Search results for: real incentives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5603

Search results for: real incentives

2693 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 149
2692 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: queueing network, discrete-event simulation, health applications, SPT

Procedia PDF Downloads 189
2691 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: multiscale model, tropocollagen, fibrils, ligaments commas

Procedia PDF Downloads 163
2690 Investigation the Effect of Quenching Media on Abrasive Wear in Grade Medium Carbon Steel

Authors: Abbas S. Alwan, Waleed K. Hussan

Abstract:

In this paper, a general verification of possible heat treatment of steel has been done with the view of conditions of real abrasive wear of rotivater with soil texture. This technique is found promising to improve the quality of agriculture components working with the soil in dry condition. Abrasive wear resistance is very important in many applications and in most cases it is directly correlated with the hardness of materials surface. Responded of heat treatments were carried out in various media (Still air, Cottonseed oil, and Brine water 10 %) and follow by low-temperature tempering (250°C) was applied on steel type (AISI 1030). After heat treatment was applied wear with soil texture by using tillage process to determine the (actual wear rate) of the specimens depending on weight loss method. It was found; the wear resistance Increases with increase hardness with varying quenching media as follows; 30 HRC, 45 HRC, 52 HRC, and 60 HRC for nontreated (as received) cooling media as still air, cottonseed oil, and Brine water 10 %, respectively. Martensitic structure with retained austenite can be obtained depending on the quenching medium. Wear was presented on the worn surfaces of the steels which were used in this work.

Keywords: microstructures, hardness, abrasive wear, heat treatment, soil texture

Procedia PDF Downloads 393
2689 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 391
2688 Community Radio Broadcasting in Phutthamonthon District, Nakhon Pathom, Thailand

Authors: Anchana Sooksomchitra

Abstract:

This study aims to explore and compare the current condition of community radio stations in Phutthamonthon district, Nakhon Pathom province, Thailand, as well as the challenges they are facing. Qualitative research tools including in-depth interviews, documentary analysis, focus group interviews, and observation are used to examine the content, programming, and management structure of three community radio stations currently in operation within the district. Research findings indicate that the management and operational approaches adopted by the two non-profit stations included in the study, Salaya Pattana and Voice of Dhamma, are more structured and effective than that of the for-profit Tune Radio. Salaya Pattana, backed by the Faculty of Engineering, Mahidol University, and the charity-funded Voice of Dhamma are comparatively free from political and commercial influence, and able to provide more relevant and consistent community-oriented content to meet the real demand of the audience. Tune Radio, on the other hand, has to rely solely on financial support from political factions and business groups, which heavily influence its content.

Keywords: radio broadcasting, programming, management, community radio, Thailand

Procedia PDF Downloads 347
2687 First Principls Study of Structural, Electronic, Magnetic and Optical Properties of SiNi₂O₄ Spinel Oxide

Authors: Karkour Selma

Abstract:

We conducted first principles full potential calculations using the Wien2k code to explore the structural, electronic, magnetic, and optical properties of SiNi₂O₄, a cubic normal spinel oxide. Our calculations, based on the GGA-PBEsol of the generalized gradient approximation, revealed several key findings. The spinel oxides exhibited a stable cubic structure in the ferromagnetic phase and showed 100% spin polarization. We determined the equilibrium lattice constant and internal parameter values. In terms of the electronic properties, we observed a direct bandgap of 2.68 eV for the spin-up configuration, while the spin-down configuration exhibited an indirect bandgap of 0.82 eV. Additionally, we calculated the total density of states and partial densities for each atom, finding a magnetic moment spin density of states of 8.0 μB per formula unit. The optical properties have been calculated. The real, Ԑ₁(ω) and the imaginary, Ԑ₂(ω) parts of the complex dielectric constants, refractivity, reflection and energy loss when light scattered from the material. The absorption region spanned from 1.5 eV to 14 eV, with significant intensity. The calculated results confirm the suitability of this material for optical and spintronic devices application.

