Search results for: machine modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4562

Search results for: machine modelling

1652 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 243
1651 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia

Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron

Abstract:

The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.

Keywords: endemic species, land use change, maximum entropy, spatial distribution

Procedia PDF Downloads 156
1650 Machinability Study of A201-T7 Alloy

Authors: Onan Kilicaslan, Anil Kabaklarli, Levent Subasi, Erdem Bektas, Rifat Yilmaz

Abstract:

The Aluminum-Copper casting alloys are well known for their high mechanical strength, especially when compared to more commonly used Aluminum-Silicon alloys. A201 is one of the best in terms of strength vs. weight ratio among other aluminum alloys, which makes it suitable for premium quality casting applications in aerospace and automotive industries. It is reported that A201 has low castability, but it is easy to machine. However, there is a need to specifically determine the process window for feasible machining. This research investigates the machinability of A201 alloy after T7 heat treatment in terms of chip/burr formation, surface roughness, hardness, and microstructure. The samples are cast with low-pressure sand casting method and milling experiments are performed with uncoated carbide tools using different cutting speeds and feeds. Statistical analysis is used to correlate the machining parameters to surface integrity. It is found that there is a strong dependence of the cutting conditions on machinability and a process window is determined.

Keywords: A201-T7, machinability, milling, surface integrity

Procedia PDF Downloads 196
1649 Effects of Main Contractors’ Service Quality on Subcontractors’ Behaviours and Project Outcomes

Authors: Zhuoyuan Wang, Benson T. H. Lim, Imriyas Kamardeen

Abstract:

Effective service quality management has long been touted as a means of improving project and organisational performance. Particularly, in construction projects, main contractors are often seen as a broker between clients and subcontractors, and their service quality is thus associated with the overall project affinity and outcomes. While a considerable amount of research has focused on the aspect of clients-main contractors, very little research has been done to explore the effect of contractors’ service quality on subcontractors’ behaviours and so project outcomes. In addressing this gap, this study surveyed 97 subcontractors in the Chinese Construction industry and data was analysed using the Partial Least Square (PLS) Structural Equation Modelling (SEM) technique. The overall findings reveal that subcontractors categorised main contractors’ service quality into three dimensions: assurance; responsiveness; reliability and empathy. Of these, it is found that main contractors’ ‘assurance’ and ‘responsiveness’ positively influence subcontractors’ intention to engage in contractual behaviours. The results further show that the subcontractors’ intention to engage in organizational citizenship behaviours is associated with how flexible and committed the main contractors are in reliability and empathy. Collectively, both subcontractors’ contractual and organizational citizenship behaviours positively influence the overall project outcomes. In conclusion, the findings inform contractors different strategies towards managing and gaining subcontractors’ behaviour commitment in a socially connected, yet complex and uncertain, business environment.

Keywords: construction firms, organisational citizenship behaviour, service quality, social exchange theory

Procedia PDF Downloads 214
1648 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning

Authors: Akeel A. Shah, Tong Zhang

Abstract:

Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.

Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning

Procedia PDF Downloads 40
1647 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability

Procedia PDF Downloads 105
1646 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: steganalysis, security, Fast Fourier Transform, streaming media

Procedia PDF Downloads 147
1645 CFD modelling of Microdrops Manipulation by Microfluidic Oscillator

Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui

Abstract:

Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops, and numerous other functions. For this purpose, several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device have not well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.

Keywords: fluidic oscillator, microdrops manipulation, VOF (volume of fluid method), microfluidic oscillator

Procedia PDF Downloads 397
1644 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing

Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano

Abstract:

Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.

Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning

Procedia PDF Downloads 443
1643 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 162
1642 Multimodal Database of Emotional Speech, Video and Gestures

Authors: Tomasz Sapiński, Dorota Kamińska, Adam Pelikant, Egils Avots, Cagri Ozcinar, Gholamreza Anbarjafari

Abstract:

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

Keywords: body movement, emotion recognition, emotional corpus, facial expressions, gestures, multimodal database, speech

Procedia PDF Downloads 349
1641 Tree Species Classification Using Effective Features of Polarimetric SAR and Hyperspectral Images

Authors: Milad Vahidi, Mahmod R. Sahebi, Mehrnoosh Omati, Reza Mohammadi

Abstract:

Forest management organizations need information to perform their work effectively. Remote sensing is an effective method to acquire information from the Earth. Two datasets of remote sensing images were used to classify forested regions. Firstly, all of extractable features from hyperspectral and PolSAR images were extracted. The optical features were spectral indexes related to the chemical, water contents, structural indexes, effective bands and absorption features. Also, PolSAR features were the original data, target decomposition components, and SAR discriminators features. Secondly, the particle swarm optimization (PSO) and the genetic algorithms (GA) were applied to select optimization features. Furthermore, the support vector machine (SVM) classifier was used to classify the image. The results showed that the combination of PSO and SVM had higher overall accuracy than the other cases. This combination provided overall accuracy about 90.56%. The effective features were the spectral index, the bands in shortwave infrared (SWIR) and the visible ranges and certain PolSAR features.

