Search results for: free surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9401

Search results for: free surface

6491 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy

Authors: Shadatul Hanom Rashid, Xiaorong Zhou

Abstract:

Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.

Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings

Procedia PDF Downloads 137
6490 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 369
6489 Aqueous Hydrogen Sulphide in Slit-Shaped Silica Nano-Pores: Confinement Effects on Solubility, Structural and Dynamical Properties

Authors: Sakiru Badmos, David R. Cole, Alberto Striolo

Abstract:

It is known that confinement in nm-size pores affects many structural and transport properties of water and co-existing volatile species. Of particular interest for fluids in sub-surface systems, in catalysis, and in separations are reports that confinement can enhance the solubility of gases in water. Equilibrium molecular dynamics simulations were performed for aqueous H₂S confined in slit-shaped silica pores at 313K. The effect of pore width on the H₂S solubility in water was investigated. Other properties of interest include the molecular distribution of the various fluid molecules within the pores, the hydration structure for solvated H₂S molecules, and the dynamical properties of the confined fluids. The simulation results demonstrate that confinement reduces the H₂S solubility in water and that the solubility increases with pore size. Analysis of spatial distribution functions suggests that these results are due to perturbations on the coordination of water molecules around H₂S due to confinement. Confinement is found to dampen the dynamical properties of aqueous H₂S as well. Comparing the results obtained for aqueous H₂S to those reported elsewhere for aqueous CH₄, it can be concluded that H₂S permeates hydrated slit-shaped silica nano-pores faster than CH₄. In addition to contributing to better understanding the behavior of fluids in subsurface formations, these observations could also have important implications for developing new natural gas sweetening technologies.

Keywords: confinement, interfacial properties, molecular dynamic simulation, sub-surface formations

Procedia PDF Downloads 146
6488 A Review of Evidence on the Use of Digital Healthcare Interventions to Provide Follow-Up Care for Coeliac Disease Patients

Authors: R. Cooper, M. Kurien

Abstract:

Background: Coeliac Disease affects around 1 in 100 people. Untreated, it can result in serious morbidity such as malabsorption and cancers. The only treatment is to adhere to a gluten free diet (GFD). International guidelines recommend that people with the coeliac disease receive follow-up healthcare annually to detect complications early and support their adherence to a GFD. However, there is a finite amount of healthcare in the UK, and as such, not all patients receive follow-up care as recommended by the guidelines. Furthermore, there is an increasing number of patients being diagnosed with coeliac disease. Given the potential severe morbidity that non-adherence to a GFD could result in, alongside reports that the rate of non- GFD adherence could be as high as 91%, it is imperative that action is taken. One potential solution to this would be to provide follow-up care digitally through utilising technology. This abstract reports on a rapid review undertaken to explore the existing evidence in this area. Methods: In June 2020, 11 bibliographic databases were searched to find any pertinent studies. The inclusion criteria required the study to be written in the English language and report on the use of digital healthcare interventions for people with Coeliac Disease. Results: A small amount of evidence (n=8) was found which met our inclusion criteria and pertained to the provision of CD follow-up digitally. These studies focussed either on educating and supporting patients to adhere to a GFD or providing consultation remotely with a focus on detecting complications early. These studies showed that there is potential for digital healthcare interventions to positively impact people with coeliac disease. However, it is suggested that the effectiveness of these interventions may depend on local circumstances, individual knowledge of CD and general attitudes. Conclusion: The above studies suggest that providing follow-up care digitally may offer a potential solution; however, the evidence about how this should be done and in what circumstances this will work for individuals is scarce. In the light of the COVID-19 pandemic, the introduction of digital healthcare interventions appears to be highly topical, and as such, this review may benefit from being refreshed in the future.

Keywords: coeliac disease, follow-up, gluten free diet, digital healthcare interventions

Procedia PDF Downloads 158
6487 Experimental Modelling Gear Contact with TE77 Energy Pulse Setup

Authors: Zainab Mohammed Shukur, Najlaa Ali Alboshmina, Ali Safa Alsaegh

Abstract:

The project was investigated tribological behavior of polyether ether ketone (PEEK1000) against PEEK1000 rolling sliding (non-conformal) configuration with slip ratio 83.3%, were tested applications using a TE77 wear mechanisms and friction coefficient test rig. Under marginal lubrication conditions and the absence of film thick conditions, load 100 N was used to simulate the torque in gears 7 N.m. The friction coefficient and wear mechanisms of PEEK were studied under reciprocating roll/slide conditions with water, ethylene glycol, silicone, and base oil. Tribological tests were conducted on a TE77 high-frequency tribometer, with a disc-on-plate slide/roll (the energy pulse criterion) configuration. An Alicona G5 optical 3D micro-coordinate measurement microscope was used to investigate the surface topography and wear mechanisms. The surface roughness had been a significant effect on the friction coefficient for the PEEK/PEEK the rolling sliding contact test ethylene glycol and on the wear mechanisms. When silicone, ethylene glycol, and oil were used as a lubricant, the steady state of friction coefficient was reached faster than the other lubricant. Results describe the effect of the film thick with slip ratio of 83.3% on the tribological performance.