Keywords: DFT, spintronic, GGA, spinel

Procedia PDF Downloads 79
2686 The Impact of Bayh-Dole Act on Knowledge Transfer in the States and a Study on Applicability in Turkey

Authors: Murat Sengoz, Mustafa Kemal Topcu

Abstract:

This study aims to contribute to efforts of Turkey to increase research and development to overcome mid-income level trap by discussing regulations on patenting and licensing. Knowledge and technology transfer from universities to business world is attached great significance to increase innovation. Through literature survey, it is observed that the States accomplished to boost the economy and increase welfare by the Bayh-Dole Act enacted in 1980. Thus, this good practice is imitated by other nations to make technological developments. The Act allows universities to acquire patent right in research programs funded by government to increase technology transfer from universities whilst motivating real sector to use research pools in the universities. An act similar with Bayh-Dole could be beneficial to Turkey since efforts in Turkey are to promote research, development and innovation. Towards this end, the impact of Bayh-Dole Act on the patent system for universities in the Sates is deliberately examined, applicability in Turkey is discussed. However, it is conceded that success rate of applying Bayh-Dole Act in Turkey would be low once Turkey mainly differs from the States regarding social, economic and cultural traits.

Keywords: Bayh-Dole Act, knowledge transfer, license, patent, spin-off

Procedia PDF Downloads 283
2685 Efficient Pre-Concentration of As (III) Using Guanidine-Modified Magnetic Mesoporous Silica in the Food Sample

Authors: Majede Modheji, Hamid Emadi, Hossein Vojoudi

Abstract:

An efficient magnetic mesoporous structure was designed and prepared for the facile pre-concentration of As(III) ions. To prepare the sorbent, a core-shell magnetic silica nanoparticle was covered by MCM-41 like structure, and then the surface was modified by guanidine via an amine linker. The prepared adsorbent was investigated as an effective and sensitive material for the adsorption of arsenic ions from the aqueous solution applying a normal batch method. The imperative variables of the adsorption were studied to increase efficiency. The dynamic and static processes were tested that matched a pseudo-second order of kinetic model and the Langmuir isotherm model, respectively. The sorbent reusability was investigated, and it was confirmed that the designed product could be applied at best for six cycles successively without any significant efficiency loss. The synthesized product was tested to determine and pre-concentrate trace amounts of arsenic ions in rice and natural waters as a real sample. A desorption process applying 5 mL of hydrochloric acid (0.5 mol L⁻¹) as an eluent exhibited about 98% recovery of the As(III) ions adsorbed on the GA-MSMP sorbent.

Keywords: arsenic, adsorption, mesoporous, surface modification, MCM-41

Procedia PDF Downloads 153
2684 Long- and Short-Term Impacts of COVID-19 and Gold Price on Price Volatility: A Comparative Study of MIDAS and GARCH-MIDAS Models for USA Crude Oil

Authors: Samir K. Safi

Abstract:

The purpose of this study was to compare the performance of two types of models, namely MIDAS and MIDAS-GARCH, in predicting the volatility of crude oil returns based on gold price returns and the COVID-19 pandemic. The study aimed to identify which model would provide more accurate short-term and long-term predictions and which model would perform better in handling the increased volatility caused by the pandemic. The findings of the study revealed that the MIDAS model performed better in predicting short-term and long-term volatility before the pandemic, while the MIDAS-GARCH model performed significantly better in handling the increased volatility caused by the pandemic. The study highlights the importance of selecting appropriate models to handle the complexities of real-world data and shows that the choice of model can significantly impact the accuracy of predictions. The practical implications of model selection and exploring potential methodological adjustments for future research will be highlighted and discussed.

Keywords: GARCH-MIDAS, MIDAS, crude oil, gold, COVID-19, volatility

Procedia PDF Downloads 71
2683 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences

Authors: M. Pomianek, M. Piszczek, M. Maciejewski

Abstract:

The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.