Keywords: hyperspectral, PolSAR, feature selection, SVM

Procedia PDF Downloads 416
1640 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate

Authors: Han Kexi, Lv Xuewei, Song Bing

Abstract:

This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.

Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying

Procedia PDF Downloads 216
1639 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: block layout problem, building-block layout design, CAD, optimization, search techniques

Procedia PDF Downloads 386
1638 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing

Procedia PDF Downloads 164
1637 Traffic Light Detection Using Image Segmentation

Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra

Abstract:

Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).

Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks

Procedia PDF Downloads 173
1636 Outdoor Performances of Micro Scale Wind Turbine Stand Alone System

Authors: Ahmed. A. Hossam Eldin, Karim H. Youssef, Kareem M. AboRas

Abstract:

Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power.

Keywords: micro-turbine, wind turbine, inverters, renewable energy, hybrid system

Procedia PDF Downloads 482
1635 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 370
1634 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: high-pressure, water jet, friction, texture, polishing, statistical analysis

Procedia PDF Downloads 487
1633 Investigation of Chip Formation Characteristics during Surface Finishing of HDPE Samples

Authors: M. S. Kaiser, S. Reaz Ahmed

Abstract:

Chip formation characteristics are investigated during surface finishing of high density polyethylene (HDPE) samples using a shaper machine. Both the cutting speed and depth of cut are varied continually to enable observations under various machining conditions. The generated chips are analyzed in terms of their shape, size, and deformation. Their physical appearances are also observed using digital camera and optical microscope. The investigation shows that continuous chips are obtained for all the cutting conditions. It is observed that cutting speed is more influential than depth of cut to cause dimensional changes of chips. Chips curl radius is also found to increase gradually with the increase of cutting speed. The length of continuous chips remains always smaller than the job length, and the corresponding discrepancies are found to be more prominent at lower cutting speed. Microstructures of the chips reveal that cracks are formed at higher cutting speeds and depth of cuts, which is not that significant at low depth of cut.

Keywords: HDPE, surface-finishing, chip formation, deformation, roughness

Procedia PDF Downloads 146
1632 Artificial Intelligence for Generative Modelling

Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta

Abstract:

As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.

Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques

Procedia PDF Downloads 149
1631 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation

Authors: A. Naamane, M. Hasnaoui

Abstract:

Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.

Keywords: asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel

Procedia PDF Downloads 134
1630 Fine Grained Action Recognition of Skateboarding Tricks

Authors: Frederik Calsius, Mirela Popa, Alexia Briassouli

Abstract:

In the field of machine learning, it is common practice to use benchmark datasets to prove the working of a method. The domain of action recognition in videos often uses datasets like Kinet-ics, Something-Something, UCF-101 and HMDB-51 to report results. Considering the properties of the datasets, there are no datasets that focus solely on very short clips (2 to 3 seconds), and on highly-similar fine-grained actions within one specific domain. This paper researches how current state-of-the-art action recognition methods perform on a dataset that consists of highly similar, fine-grained actions. To do so, a dataset of skateboarding tricks was created. The performed analysis highlights both benefits and limitations of state-of-the-art methods, while proposing future research directions in the activity recognition domain. The conducted research shows that the best results are obtained by fusing RGB data with OpenPose data for the Temporal Shift Module.

Keywords: activity recognition, fused deep representations, fine-grained dataset, temporal modeling

Procedia PDF Downloads 231
1629 Choice Experiment Approach on Evaluation of Non-Market Farming System Outputs: First Results from Lithuanian Case Study

Authors: A. Novikova, L. Rocchi, G. Startiene

Abstract:

Market and non-market outputs are produced jointly in agriculture. Their supply depends on the intensity and type of production. The role of agriculture as an economic activity and its effects are important for the Lithuanian case study, as agricultural land covers more than a half of country. Positive and negative externalities, created in agriculture are not considered in the market. Therefore, specific techniques such as stated preferences methods, in particular choice experiments (CE) are used for evaluation of non-market outputs in agriculture. The main aim of this paper is to present construction of the research path for evaluation of non-market farming system outputs in Lithuania. The conventional and organic farming, covering crops (including both cereal and industrial crops) and livestock (including dairy and cattle) production has been selected. The CE method and nested logit (NL) model were selected as appropriate for evaluation of non-market outputs of different farming systems in Lithuania. A pilot survey was implemented between October–November 2018, in order to test and improve the CE questionnaire. The results of the survey showed that the questionnaire is accepted and well understood by the respondents. The econometric modelling showed that the selected NL model could be used for the main survey. The understanding of the differences between organic and conventional farming by residents was identified. It was revealed that they are more willing to choose organic farming in comparison to conventional farming.

