Search results for: teacher function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6309

Search results for: teacher function

3399 Preservice Science Teachers' Understanding of Equitable Assessment

Authors: Kemal Izci, Ahmet Oguz Akturk

Abstract:

Learning is dependent on cognitive and physical differences as well as other differences such as ethnicity, language, and culture. Furthermore, these differences also influence how students show their learning. Assessment is an integral part of learning and teaching process and is essential for effective instruction. In order to provide effective instruction, teachers need to provide equal assessment opportunities for all students to see their learning difficulties and use them to modify instruction to aid learning. Successful assessment practices are dependent upon the knowledge and value of teachers. Therefore, in order to use assessment to assess and support diverse students learning, preservice and inservice teachers should hold an appropriate understanding of equitable assessment. In order to prepare teachers to help them support diverse student learning, as a first step, this study aims to explore how preservice teachers’ understand equitable assessment. 105 preservice science teachers studying at teacher preparation program in a large university located at Eastern part of Turkey participated in the current study. A questionnaire, preservice teachers’ reflection papers and interviews served as data sources for this study. All collected data qualitatively analyzed to develop themes that illustrate preservice science teachers’ understanding of equitable assessment. Results of the study showed that preservice teachers mostly emphasized fairness including fairness in grading and fairness in asking questions not out of covered concepts for equitable assessment. However, most of preservice teachers do not show an understanding of equity for providing equal opportunities for all students to display their understanding of related content. For some preservice teachers providing different opportunities (providing extra time for non-native speaking students) for some students seems to be unfair for other students and therefore, these kinds of refinements do not need to be used. The results of the study illustrated that preservice science teachers mostly understand equitable assessment as fairness and less highlight the role of using equitable assessment to support all student learning, which is more important in order to improve students’ achievement of science. Therefore, we recommend that more opportunities should be provided for preservice teachers engage in a more broad understanding of equitable assessment and learn how to use equitable assessment practices to aid and support all students learning trough classroom assessment.

Keywords: science teaching, equitable assessment, assessment literacy, preservice science teachers

Procedia PDF Downloads 304
3398 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
3397 Estimation and Restoration of Ill-Posed Parameters for Underwater Motion Blurred Images

Authors: M. Vimal Raj, S. Sakthivel Murugan

Abstract:

Underwater images degrade their quality due to atmospheric conditions. One of the major problems in an underwater image is motion blur caused by the imaging device or the movement of the object. In order to rectify that in post-imaging, parameters of the blurred image are to be estimated. So, the point spread function is estimated by the properties, using the spectrum of the image. To improve the estimation accuracy of the parameters, Optimized Polynomial Lagrange Interpolation (OPLI) method is implemented after the angle and length measurement of motion-blurred images. Initially, the data were collected from real-time environments in Chennai and processed. The proposed OPLI method shows better accuracy than the existing classical Cepstral, Hough, and Radon transform estimation methods for underwater images.

Keywords: image restoration, motion blur, parameter estimation, radon transform, underwater

Procedia PDF Downloads 176
3396 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 202
3395 The Association between Malaysian Culture and Ornaments

Authors: Swee Guat Yeoh, Yung Ling Tseng

Abstract:

Malaysia is comprised of three major ethnic groups: The Malay, Chinese and Indian as well as a small number of indigenous peoples. With the influences of the multiple races, Malaysia is a multi-cultural country. In the era of globalization, culture has become an important soft power for a race or a country. At the same time, it provides endless inspirational source of ideas for creative business. Although jewelries are decorative objects, they function and exist as the emblems of power, wealth and contract in certain cultural systems. In the meantime, they also record the lifestyle and ideology of everyday life. Therefore, in a creative cultural industry, jewelry with cultural aspects and cultural contents are deemed to be highly important. With the three major ethnic groups in Malaysia as objects, this research aims to find out the relationships between the cultures and decorations of the three major ethnic groups in the aspects of customs, religions and lifestyles.

