Search results for: improve
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8285

Search results for: improve

5375 Assembly Training: An Augmented Reality Approach Using Design Science Research

Authors: Stefan Werrlich, Phuc-Anh Nguyen, Kai Nitsche, Gunther Notni

Abstract:

Augmented Reality (AR) is a strong growing research topic. This innovative technology is interesting for several training domains like education, medicine, military, sports and industrial use cases like assembly and maintenance tasks. AR can help to improve the efficiency, quality and transfer of training tasks. Due to these reasons, AR becomes more interesting for big companies and researchers because the industrial domain is still an unexplored field. This paper presents the research proposal of a PhD thesis which is done in cooperation with the BMW Group, aiming to explore head-mounted display (HMD) based training in industrial environments. We give a short introduction, describing the motivation, the underlying problems as well as the five formulated research questions we want to clarify along this thesis. We give a brief overview of the current assembly training in industrial environments and present some AR-based training approaches, including their research deficits. We use the Design Science Research (DSR) framework for this thesis and describe how we want to realize the seven guidelines, mandatory from the DSR. Furthermore, we describe each methodology which we use within that framework and present our approach in a comprehensive figure, representing the entire thesis.

Keywords: assembly, augmented reality, research proposal, training

Procedia PDF Downloads 246
5374 Enhancing Transfer Path Analysis with In-Situ Component Transfer Path Analysis for Interface Forces Identification

Authors: Raef Cherif, Houssine Bakkali, Wafaa El Khatiri, Yacine Yaddaden

Abstract:

The analysis of how vibrations are transmitted between components is required in many engineering applications. Transfer path analysis (TPA) has been a valuable engineering tool for solving Noise, Vibration, and Harshness (NVH problems using sub-structuring applications. The most challenging part of a TPA analysis is estimating the equivalent forces at the contact points between the active and the passive side. Component TPA in situ Method calculates these forces by inverting the frequency response functions (FRFs) measured at the passive subsystem, relating the motion at indicator points to forces at the interface. However, matrix inversion could pose problems due to the ill-conditioning of the matrices leading to inaccurate results. This paper establishes a TPA model for an academic system consisting of two plates linked by four springs. A numerical study has been performed to improve the interface forces identification. Several parameters are studied and discussed, such as the singular value rejection and the number and position of indicator points chosen and used in the inversion matrix.

Keywords: transfer path analysis, matrix inverse method, indicator points, SVD decomposition

Procedia PDF Downloads 85
5373 Analysis Of Non-uniform Characteristics Of Small Underwater Targets Based On Clustering

Authors: Tianyang Xu

Abstract:

Small underwater targets generally have a non-centrosymmetric geometry, and the acoustic scattering field of the target has spatial inhomogeneity under active sonar detection conditions. In view of the above problems, this paper takes the hemispherical cylindrical shell as the research object, and considers the angle continuity implied in the echo characteristics, and proposes a cluster-driven research method for the non-uniform characteristics of target echo angle. First, the target echo features are extracted, and feature vectors are constructed. Secondly, the t-SNE algorithm is used to improve the internal connection of the feature vector in the low-dimensional feature space and to construct the visual feature space. Finally, the implicit angular relationship between echo features is extracted under unsupervised condition by cluster analysis. The reconstruction results of the local geometric structure of the target corresponding to different categories show that the method can effectively divide the angle interval of the local structure of the target according to the natural acoustic scattering characteristics of the target.

Keywords: underwater target;, non-uniform characteristics;, cluster-driven method;, acoustic scattering characteristics

Procedia PDF Downloads 132
5372 Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes

Authors: Marcial Blondet, Malena Serrano, Álvaro Rubiños, Elin Mattsson

Abstract:

In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development.

Keywords: adobe, Peruvian Andes, safe housing, technological transference

Procedia PDF Downloads 293
5371 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College

Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa

Abstract:

This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.

Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling

Procedia PDF Downloads 231
5370 Effectiveness of GeoGebra in Developing Conceptual Understanding of Transformation Geometry Case of Grade 11 Students

Authors: Gebreegziabher Hailu Gebrecherkos

Abstract:

This study examines the effectiveness of GeoGebra in developing the conceptual understanding of transformation geometry among Grade 11 students. Utilizing a quasi-experimental design, the research compares the learning outcomes of students who engaged with GeoGebra against those who received traditional instruction. Pre- and post-tests were administered to assess students' grasp of key transformation concepts, including translations, rotations, reflections, and dilations. Additionally, qualitative data were gathered through student interviews and classroom observations to explore their experiences and perceptions of using GeoGebra. Results indicate that students utilizing GeoGebra showed significantly greater improvement in their understanding of transformation geometry concepts. The interactive features of GeoGebra facilitated visualization and exploration, leading to enhanced engagement and deeper conceptual insights. The findings underscore the potential of GeoGebra as a powerful educational tool that not only fosters mathematical understanding but also accommodates diverse learning styles in the classroom. This study contributes valuable insights for educators seeking to improve the teaching and learning of transformation geometry in secondary education.

Keywords: calculus, conceptual understanding, GeoGebra, transformation geometry

Procedia PDF Downloads 21
5369 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry

Authors: Racha Khairallah, Lamia Ben Hamida

Abstract:

Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use OECD data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.

Keywords: innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms

Procedia PDF Downloads 110
5368 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 366
5367 The Effectiveness of a Hybrid Diffie-Hellman-RSA-Advanced Encryption Standard Model

Authors: Abdellahi Cheikh

Abstract:

With the emergence of quantum computers with very powerful capabilities, the security of the exchange of shared keys between two interlocutors poses a big problem in terms of the rapid development of technologies such as computing power and computing speed. Therefore, the Diffie-Hellmann (DH) algorithm is more vulnerable than ever. No mechanism guarantees the security of the key exchange, so if an intermediary manages to intercept it, it is easy to intercept. In this regard, several studies have been conducted to improve the security of key exchange between two interlocutors, which has led to interesting results. The modification made on our model Diffie-Hellman-RSA-AES (DRA), which encrypts the information exchanged between two users using the three-encryption algorithms DH, RSA and AES, by using stenographic photos to hide the contents of the p, g and ClesAES values that are sent in an unencrypted state at the level of DRA model to calculate each user's public key. This work includes a comparative study between the DRA model and all existing solutions, as well as the modification made to this model, with an emphasis on the aspect of reliability in terms of security. This study presents a simulation to demonstrate the effectiveness of the modification made to the DRA model. The obtained results show that our model has a security advantage over the existing solution, so we made these changes to reinforce the security of the DRA model.

Keywords: Diffie-Hellmann, DRA, RSA, advanced encryption standard

Procedia PDF Downloads 93
5366 Experimental Investigation on Sustainable Machining of Hastelloy C-276 Utilizing Different Cooling Strategies

Authors: Balkar Singh, Gurpreet Singh, Vivek Aggarwal, Sehijpal Singh

Abstract:

The present research focused to improve the machinability of Hastelloy C-276 at different machining speeds such as 31, 55, and 79 m/min. The use of CO2 gas and Minimum quantity lubrication (MQL) was applied as coolant and lubrication purposes to enhance the machinability of the superalloy. The output in the form of surface roughness (S.R) and heat generation was monitored under dry, MQL, and MQL-CO2-cooled conditions. The Design of the Experiment was prepared using MINITAB software utilizing Taguchi L-27 orthogonal arrays followed by ANOVA analysis for finding the impact of input variables on output responses. At different speeds and lubrication conditions, different behavioral patterns for Surface Roughness and the temperature was observed. ANOVA analysis depicted that the cooling environment impacted the S.R. majorly (50%) followed by cutting speed (29.84%), feed rate (5.09%), and least through depth of cut (4.95%). On the other side, the temperature was greatly influenced by cutting speed (69.12%), Cryo-MQL (8.09%), feed rate (7.59%), and depth of cut (6.20%). Experimental results revealed that Cryo-MQL cooling enhanced the Surface roughness by 12% compared to MQL condition.