Keywords: choice experiments, farming system, Lithuania market outputs, non-market outputs

Procedia PDF Downloads 129
1628 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 393
1627 Rotor Side Speed Control Methods Using MATLAB/Simulink for Wound Induction Motor

Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal

Abstract:

In recent advancements in electric machine and drives, wound rotor motor is extensively used. The merit of using wound rotor induction motor is to control speed/torque characteristics by inserting external resistance. Wound rotor induction motor can be used in the cases such as (a) low inrush current, (b) load requiring high starting torque, (c) lower starting current is required, (d) loads having high inertia, and (e) gradual built up of torque. Examples include conveyers, cranes, pumps, elevators, and compressors. This paper includes speed control of wound induction motor using MATLAB/Simulink for rotor resistance and slip power recovery method. The characteristics of these speed control methods are hence analyzed.

Keywords: MATLAB/Simulink, rotor resistance method, slip power recovery method, wound rotor induction motor

Procedia PDF Downloads 370
1626 Design, Analysis and Optimization of Space Frame for BAJA SAE Chassis

Authors: Manoj Malviya, Shubham Shinde

Abstract:

The present study focuses on the determination of torsional stiffness of a space frame chassis and comparison of elements used in the Finite Element Analysis of frame. The study also discusses various concepts and design aspects of a space frame chassis with the emphasis on their applicability in BAJA SAE vehicles. Torsional stiffness is a very important factor that determines the chassis strength, vehicle control, and handling. Therefore, it is very important to determine the torsional stiffness of the vehicle before designing an optimum chassis so that it should not fail during extreme conditions. This study determines the torsional stiffness of frame with respect to suspension shocks, roll-stiffness and anti-roll bar rates. A spring model is developed to study the effects of suspension parameters. The engine greatly contributes to torsional stiffness, and therefore, its effects on torsional stiffness need to be considered. Deflections in the tire have not been considered in the present study. The proper element shape should be selected to analyze the effects of various loadings on chassis while implementing finite element methods. The study compares the accuracy of results and computational time for different element types. Shape functions of these elements are also discussed. Modelling methodology is discussed for the multibody analysis of chassis integrated with suspension arms and engine. Proper boundary conditions are presented so as to replicate the real life conditions.

Keywords: space frame chassis, torsional stiffness, multi-body analysis of chassis, element selection

Procedia PDF Downloads 354
1625 On an Approach for Rule Generation in Association Rule Mining

Authors: B. Chandra

Abstract:

In Association Rule Mining, much attention has been paid for developing algorithms for large (frequent/closed/maximal) itemsets but very little attention has been paid to improve the performance of rule generation algorithms. Rule generation is an important part of Association Rule Mining. In this paper, a novel approach named NARG (Association Rule using Antecedent Support) has been proposed for rule generation that uses memory resident data structure named FCET (Frequent Closed Enumeration Tree) to find frequent/closed itemsets. In addition, the computational speed of NARG is enhanced by giving importance to the rules that have lower antecedent support. Comparative performance evaluation of NARG with fast association rule mining algorithm for rule generation has been done on synthetic datasets and real life datasets (taken from UCI Machine Learning Repository). Performance analysis shows that NARG is computationally faster in comparison to the existing algorithms for rule generation.

Keywords: knowledge discovery, association rule mining, antecedent support, rule generation

Procedia PDF Downloads 324
1624 A Uniformly Convergent Numerical Scheme for a Singularly Perturbed Volterra Integrodifferential Equation

Authors: Nana Adjoah Mbroh, Suares Clovis Oukouomi Noutchie

Abstract:

Singularly perturbed problems are parameter dependent problems, and they play major roles in the modelling of real-life situational problems in applied sciences. Thus, designing efficient numerical schemes to solve these problems is of much interest since the exact solutions of such problems may not even exist. Generally, singularly perturbed problems are identified by a small parameter multiplying at least the highest derivative in the equation. The presence of this parameter causes the solution of these problems to be characterized by rapid oscillations. This unique feature renders classical numerical schemes inefficient since they are unable to capture the behaviour of the exact solution in the part of the domain where the rapid oscillations are present. In this paper, a numerical scheme is proposed to solve a singularly perturbed Volterra Integro-differential equation. The scheme is based on the midpoint rule and employs the non-standard finite difference scheme to solve the differential part whilst the composite trapezoidal rule is used for the integral part. A fully fledged error estimate is performed, and Richardson extrapolation is applied to accelerate the convergence of the scheme. Numerical simulations are conducted to confirm the theoretical findings before and after extrapolation.

Keywords: midpoint rule, non-standard finite difference schemes, Richardson extrapolation, singularly perturbed problems, trapezoidal rule, uniform convergence

Procedia PDF Downloads 125
1623 Vehicle Type Classification with Geometric and Appearance Attributes

Authors: Ghada S. Moussa

Abstract:

With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management. This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.

Keywords: appearance attributes, geometric attributes, support vector machine, vehicle classification

Procedia PDF Downloads 338