Keywords: ethnicity, multi-cultural, jewelry, craft technique

Procedia PDF Downloads 463
3394 An Analytical Study of the Quality of Educational Administration and Management At Secondary School Level in Punjab, Pakistan

Authors: Shamim Akhtar

Abstract:

The purpose of the present research was to analyse the performance level of district administrators and school heads teachers at secondary school level. The sample of the study was head teachers and teachers of secondary schools. In survey three scales were used, two scales were for the head teachers, one five point scale was for analysing the working efficiency of educational administrators and other seven points scale was for head teachers for analysing their own performance and one another seven point rating scale similar to head teacher was for the teachers for analysing the working performance of their head teachers. The results of the head teachers’ responses revealed that the performance of their District Educational Administrators was average and for the performance efficiency of the head teachers, researcher constructed the rating scales on seven parameters of management likely academic management, personnel management, financial management, infra-structure management, linkage and interface, student’s services, and managerial excellence. Results of percentages, means, and graphical presentation on different parameters of management showed that there was an obvious difference in head teachers and teachers’ responses and head teachers probably were overestimating their efficiency; but teachers evaluated that they were performing averagely on majority statements. Results of t-test showed that there was no significance difference in the responses of rural and urban teachers but significant difference in male and female teachers’ responses showed that female head teachers were performing their responsibilities better than male head teachers in public sector schools. When efficiency of the head teachers on different parameters of management were analysed it was concluded that their efficiency on academic and personnel management was average and on financial management and on managerial excellence was highly above of average level but on others parameters like infra-structure management, linkage and interface and on students services was above of average level on most statements but highly above of average on some statements. Hence there is need to improve the working efficiency in academic management and personnel management.

Keywords: educational administration, educational management, parameters of management, education

Procedia PDF Downloads 338
3393 Defense Strategy: Perang Semesta Strategy as a Reliable National Security System of Indonesia

Authors: Erdianta S, Chastiti M. Wulolo, IDK Kerta Widana

Abstract:

Perang Semesta strategy is a national security system used by Republic of Indonesia. It comes from local wisdom, cultural, and hereditary of Indonesia itself. This system involves all people and all nation resources, and it is early prepared by government and conducted totality, integratedly, directly, and continously to enforce a sovereignty of country, teritorial integrity and the safety of the whole nation from threats. This study uses a qualitative content analysis method by studying, recording, and analyzing government policy. The Perang Semesta strategy divided into main, backup, and supporting components. Every component has its function and responsibility in security perspective. So when an attack comes, all people of Indonesia will voluntary to defend the country. Perang Semesta strategy is a national security system which becomes the most reliable strategy toward geography and demography of Indonesia.

Keywords: Indonesia, Perang Semesta strategy, national security, local wisdom

Procedia PDF Downloads 455
3392 The Burmese Exodus of 1942: Towards Evolving Policy Protocols for a Refugee Archive

Authors: Vinod Balakrishnan, Chrisalice Ela Joseph

Abstract:

The Burmese Exodus of 1942, which left more than 4 lakh as refugees and thousands dead, is one of the worst forced migrations in recorded history. Adding to the woes of the refugees is the lack of credible documentation of their lived experiences, trauma, and stories and their erasure from recorded history. Media reports, national records, and mainstream narratives that have registered the exodus provide sanitized versions which have reduced the refugees to a nameless, faceless mass of travelers and obliterated their lived experiences, trauma, and sufferings. This attitudinal problem compels the need to stem the insensitivity that accompanies institutional memory by making a case for a more humanistically evolved policy that puts in place protocols for the way the humanities would voice the concern for the refugee. A definite step in this direction and a far more relevant project in our times is the need to build a comprehensive refugee archive that can be a repository of the refugee experiences and perspectives. The paper draws on Hannah Arendt’s position on the Jewish refugee crisis, Agamben’s work on statelessness and citizenship, Foucault’s notion of governmentality and biopolitics, Edward Said’s concepts on Exile, Fanon’s work on the dispossessed, Derrida’s work on ‘the foreigner and hospitality’ in order to conceptualize the refugee condition which will form the theoretical framework for the paper. It also refers to the existing scholarship in the field of refugee studies such as Roger Zetter’s work on the ‘refugee label’, Philip Marfleet’s work on ‘refugees and history’, Lisa Malkki’s research on the anthropological discourse of the refugee and refugee studies. The paper is also informed by the work that has been done by the international organizations to address the refugee crisis. The emphasis is on building a strong argument for the establishment of the refugee archive that finds but a passing and a none too convincing reference in refugee studies in order to enable a multi-dimensional understanding of the refugee crisis. Some of the old questions cannot be dismissed as outdated as the continuing travails of the refugees in different parts of the world only remind us that they are still, largely, unanswered. The questions are -What is the nature of a Refugee Archive? How is it different from the existing historical and political archives? What are the implications of the refugee archive? What is its contribution to refugee studies? The paper draws on Diana Taylor’s concept of the archive and the repertoire to theorize the refugee archive as a repository that has the documentary function of the ‘archive’ and the ‘agency’ function of the repertoire. It then reads Ayya’s Accounts- a memoir by Anand Pandian -in the light of Hannah Arendt’s concepts of the ‘refugee as vanguard’ and ‘story telling as political action’- to illustrate how the memoir contributes to the refugee archive that provides the refugee a place and agency in history. The paper argues for a refugee archive that has implications for the formulation of inclusive refugee policies.