Keywords: Hastelloy C-276, minimum quantity lubrication, olive oil, cryogenic Cooling (CO2)

Procedia PDF Downloads 142
5365 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation

Procedia PDF Downloads 395
5364 Emotion Regulation in Young Adult Relationships in Relation to Parenting Styles

Authors: Taylor Brown

Abstract:

The parent-child attachment bond begins early, often before the birth of the child. Both father and mother begin to form a bond with their child by selecting a name, preparing for the birth, etc. The biological mother carries the child and often breastfeeds the infant after birth. While fathers play an important role in caring for the child as well, the mother is traditionally seen as the caregiver with the primary role of caring for her baby. These core ideas could include how to form bonds, how to communicate emotions, and even how to create and maintain relationships. Mothers tend to shape their children’s minds based on their own. Studies have even shown that when mothers stroke their children’s bodies with their fingers, the child does calm down more than most other methods. The bond between mother and child is one that happens immediately and strengthens over time. This attachment affects the child’s overall development. The mother-child attachment style is directly linked to a multitude of patterns in adolescents, and later on, adults. The researcher believes that the subsequent patterns of communication in romantic relationships are included in the multitude. Awareness of these patterns and their effects could improve experiences in romantic relationships during young adulthood.

Keywords: emotion regulation, parenting, maternal, attachment, romantic

Procedia PDF Downloads 174
5363 Effect of Different Flours on the Physical and Sensorial Characteristics of Meatballs

Authors: Elif Aykin Dincer, Ozlem Kilic, Busra F. Bilgic, Mustafa Erbas

Abstract:

Stale breads and rusk flour are used traditionally in meatballs produced in Turkey as a structure enhancer. This study researches the possibilities of using retrograded wheat flour in the meatball production and compares the physical and sensorial characteristics of these meatballs with stale bread (traditional) and rusk (commercial) used meatballs. The cooking loss of meatballs produced with using retrograded flour was similar to that of commercial meatballs. These meatballs have an advantage with respect to cooking loss compared to traditional meatballs. Doses of retrograded flour from 5% to 20% led to a significant decrease in cooking loss, from 21.95% to 6.19%, and in the diameter of meatballs, from 18.60% to 12.74%, but to an increase in the thickness of meatballs, from 28.82% to 41.39%, respectively, compared to the control (0%). The springiness of the traditional meatballs was significantly higher than that of the other meatballs. This might have been due to the bread crumbs having a naturally springy structure. Moreover, the addition of retrograded flour in the meatballs significantly (P<0.05) affected the hardness, springiness and cohesiveness of the meatballs with respect to textural properties. In conclusion, it is considered that the use of 10% retrograded flour is ideal to improve the sensorial values of meatballs and the properties of their structure.

Keywords: cooking loss, flour, hardness, meatball, sensorial characteristics

Procedia PDF Downloads 291
5362 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 341
5361 Relationship between Quality Improvement Strategies on the Basis of Different Management Activities

Authors: Manjinder Singh, Anish Sachdeva

Abstract:

Research on total quality management (TQM), total productive maintenance (TPM), international organization for standardization (ISO) and six sigma generally investigate the implementation and impact of these programs in isolation. However, none of these quality improvement programs is self-sufficient and they may not be powerful enough to deliver the improvements and innovations that are required nowadays to ensure the survival and growth of a firm. They are not mutually exclusive and inconsistent. On the contrary, they need complementary support and may reinforce mutually to make use of their complementarity, inducement of side-effects in favor of other quality improvement program, mutual simulation and exploitation of shared values. In this paper, first of all, the various management activities were identified which are normally under focus when any quality improvement program is implemented in any organization. Then TOPSIS methodology was applied to establish the ranking of various quality improvement programs (total quality management, total productive maintenance, ISO and six sigma which were brought to the corporate boardroom to improve the quality) with respect to different management activities (operations related activities, quality related activities, maintenance related activities, organizational related activities, human related activities and finance related activities).