Keywords: eye tracking, fixation point, pupil size, virtual reality

Procedia PDF Downloads 136
2682 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 285
2681 A Study of the Trade-off Energy Consumption-Performance-Schedulability for DVFS Multicore Systems

Authors: Jalil Boudjadar

Abstract:

Dynamic Voltage and Frequency Scaling (DVFS) multicore platforms are promising execution platforms that enable high computational performance, less energy consumption and flexibility in scheduling the system processes. However, the resulting interleaving and memory interference together with per-core frequency tuning make real-time guarantees hard to be delivered. Besides, energy consumption represents a strong constraint for the deployment of such systems on energy-limited settings. Identifying the system configurations that would achieve a high performance and consume less energy while guaranteeing the system schedulability is a complex task in the design of modern embedded systems. This work studies the trade-off between energy consumption, cores utilization and memory bottleneck and their impact on the schedulability of DVFS multicore time-critical systems with a hierarchy of shared memories. We build a model-based framework using Parametrized Timed Automata of UPPAAL to analyze the mutual impact of performance, energy consumption and schedulability of DVFS multicore systems, and demonstrate the trade-off on an actual case study.

Keywords: time-critical systems, multicore systems, schedulability analysis, energy consumption, performance analysis

Procedia PDF Downloads 112
2680 Nexus between Energy, Environment and Economic Growth: Sectoral Analysis from Pakistan

Authors: Muhammad Afzal, Muhammad Sajjad

Abstract:

Climate change has become a global environmental challenge and it has affected the world’s economy. Its impact is widespread across all major sectors of the economy i.e. agriculture, industry, and services sectors. This study attempts to measure the long run as well as the short-run dynamic between energy; environment and economic growth by using Autoregressive Distributed Lag (ARDL) bound testing approach at aggregate as well as sectoral level. We measured the causal relationship between electricity consumption, fuel consumption, CO₂ emission, and real Gross Domestic Product (GDP) for the period of 1980 to 2016 for Pakistan. Our co-integration results reveal that all the variables are co-integrated at aggregate as well as at sectoral level. Electricity consumption shows two-way casual relation at for industry, services and aggregate level. The inverted U-Curve hypothesis tested the relationship between greenhouse gas emissions and per capita GDP and results supported the Environment Kuznet Curve (EKC) hypothesis. This study cannot ignore the importance of energy for economic growth but prefers to focus on renewable and green energy to pave on the trajectory of development.

Keywords: climate change, economic growth, energy, environment

Procedia PDF Downloads 166
2679 Hydrogen Storage Optimisation: Development of Advanced Tools for Improved Permeability Modelling in Materials

Authors: Sirine Sayed, Mahrez Ait Mohammed, Mourad Nachtane, Abdelwahed Barkaoui, Khalid Bouziane, Mostapha Tarfaoui

Abstract:

This study addresses a critical challenge in transitioning to a hydrogen-based economy by introducing and validating a one-dimensional (1D) tool for modelling hydrogen permeability through hybrid materials, focusing on tank applications. The model developed integrates rigorous experimental validation, published data, and advanced computational modelling using the PanDiffusion framework, significantly enhancing its validity and applicability. By elucidating complex interactions between material properties, storage system configurations, and operational parameters, the tool demonstrates its capability to optimize design and operational parameters in real-world scenarios, as illustrated through a case study of hydrogen leakage. This comprehensive approach to assessing hydrogen permeability contributes significantly to overcoming key barriers in hydrogen infrastructure development, potentially accelerating the widespread adoption of hydrogen technology across various industrial sectors and marking a crucial step towards a more sustainable energy future.

Keywords: hydrogen storage, composite tank, permeability modelling, PanDiffusion, energy carrier, transportation technology

Procedia PDF Downloads 23
2678 Challenges and Constraints of Municipal Solid Waste Management in Kibuye, Makindye Division Kampala Uganda

Authors: Tumusiime Humble Abel, Twebaze Paul, Turyamureeba Joshua Eldard

Abstract:

The challenges of rapid urbanization have continued to threaten the governance of many urban centers, especially in developing countries. Poor solid waste management continues to not only constrain the delivery of services but also threatens the health and quality of life of people, especially urban dwellers. Addressing this challenge requires a comprehensive, coordinated approach informed by thorough investigation and research. While several studies have been carried out on solid waste management, most of these run short of comprehensive analysis to examine the challenges of solid waste management (SWM) in local and municipal governance settings. The study was carried out to assess the challenges and constraints of Municipal waste solid management, management mechanisms, and communities’ knowledge about the dangers of poor solid waste management. It was carried out in Kibuye 1 Parish- one of the 21 parishes that make up Makindye Division. The study employed a descriptive design and was mainly qualitative, although some quantitative data was collected. It employed semi-structured in-depth interviews. In-depth interviews were carried out with city solid waste managers, managers of private sector companies in Solid Waste Management (SWM), political leaders, especially local councilors and opinion leaders. These respondents were purposely sampled. The sample size study was calculated using the Kish and Leslie formula for a single proportion, with a precision of 10%, at a confidence interval of 95%, with a prevalence of 49% representing the proportion of solid waste collected and disposed of by KCC and private companies. The households were the study units; 100 respondents were also purposively selected based on the population size of the 5 zones. Twenty respondents were purposively selected from each of the 5 Zones. A total of 10 key informants were also interviewed, with 5 selected from Makindye Division and another 5 from Kampala Capital City Authority. Regarding the composition of waste generated, the study findings revealed that the biggest percentage of the waste generated in Kibuye 1 Parish was biodegradable waste and mixed fines (85%), plastic (6%), Animal Waste (3%), Sanitary waste (2%), paper and cardboard (2%), textile (1%). In comparison, others were also (1%). The field findings also indicated that Kibuye 1 Parish employed various practices to control and minimize the solid waste generated, which included disposal in Municipal skips (35%), burning (20), open space dumping (15%), recycling (10%), compositing (6%), and burying (5%), others. Study findings reported that the major challenges facing solid waste management include failure to collect the waste on time, insufficient capital, weather vagaries, nature and composition of the waste, limited space and inadequate containers for waste collection and segregation. It was recommended that Makindye Municipality works with private sector actors such as recycling industries and energy generation companies to support waste management at source points, including separating waste and building broad-based support for composting and recycling through the ‘garbage is money’ programs. It was also noted that Makindye municipality/division develops a deliberate policy that encourages the community and various stakeholders to play an active role in managing waste, carrying out environmental education amongst the communities and establishing strong partnerships with private sector companies to provide services to the people. It was also recommended that the Division works with Non-Governmental organizations (NGOs), development partners, recycling companies, energy generation companies and community groups to develop economic incentives for community members to develop sustainable waste management initiatives. The study also highlighted a need to strengthen the capacity (financial, institutional, technological and infrastructural) to drive environmentally solid waste management practices for sustainable solid waste management.

Keywords: refuse, municipal, management, waste

Procedia PDF Downloads 13
2677 Applying the Crystal Model to Different Nuclear Systems

Authors: A. Amar

Abstract:

The angular distributions of the nuclear systems under consideration have been analyzed in the framework of the optical model (OM), where the real part was taken in the crystal model form. A crystal model (CM) has been applied to deuteron elastically scattered by ⁶,⁷Li and ⁹Be. A crystal model (CM) + distorted-wave Born approximation (DWBA) + dynamic polarization potential (DPP) potential has been applied to deuteron elastically scattered by ⁶,⁷Li and 9Be. Also, a crystal model has been applied to ⁶Li elastically scattered by ¹⁶O and ²⁸Sn in addition to the ⁷Li+⁷Li system and the ¹²C(alpha,⁸Be) ⁸Be reaction. The continuum-discretized coupled-channels (CDCC) method has been applied to the ⁷Li+⁷Li system and agreement between the crystal model and the continuum-discretized coupled-channels (CDCC) method has been observed. In general, the models succeeded in reproducing the differential cross sections at the full angular range and for all the energies under consideration.