Keywords: Ayya’s Accounts, Burmese Exodus, policy protocol, refugee archive

Procedia PDF Downloads 140
3391 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
3390 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS

Procedia PDF Downloads 400
3389 Implant Guided Surgery and Immediate Loading

Authors: Omid Tavakol, Mahnaz Gholami

Abstract:

Introduction : In this oral presentation the main goal is discussing immediate loading in dental implants , from treatment planning and surgical guide designing to delivery , follow up and occlusal consideration . Methods and materials : first of all systematic reviews about immediate loading will be considered . besides , a comparison will be made between immediate loading and conventional loading in terms of success rate and complications . After that different methods , prosthetic options and materials best used in immediate loading will be explained. Particularly multi unit abutments and their mechanism of function will be explained .Digital impressions and designing the temporaries is the next topic we are to explicate .Next issue is the differences between single unit , multiple unit and full arch implantation in immediate loading .Following we are going to describe methods for tissue engineering and papilla formation after extraction . Last slides are about a full mouth rehabilitation via immediate loading technique from surgical designing to follow up .At the end we would talk about potential complications , how to prevent from occurrence and what to do if we face up with .

Keywords: guided surgery, digital implantology, immediate loading, digital dentistry

Procedia PDF Downloads 46
3388 Batch-Oriented Setting Time`s Optimisation in an Aerodynamic Feeding System

Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis

Abstract:

The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. In former research activities, this system has been enabled to adjust itself using genetic algorithm. The longer the genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.

Keywords: aerodynamic feeding system, batch size, optimisation, setting time

Procedia PDF Downloads 257
3387 A Heuristic Approach for the General Flowshop Scheduling Problem to Minimize the Makespan

Authors: Mohsen Ziaee

Abstract:

Almost all existing researches on the flowshop scheduling problems focus on the permutation schedules and there is insufficient study dedicated to the general flowshop scheduling problems in the literature, since the modeling and solving of the general flowshop scheduling problems are more difficult than the permutation ones, especially for the large-size problem instances. This paper considers the general flowshop scheduling problem with the objective function of the makespan (F//Cmax). We first find the optimal solution of the problem by solving a mixed integer linear programming model. An efficient heuristic method is then presented to solve the problem. An ant colony optimization algorithm is also proposed for the problem. In order to evaluate the performance of the methods, computational experiments are designed and performed. Numerical results show that the heuristic algorithm can result in reasonable solutions with low computational effort and even achieve optimal solutions in some cases.

Keywords: scheduling, general flow shop scheduling problem, makespan, heuristic

Procedia PDF Downloads 207
3386 Polymer Dispersed Liquid Crystals Based on Poly Vinyl Alcohol Boric Acid Matrix

Authors: Daniela Ailincai, Bogdan C. Simionescu, Luminita Marin

Abstract:

Polymer dispersed liquid crystals (PDLC) represent an interesting class of materials which combine the ability of polymers to form films and their mechanical strength with the opto-electronic properties of liquid crystals. The proper choice of the two components - the liquid crystal and the polymeric matrix - leads to materials suitable for a large area of applications, from electronics to biomedical devices. The objective of our work was to obtain PDLC films with potential applications in the biomedical field, using poly vinyl alcohol boric acid (PVAB) as a polymeric matrix for the first time. Presenting all the tremendous properties of poly vinyl alcohol (such as: biocompatibility, biodegradability, water solubility, good chemical stability and film forming ability), PVAB brings the advantage of containing the electron deficient boron atom, and due to this, it should promote the liquid crystal anchoring and a narrow liquid crystal droplets polydispersity. Two different PDLC systems have been obtained, by the use of two liquid crystals, a nematic commercial one: 4-cyano-4’-penthylbiphenyl (5CB) and a new smectic liquid crystal, synthesized by us: buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate (BBO). The PDLC composites have been obtained by the encapsulation method, working with four different ratios between the polymeric matrix and the liquid crystal, from 60:40 to 90:10. In all cases, the composites were able to form free standing, flexible films. Polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, RAMAN- spectroscopy and the contact angle measurements have been performed, in order to characterize the new composites. The new smectic liquid crystal has been characterized using 1H-NMR and single crystal X-ray diffraction and its thermotropic behavior has been established using differential scanning calorimetry and polarized light microscopy. The polarized light microscopy evidenced the formation of round birefringent droplets, anchored homeotropic in the first case and planar in the second, with a narrow dimensional polydispersity, especially for the PDLC containing the largest amount of liquid crystal, fact evidenced by SEM, also. The obtained values for the water to air contact angle showed that the composites have a proper hydrophilic-hydrophobic balance, making them potential candidates for bioapplications. More than this, our studies demonstrated that the water to air contact angle varies as a function of PVAB matrix crystalinity degree, which can be controled as a function of time. This fact allowed us to conclude that the use of PVAB as matrix for PDLCs obtaining offers the possibility to modulate their properties for specific applications.

Keywords: 4-cyano-4’-penthylbiphenyl, buthyl-p-[p’-n-octyloxy benzoyloxy] benzoate, contact angle, polymer dispersed liquid crystals, poly vinyl alcohol boric acid

Procedia PDF Downloads 450
3385 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony

Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim

Abstract:

This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.

Keywords: artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting

Procedia PDF Downloads 330
3384 YBa2Cu3O7-d Nanoparticles Doped by Ferromagnetic Nanoparticles of Y3Fe5O12

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of the scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBa2Cu3O7- and La1.85 Sr0.15CuO will be presented. It will be given special attention to the study of the YBa2Cu3O7- nanoparticles doped by ferromagnetic nanoparticles of Y3Fe5O12. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBa2Cu3O7- nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: ferromagnetism, superconductivity, coexistence, magnetic material

Procedia PDF Downloads 77
3383 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: Christoph Ramsauer, Jaydeep Karandikar, Tony Schmitz, Friedrich Bleicher

Abstract:

Machining stability is an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the Vienna University of Technology, Vienna, Austria. The recorded data from a milling test cut is used to classify the cut as stable or unstable based on the frequency analysis. The test cut result is fed to a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculates the probability of stability as a function of axial depth of cut and spindle speed and recommends the parameters for the next test cut. The iterative process between two transatlantic locations repeats until convergence to a stable optimal process parameter set is achieved.

Keywords: machining stability, machine learning, sensor, optimization

Procedia PDF Downloads 206
3382 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 148
3381 Teaching Non-Euclidean Geometries to Learn Euclidean One: An Experimental Study

Authors: Silvia Benvenuti, Alessandra Cardinali

Abstract:

In recent years, for instance, in relation to the Covid 19 pandemic and the evidence of climate change, it is becoming quite clear that the development of a young kid into an adult citizen requires a solid scientific background. Citizens are required to exert logical thinking and know the methods of science in order to adapt, understand, and develop as persons. Mathematics sits at the core of these required skills: learning the axiomatic method is fundamental to understand how hard sciences work and helps in consolidating logical thinking, which will be useful for the entire life of a student. At the same time, research shows that the axiomatic study of geometry is a problematic topic for students, even for those with interest in mathematics. With this in mind, the main goals of the research work we will describe are: (1) to show whether non-Euclidean geometries can be a tool to allow students to consolidate the knowledge of Euclidean geometries by developing it in a critical way; (2) to promote the understanding of the modern axiomatic method in geometry; (3) to give students a new perspective on mathematics so that they can see it as a creative activity and a widely discussed topic with a historical background. One of the main issues related to the state-of-the-art in this topic is the shortage of experimental studies with students. For this reason, our aim is to show further experimental evidence of the potential benefits of teaching non-Euclidean geometries at high school, based on data collected from a study started in 2005 in the frame of the Italian National Piano Lauree Scientifiche, continued by a teacher training organized in September 2018, perfected in a pilot study that involved 77 high school students during the school years 2018-2019 and 2019-2020. and finally implemented through an experimental study conducted in 2020-21 with 87 high school students. Our study shows that there is potential for further research to challenge current conceptions of the school mathematics curriculum and of the capabilities of high school mathematics students.

