordell

Abstract:

Within the Joaquin project, ultrafine particles (UFP) are continuously measured at one urban background site in Leicester. The main aims are to examine the temporal and seasonal variations in UFP number concentration and size distribution in an urban environment, and to try to assess the added value of continuous UFP measurements. In addition, relations of UFP with more commonly monitored pollutants such as black carbon (BC), nitrogen oxides (NOX), particulate matter (PM2.5), and the lung deposited surface area(LDSA) were evaluated. The effects of meteorological conditions, particularly wind speed and direction, and also temperature on the observed distribution of ultrafine particles will be detailed. The study presents the results from an experimental investigation into the particle number concentration size distribution of UFP, BC, and NOX with measurements taken at the Automatic Urban and Rural Network (AURN) monitoring site in Leicester. The monitoring was performed as part of the EU project JOAQUIN (Joint Air Quality Initiative) supported by the INTERREG IVB NWE program. The total number concentrations (TNC) were measured by a water-based condensation particle counter (W-CPC) (TSI model 3783), the particle number concentrations (PNC) and size distributions were measured by an ultrafine particle monitor (UFP TSI model 3031), the BC by MAAP (Thermo-5012), the NOX by NO-NO2-NOx monitor (Thermos Scientific 42i), and a Nanoparticle Surface Area Monitor (NSAM, TSI 3550) was used to measure the LDSA (reported as μm2 cm−3) corresponding to the alveolar region of the lung between November 2013 and November 2015. The average concentrations of particle number concentrations were observed in summer with lower absolute values of PNC than in winter might be related mainly to particles directly emitted by traffic and to the more favorable conditions of atmospheric dispersion. Results showed a traffic-related diurnal variation of UFP, BC, NOX and LDSA with clear morning and evening rush hour peaks on weekdays, only an evening peak at the weekends. Correlation coefficients were calculated between UFP and other pollutants (BC and NOX). The highest correlation between them was found in winter months. Overall, the results support the notion that local traffic emissions were a major contributor of the atmospheric particles pollution and a clear seasonal pattern was found, with higher values during the cold season.

Keywords: size distribution, traffic emissions, UFP, urban area

Procedia PDF Downloads 313
3630 A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites

Authors: Sanaa I. Abu Alasal, Madleen M. Esbeih, Eman R. Fayyad, Rami S. Gharaibeh, Mostafa Z. Ali, Ahmed A. Freewan, Monther M. Jamhawi

Abstract:

This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.

Keywords: meshes, point clouds, surface reconstruction protocols, 3D reconstruction

Procedia PDF Downloads 437
3629 Active Treatment of Water Chemistry for Swimming Pools Using Novel Automated System (NAS)

Authors: Saeed Asiri

Abstract:

The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e. pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart.

Keywords: novel automated system, pool safety, maintenance, pH level, digital screen

Procedia PDF Downloads 48
3628 Comparing Two Non-Contact Squeeze Film Levitation Designs

Authors: Ahmed Almurshedi, Mark Atherton, Mares Cristinel, Tadeusz Stolarski, Masaaki Miyatake

Abstract:

Transportation and handling of delicate and lightweight objects is a significant issue in some industries. Two levitation prototype designs, a horn transducer design and surface-mounted piezoelectric actuator vibrating plate design, are compared. Both designs are based on the method of squeeze-film levitation (SFL) and the aim of this study is to evaluate the characteristics and performance of each. To this end, physical experiments are conducted and are demonstrated that the horn-type transducer prototype design produces better levitation performance but it design complexity and operating characteristics make it less suitable than the vibrating plate design for practical applications.

Keywords: floating, levitation, piezoelectric, squeeze-film, transducer

Procedia PDF Downloads 269