Keywords: total productive maintenance (TPM), total quality management (TQM), TOPSIS, international organization for standardization (ISO)

Procedia PDF Downloads 439
5360 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 527
5359 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 104
5358 Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB

Authors: Ming-Ta Yang, Jyh-Cherng Gu, Chun-Wei Huang, Jin-Lung Guan

Abstract:

Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers.

Keywords: circuit breaker, condition base maintenance, intelligent electronic device, time base maintenance, SCADA

Procedia PDF Downloads 329
5357 Motivational Factors on Non-Academic Staff of Higher Education

Authors: Atya Nur Aisha, Pamoedji Hardjomidjojo, Yassierli

Abstract:

Motivation is an important aspect which affects employee behavior to achieve performance. Working motivation tend to be unstable, it easily changing. This condition could be affected by individual factors, namely working ability, and organizational factors, such as working condition and incentives system. The purpose of this study was to examine the impact of individual and organizational factors on non-academic staff motivation. A questionnaire was designed and distributed to 150 non-academic staff of a university in Indonesia. Regression analysis was used to identify the relationship. Results revealed that individual working ability and incentives system had a positive impact on non-academic staff motivation (sig 0.001). This study provides information about practical implication for university authorities and theoretical implications for researchers who interested in exploring motivational and employee performance in a higher education context. It was proposed to increase productivity and work motivation of non-academic staff, university authorities should maintain equality and feasibility of incentives system and design a human resource development to improve employee ability.

Keywords: motivation, incentives, working ability, non-academic staff

Procedia PDF Downloads 410
5356 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 291
5355 Bio-Mimetic Foot Design for Legged Locomotion over Unstructured Terrain

Authors: Hannah Kolano, Paul Nadan, Jeremy Ryan, Sophia Nielsen

Abstract:

The hooves of goats and other ruminants, or the family Ruminantia, are uniquely structured to adapt to rough terrain. Their hooves possess a hard outer shell and a soft interior that allow them to both conform to uneven surfaces and hook onto prominent features. In an effort to apply this unique mechanism to a robotics context, artificial feet for a hexapedal robot have been designed based on the hooves of ruminants to improve the robot’s ability to traverse unstructured environments such as those found on a rocky planet or asteroid, as well as in earth-based environments such as rubble, caves, and mountainous regions. The feet were manufactured using a combination of 3D printing and polyurethane casting techniques and attached to a commercially available hexapedal robot. The robot was programmed with a terrain-adaptive gait and proved capable of traversing a variety of uneven surfaces and inclines. This development of more adaptable robotic feet allows legged robots to operate in a wider range of environments and expands their possible applications.

Keywords: biomimicry, legged locomotion, robotic foot design, ruminant feet, unstructured terrain navigation

Procedia PDF Downloads 129
5354 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics

Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini

Abstract:

The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.

Keywords: city logistics, simulation, system dynamics, business model

Procedia PDF Downloads 267
5353 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma

Authors: Mahkameh Asadi, Habibollah Dadgar

Abstract:

The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.

Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma

Procedia PDF Downloads 176
5352 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves

Authors: Kamal Upadhyay, Zhou Hua, Yu Rui

Abstract:

This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.

Keywords: streamline, cavitation, optimization, computational fluid dynamics

Procedia PDF Downloads 145
5351 Theoretical Analysis of Self-Starting Busemann Intake Family

Authors: N. Moradian, E. Timofeev, R. Tahir

Abstract:

In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.