Keywords: Non-Euclidean geometries, beliefs about mathematics, questionnaires, modern axiomatic method

Procedia PDF Downloads 75
3380 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 46
3379 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering

Procedia PDF Downloads 399
3378 Facial Emotion Recognition with Convolutional Neural Network Based Architecture

Authors: Koray U. Erbas

Abstract:

Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented.

Keywords: convolutional neural network, deep learning, deep learning based FER, facial emotion recognition

Procedia PDF Downloads 274
3377 Effectiveness of Project Grit in Building Resilience among At-Risk Adolescents: A Case Study

Authors: Narash Narasimman, Calvin Leong Jia Jun, Raksha Karthik, Paul Englert

Abstract:

Background: Project Grit, a 12-week youth resilience program implemented by Impart and Spartans Boxing Club, aimed to help at-risk adolescents develop resilience through psychoeducation and mental health techniques for dealing with everyday stressors and adversity. The programme consists of two parts-1.5 hours of group therapy followed by 1 hour of boxing. Due to the novelty of the study, 6 male participants, aged 13 to 18, were recruited to participate in the study. Aim: This case study aims to examine the effectiveness of Project Grit in building resilience among at-risk adolescents. Methods: A case study design was employed to capture the complexity and uniqueness of the intervention, without oversimplifying or generalizing it. A 15-year-old male participant with a history of behavioural challenges, delinquency and gang involvement was selected for the study. Teacher, parent and child versions of the Strengths and Difficulties Questionnaire (SDQ) were administered to the facilitators, parents and participants respectively before and after the programme. Relevant themes from the qualitative interviews will be discussed. Results: Scores from all raters revealed improvements in most domains of the SDQ. Total difficulties scores across all raters improved from “very high” to “close to average”. High interrater reliability was observed (κ= .81). The participant reported learning methods to effectively deal with his everyday concerns using healthy coping strategies, developing a supportive social network, and building on his self efficacy. Themes from the subject’s report concurred with the improvement in SDQ scores. Conclusions: The findings suggest that Project Grit is a promising intervention for promoting resilience among at-risk adolescents. The teleological behaviourism framework and the combination of sports engagement and future orientation may be particularly effective in fostering resilience among this population. Further studies need to be conducted with a larger sample size to further validate the effectiveness of Project Grit.

Keywords: resilience, project grit, adolescents, at-risk, boxing, future orientation

Procedia PDF Downloads 63
3376 Autonomic Nervous System and CTRA Gene Expression among Healthy Young Adults in Japan

Authors: Yoshino Murakami, Takeshi Hashimoto, Steve Cole

Abstract:

The autonomic nervous system (ANS), particularly the sympathetic (SNS) and parasympathetic (PNS) branches, plays a vital role in modulating immune function and physiological homeostasis. In recent years, the Conserved Transcriptional Response to Adversity (CTRA) has emerged as a key marker of the body's response to chronic stress. This gene expression profile is characterized by SNS-mediated upregulation of pro-inflammatory genes (such as IL1B and TNF) and downregulation of antiviral response genes (e.g., IFI and MX families). CTRA has been observed in individuals exposed to prolonged stressors like loneliness, social isolation, and bereavement. Some research suggests that PNS activity, as indicated by heart rate variability (HRV), may help counteract the CTRA. However, previous PNS-CTRA studies have focused on Western populations, raising questions about the generalizability of these findings across different cultural and ethnic backgrounds. This study aimed to examine the relationship between HRV and CTRA gene expression in young, healthy adults in Japan. We hypothesized that HRV would be inversely related to CTRA gene expression, similar to patterns observed in previous Western studies. A total of 49 participants aged 20 to 39 were recruited, and after data exclusions, 26 participants' HRV and CTRA data were analyzed. HRV was measured using an electrocardiogram (ECG), and two time-domain indices were utilized: the root mean square of successive differences (RMSSD) and the standard deviation of NN intervals (SDNN). Blood samples were collected for gene expression analysis, focusing on a standard set of 47 CTRA indicator gene transcripts. it findings revealed a significant inverse relationship between HRV and CTRA gene expression, with higher HRV correlating with reduced pro-inflammatory gene activity and increased antiviral response. These results are consistent with findings from Western populations and demonstrate that the relationship between ANS function and immune response generalizes to an East Asian population. The study highlights the importance of HRV as a biomarker for psychophysiological health, reflecting the body's ability to buffer stress and maintain immune balance. These findings have implications for understanding how physiological systems interact across different cultures and ethnicities. Given the influence of chronic stress in promoting inflammation and disease risk, interventions aimed at improving HRV, such as mindfulness-based practices or physical exercise, could provide significant health benefits. Future research should focus on larger sample sizes and experimental interventions to better understand the causal pathways linking HRV to CTRA gene expression, and determine whether improving HRV may help mitigate the harmful effects of stress on health by reducing inflammation.

Keywords: autonomic nervous activity, neuroendocrine system, inflammation, Japan

Procedia PDF Downloads 21
3375 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 34
3374 Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process

Authors: Dnaya Soukaina

Abstract:

It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.

Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model

Procedia PDF Downloads 18
3373 Renovation of Industrial Zones in Ho Chi Minh City: An Approach from Changing Function of Processing to Urban Warehousing

Authors: Thu Le Thi Bao

Abstract:

Industrial parks have both active roles in promoting economic development and source of appearance of boarding houses and slums in the adjacent area, lacking infrastructure, causing many social evils. The context of the recent pandemic and climate change on a global scale pose issues that need to be resolved for sustainable development. Ho Chi Minh City aims to develop housing for migrant workers to stabilize human resources and, at the same time, solve problems of social evils caused by poor living conditions. The paper focuses on the content of renovating existing industrial parks and worker accommodation in Ho Chi Minh City to propose appropriate models, contributing to the goal of urban embellishment and solutions for industrial parks to adapt to abnormal impact conditions such as pandemics, climate change, crises.

Keywords: industrial park, social housing, accommodation, distribution center

Procedia PDF Downloads 113
3372 A Semiparametric Approach to Estimate the Mode of Continuous Multivariate Data

Authors: Tiee-Jian Wu, Chih-Yuan Hsu

Abstract:

Mode estimation is an important task, because it has applications to data from a wide variety of sources. We propose a semi-parametric approach to estimate the mode of an unknown continuous multivariate density function. Our approach is based on a weighted average of a parametric density estimate using the Box-Cox transform and a non-parametric kernel density estimate. Our semi-parametric mode estimate improves both the parametric- and non-parametric- mode estimates. Specifically, our mode estimate solves the non-consistency problem of parametric mode estimates (at large sample sizes) and reduces the variability of non-parametric mode estimates (at small sample sizes). The performance of our method at practical sample sizes is demonstrated by simulation examples and two real examples from the fields of climatology and image recognition.

Keywords: Box-Cox transform, density estimation, mode seeking, semiparametric method

Procedia PDF Downloads 285
3371 Pantograph-Catenary Contact Force: Features Evaluation for Catenary Diagnostics

Authors: Mehdi Brahimi, Kamal Medjaher, Noureddine Zerhouni, Mohammed Leouatni

Abstract:

The Prognostics and Health Management is a system engineering discipline which provides solutions and models to the implantation of a predictive maintenance. The approach is based on extracting useful information from monitoring data to assess the “health” state of an industrial equipment or an asset. In this paper, we examine multiple extracted features from Pantograph-Catenary contact force in order to select the most relevant ones to achieve a diagnostics function. The feature extraction methodology is based on simulation data generated thanks to a Pantograph-Catenary simulation software called INPAC and measurement data. The feature extraction method is based on both statistical and signal processing analyses. The feature selection method is based on statistical criteria.

Keywords: catenary/pantograph interaction, diagnostics, Prognostics and Health Management (PHM), quality of current collection

Procedia PDF Downloads 290
3370 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 337