Keywords: optical model (OM), crystal model (CM), distorted-wave born approximation (DWBA), dynamic polarization potential (DPP), the continuum-discretized coupled-channels (CDCC) method, and deuteron elastically scattered by ⁶, ⁷Li and ⁹Be

Procedia PDF Downloads 84
2676 The Use of Serious Games in the Context of Education 4.0: Enhancing Learning in High Schools and Universities

Authors: Maciej Zaręba, Paweł Dawid

Abstract:

The changing picture of modern education requires innovative methodologies to meet the demands of new generations of students. Serious games, which use gamification principles to enrich the learning process, have become key tools for increasing student engagement and developing basic skills. This article explores the use of serious games in Education 4.0, focusing on their implementation in teaching manufacturing management and engineering principles at the high school and university levels. By simulating complex, real-world challenges and their solutions, serious games provide immersive and interactive learning environments that appeal to Generation Y and Z. These simulations enable students to participate in decision-making in realistic contexts, effectively bridging the gap between theoretical teaching and practical application. Based on the principles of Education 4.0 - which emphasizes personalized, experiential and technology-based learning - serious games foster cognitive engagement, critical thinking, problem-solving solving and collaborative competencies. Additionally, this study assesses the transformative potential of serious games in reshaping traditional educational practices, equipping students with the flexible skills necessary to thrive in an increasingly connected and dynamic global landscape.

Keywords: serious games, education 4.0, gamification, eLearning

Procedia PDF Downloads 14
2675 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, artificial neural network, kinect, stereotypical motor movements

Procedia PDF Downloads 310
2674 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: opinion formation, Deffuant model, opinion mutation, consensus making

Procedia PDF Downloads 182
2673 Decision Analysis Module for Excel

Authors: Radomir Perzina, Jaroslav Ramik

Abstract:

The Analytic Hierarchy Process is frequently used approach for solving decision making problems. There exists wide range of software programs utilizing that approach. Their main disadvantage is that they are relatively expensive and missing intermediate calculations. This work introduces a Microsoft Excel add-in called DAME – Decision Analysis Module for Excel. Comparing to other computer programs DAME is free, can work with scenarios or multiple decision makers and displays intermediate calculations. Users can structure their decision models into three levels – scenarios/users, criteria and variants. Items on all levels can be evaluated either by weights or pair-wise comparisons. There are provided three different methods for the evaluation of the weights of criteria, the variants as well as the scenarios – Saaty’s Method, Geometric Mean Method and Fuller’s Triangle Method. Multiplicative and additive syntheses are supported. The proposed software package is demonstrated on couple of illustrating examples of real life decision problems.

Keywords: analytic hierarchy process, multi-criteria decision making, pair-wise comparisons, Microsoft Excel, scenarios

Procedia PDF Downloads 456
2672 Exploring NLP for Mental Health Insights: Multi-Class Classification of Online Forum Texts

Authors: Jennifer Patricia

Abstract:

With the increasing incidence of mental health issues, there is a real need for early detection, which is currently limited by stigma and ignorance. This study attempts to explore multi-class classification models to analyze mental health problems through social media texts. The goal of the classification model is to categorize text into one of six categories of mental health problems and thus to provide patterns of the language which might serve as an early indication of these problems. After data collection and labeling, the dataset was resampled to balance the dataset for model training. Some of the important steps for data preprocessing included tokenization, the removal of unnecessary characters and labels, and one-hot encoding. To further understand the language used in expressing the different conditions, word clouds and bigram analyses were conducted. The models used for the first training are BERT + XGBoost, T5, and MentalBert. The final results demonstrated that T5 and MentalBERT achieved the highest accuracy of 0.83, significantly outperforming BERT + XGBoost, which obtained an accuracy of 0.6.

Keywords: mental health detection, exploratory data analysis, natural language processing, multi-class classification, data preprocessing, BERT, XGBoost, T5, MentalBERT

Procedia PDF Downloads 7
2671 Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi

Authors: Ying Yu, Wen-Chi Kuo, Tung-Jung Sung

Abstract:

The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market.