Keywords: Busemann intake, conical shock, overboard spillage, startability

Procedia PDF Downloads 205
5350 Analysis of Labor Effectiveness at Green Tea Dry Sorting Workstation for Increasing Tea Factory Competitiveness

Authors: Bayu Anggara, Arita Dewi Nugrahini, Didik Purwadi

Abstract:

Dry sorting workstation needs labor to produce green tea in Gambung Tea Factory. Observation results show that there is labor who are not working at the moment and doing overtime jobs to meet production targets. The measurement of the level of labor effectiveness has never been done before. The purpose of this study is to determine the level of labor effectiveness and provide recommendations for improvement based on the results of the Pareto diagram and Ishikawa diagram. The method used to measure the level of labor effectiveness is Overall Labor Effectiveness (OLE). OLE had three indicators which are availability, performance, and quality. Recommendations are made based on the results of the Pareto diagram and Ishikawa diagram for indicators that do not meet world standards. Based on the results of the study, the OLE value was 68.19%. Recommendations given to improve labor performance are adding mechanics, rescheduling rest periods, providing special training for labor, and giving rewards to labor. Furthermore, the recommendations for improving the quality of labor are procuring water content measuring devices, create material standard policies, and rescheduling rest periods.

Keywords: Ishikawa diagram, labor effectiveness, OLE, Pareto diagram

Procedia PDF Downloads 230
5349 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: Siamak Ghorbani, Nikolay Ivanovich Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration

Procedia PDF Downloads 311
5348 Mapping of Urban Green Spaces Towards a Balanced Planning in a Coastal Landscape

Authors: Rania Ajmi, Faiza Allouche Khebour, Aude Nuscia Taibi, Sirine Essasi

Abstract:

Urban green spaces (UGS) as an important contributor can be a significant part of sustainable development. A spatial method was employed to assess and map the spatial distribution of UGS in five districts in Sousse, Tunisia. Ecological management of UGS is an essential factor for the sustainable development of the city; hence the municipality of Sousse has decided to support the districts according to different green spaces characters. And to implement this policy, (1) a new GIS web application was developed, (2) then the implementation of the various green spaces was carried out, (3) a spatial mapping of UGS using Quantum GIS was realized, and (4) finally a data processing and statistical analysis with RStudio programming language was executed. The intersection of the results of the spatial and statistical analyzes highlighted the presence of an imbalance in terms of the spatial UGS distribution in the study area. The discontinuity between the coast and the city's green spaces was not designed in a spirit of network and connection, hence the lack of a greenway that connects these spaces to the city. Finally, this GIS support will be used to assess and monitor green spaces in the city of Sousse by decision-makers and will contribute to improve the well-being of the local population.

Keywords: distributions, GIS, green space, imbalance, spatial analysis

Procedia PDF Downloads 204
5347 Minimization of Seepage in Sandy Soil Using Different Grouting Types

Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour

Abstract:

One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.

Keywords: seepage, sandy soil, grouting, permeability

Procedia PDF Downloads 368
5346 Effect of Different Plan Shapes on the Load Carrying Capacity of a Steel Frame under Extreme Loading

Authors: Omid Khandel, Azadeh Parvin

Abstract:

An increase in accidental explosions in recent years has increased the interest on investigating the response and behavior of structures in more details. The present work focused on finite element analysis of multistory steel frame structures with different plan shapes subjected to blast loadings. In order to study the effect of the geometry of the building, three different shapes for the plan of the building were modeled and studied; Rectangular, Square and L shape plans. The nonlinear dynamic analysis was considered in this study. The relocation technique was also used to improve the behavior of structure. The accuracy of the multistory frame model was confirmed with those of the existing study in the literature and they were in good agreement. The effect of span length of the buildings was also considered. Finite element analysis of various scenarios for relocating the plastic hinges and improving the response of the structure was performed. The base shear versus displacement curves were compared to reveal the best possible scenarios to provide recommendations to designers and practitioners.

Keywords: nonlinear dynamic analysis, plastic hinge relocation, Retrofit, SAP2000

Procedia PDF Downloads 282