Keywords: design, smart PSS, user experience, user engagement

Procedia PDF Downloads 141
2670 Empowering Middle School Math Coordinators as Agents of Transformation: The Impact of the Mitar Program on Mathematical Literacy and Social-Emotional Learning Integration

Authors: Saleit Ron

Abstract:

The Mitar program was established to drive a shift in middle school mathematics education, emphasizing the connection of math to real-life situations, exploring mathematical modeling and literacy, and integrating social and emotional learning (SEL) components for enhanced excellence. The program envisions math coordinators as catalysts for change, equipping them to create educational materials, strengthen leadership skills, and develop SEL competencies within coordinator communities. These skills are then employed to lead transformative efforts within their respective schools. The program engaged 90 participants across six math coordinator communities during 2022-2023, involving 30-60 hours of annual learning. The process includes formative and summative evaluations through questionnaires and interviews, revealing participants' high contentment and successful integration of acquired skills into their schools. Reflections from participants highlighted the need for enhanced change leadership processes, often seeking more personalized mentoring to navigate challenges effectively.

Keywords: math coordinators, mathematical literacy, mathematical modeling, SEL competencies

Procedia PDF Downloads 56
2669 Assessing Diagnostic and Evaluation Tools for Use in Urban Immunisation Programming: A Critical Narrative Review and Proposed Framework

Authors: Tim Crocker-Buque, Sandra Mounier-Jack, Natasha Howard

Abstract:

Background: Due to both the increasing scale and speed of urbanisation, urban areas in low and middle-income countries (LMICs) host increasingly large populations of under-immunized children, with the additional associated risks of rapid disease transmission in high-density living environments. Multiple interdependent factors are associated with these coverage disparities in urban areas and most evidence comes from relatively few countries, e.g., predominantly India, Kenya, Nigeria, and some from Pakistan, Iran, and Brazil. This study aimed to identify, describe, and assess the main tools used to measure or improve coverage of immunisation services in poor urban areas. Methods: Authors used a qualitative review design, including academic and non-academic literature, to identify tools used to improve coverage of public health interventions in urban areas. Authors selected and extracted sources that provided good examples of specific tools, or categories of tools, used in a context relevant to urban immunization. Diagnostic (e.g., for data collection, analysis, and insight generation) and programme tools (e.g., for investigating or improving ongoing programmes) and interventions (e.g., multi-component or stand-alone with evidence) were selected for inclusion to provide a range of type and availability of relevant tools. These were then prioritised using a decision-analysis framework and a tool selection guide for programme managers developed. Results: Authors reviewed tools used in urban immunisation contexts and tools designed for (i) non-immunization and/or non-health interventions in urban areas, and (ii) immunisation in rural contexts that had relevance for urban areas (e.g., Reaching every District/Child/ Zone). Many approaches combined several tools and methods, which authors categorised as diagnostic, programme, and intervention. The most common diagnostic tools were cross-sectional surveys, key informant interviews, focus group discussions, secondary analysis of routine data, and geographical mapping of outcomes, resources, and services. Programme tools involved multiple stages of data collection, analysis, insight generation, and intervention planning and included guidance documents from WHO (World Health Organisation), UNICEF (United Nations Children's Fund), USAID (United States Agency for International Development), and governments, and articles reporting on diagnostics, interventions, and/or evaluations to improve urban immunisation. Interventions involved service improvement, education, reminder/recall, incentives, outreach, mass-media, or were multi-component. The main gaps in existing tools were an assessment of macro/policy-level factors, exploration of effective immunization communication channels, and measuring in/out-migration. The proposed framework uses a problem tree approach to suggest tools to address five common challenges (i.e. identifying populations, understanding communities, issues with service access and use, improving services, improving coverage) based on context and available data. Conclusion: This study identified many tools relevant to evaluating urban LMIC immunisation programmes, including significant crossover between tools. This was encouraging in terms of supporting the identification of common areas, but problematic as data volumes, instructions, and activities could overwhelm managers and tools are not always suitably applied to suitable contexts. Further research is needed on how best to combine tools and methods to suit local contexts. Authors’ initial framework can be tested and developed further.

Keywords: health equity, immunisation, low and middle-income countries, poverty, urban health

Procedia PDF Downloads 144
2668 A Comparative Assessment of Membrane Bioscrubber and Classical Bioscrubber for Biogas Purification

Authors: Ebrahim Tilahun, Erkan Sahinkaya, Bariş Calli̇

Abstract:

Raw biogas is a valuable renewable energy source however it usually needs removal of the impurities. The presence of hydrogen sulfide (H2S) in the biogas has detrimental corrosion effects on the cogeneration units. Removal of H2S from the biogas can therefore significantly improve the biogas quality. In this work, a conventional bioscrubber (CBS), and a dense membrane bioscrubber (DMBS) were comparatively evaluated in terms of H2S removal efficiency (RE), CH4 enrichment and alkaline consumption at gas residence times ranging from 5 to 20 min. Both bioscrubbers were fed with a synthetic biogas containing H2S (1%), CO2 (39%) and CH4 (60%). The results show that high RE (98%) was obtained in the DMBS when gas residence time was 20 min, whereas slightly lower CO2 RE was observed. While in CBS system the outlet H2S concentration was always lower than 250 ppmv, and its H2S RE remained higher than 98% regardless of the gas residence time, although the high alkaline consumption and frequent absorbent replacement limited its cost-effectiveness. The result also indicates that in DMBS when the gas residence time increased to 20 min, the CH4 content in the treated biogas enriched upto 80%. However, while operating the CBS unit the CH4 content of the raw biogas (60%) decreased by three fold. The lower CH4 content in CBS was probably caused by extreme dilution of biogas with air (N2 and O2). According to the results obtained here the DMBS system is a robust and effective biotechnology in comparison with CBS. Hence, DMBS has a better potential for real scale applications.

Keywords: biogas, bioscrubber, desulfurization, PDMS membrane

Procedia PDF Downloads 229
2667 Penetration of Social Media in Primary Education to Nurture Learning Habits in Toddlers during Covid-19

Authors: Priyadarshini Kiran, Gulshan Kumar

Abstract:

: Social media are becoming the most important tools for interaction among learners, pedagogues and parents where everybody can share, exchange, comment, discuss and create information and knowledge in a collaborative way. The present case study attempts to highlight the role of social media (WhatsApp) in nurturing learning habits in toddlers with the help of parents in primary education. The Case study is based on primary data collected from a primary school situated in a small town in the northern state of Uttar Pradesh, India. In research methodology, survey and structured interviews have been used as a tool collected from parents and pedagogues. The findings Suggest: - To nurture learning habits in toddlers, parents and pedagogues use social media site (WhatsApp) in real-time and that too is convenient and handy; - Skill enhancement on the part of Pedagogues as a result of employing innovative teaching-learning techniques; - Social media sites serve as a social connectivity tool to ward off negativity and monotony on the part of parents and pedagogues in the wake of COVID- 19

Keywords: innovative teaching-learning techniques, pedagogues, social media, nurture, toddlers

Procedia PDF Downloads 177
2666 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch

Abstract:

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Keywords: boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones

Procedia PDF Downloads 213
2665 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation

Authors: Sopheak Sorn, Kwok Yip Szeto

Abstract:

Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.

Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio

Procedia PDF Downloads 423
2664 Radio Frequency Identification (Rfid) Cost-Effective, Location-Based System for Managing Construction Materials

Authors: Mourad Bakouka, Abdelaziz Rabehi

Abstract:

Companies need to have logistics and transportation in place that can adapt to the changing nature of construction sites. This ensures they can react quickly when needed. A study was conducted to develop a way to locate and track materials on construction sites. The system is an RFID/GPS integration that's required to pull off this feat. The study also reports how the platform has been used in construction. They found many advantages to using it, including reductions in both time and costs as well as improved management of materials orders. . For example, the time in which a project could start up was shortened from two weeks to three days with just a single digital order. As of now, the technology is still limited in its widespread adoption due largely to overall lack of awareness and difficulty connecting to it. However, as more and more companies embrace it in construction, the technology is expected to become ubiquitous. The developed platform provides contractors and construction managers with real-time information about the status of materials and work, allowing them to better manage the workflow in a project. The study sheds new light on this subject, which is essential to know. This work is becoming increasingly aware of the use of smart tools in constructing buildings.

Keywords: materials management, internet of things (IoT), radio frequency identification (RFID), construction site, supply chain management

Procedia PDF Downloads 85