Keywords: polymer, rolling- sliding, energy pulse, gear contact

Procedia PDF Downloads 125
6486 Rapid Biosynthesis of Silver Nanoparticles Using Trachyspermum Ammi

Authors: Rajesh Kumar Meena, Suman Jhajharia, Goutam Chakraborty

Abstract:

Plasmonic silver nanoparticles (Ag NPs) was synthesized by chemical reduction method using Trachyspermum Ammi (TA, Ajwain) seeds extract in aqueous medium and AgNO3 solution at different time interval. Reaction time, and concentration of AgNO3 and TA could accelerate the reduction rate of Ag+ and affect AgNPs size and concentration of NPs. Surface plasmon resonance band centered at 420-430 nm (88.78nm) was recognised as first exitonic peak of UV-Vis absorption spectra of AgNPs that used to calculate the particle size (10-30 nm). FTIR results TA supported AgNPs showed decrease in intensity of peaks at 3394, 1716 and 1618 cm-1 with respect to the plain TA indicating the involvement of O-H, carbonyl group and C=C stretching in formation of TA-AgNPs aggregates. The C-O-C and C-N stretching suggested the presence of many phytochemicals on the surface of the NPs. Impedance study reveals that at low concentration of TA the rate of charge transfer is in TA-AgNPs aggregates, found higher than the higher TA concentration condition that confirms the stability of AgNPs in water. Extract reduce silver ions into silver nanoparticles (NPs) of size 6-50nm. Pronounce effect of the time on Ag NPs concentration and particle size, was exhibited by the system These biogenic Ag NPs are characterized using UV- Vis spectrophotometry (UV-Visible), Fourier transformation infrared (FTIR) and XRD. These studies give us inside view of the most probable mechanism of biosynthesis and optoelectronic properties of the as synthesised Ag NPs.

Keywords: antimicrobial activity, bioreduction, capping agent, silver nanoparticles

Procedia PDF Downloads 313
6485 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 304
6484 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials

Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan

Abstract:

Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.

Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography

Procedia PDF Downloads 83
6483 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety

Authors: Boce Zhang

Abstract:

Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.

Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology

Procedia PDF Downloads 346
6482 Laser Additive Manufacturing: A Literature Review

Authors: Pranav Mohan Parki, C. Mallika Parveen, Tahseen Ahmad Khan, Mihika Shivkumar

Abstract:

Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method.

Keywords: additive manufacturing (AM), 3D printing, prototype, laser sintering

Procedia PDF Downloads 363
6481 The Antitumor Activity of Eu (III) and Er (III) Complexes of 3 - (1H-Benzimidazol-2-Yl) - 6 - Methyl - 2 (1H) - Quinolinone

Authors: Xing Lu, Yi-ming Wu, Yan-hong Zhu, Zhen-feng Chen, Hong Liang, Yan Peng

Abstract:

[Eu(BMQ)2(NO3)3(CH3OH)(H2O)] (1),and [Er(BMQ)2(NO3)3(CH3OH)(H2O)] (2),were synthesized. Compounds 1 and 2 exhibit a certain extent cytotoxicity against Hep G2, Hela 229, MGC80-3 and BEL-7404 cell lines invitro, with IC50 values in the14.51±1.41μM to 52.49±4.01μM range. Compound 1 exhibited significantly enhanced cytotoxicity against MGC80-3 cell line, comparing with free 3-(1H-benzimidazol-2-yl)-6-methyl-2(1H)- quinolinone. The binding abilities of 1 to DNA were stronger than that of 2. Intercalation is the most probable binding mode for both the complexes.

Keywords: quinolinone, Eu(II) complex, Er(III) complex, cytotoxicity.

Procedia PDF Downloads 582
6480 Response of Caldeira De Tróia Saltmarsh to Sea Level Rise, Sado Estuary, Portugal

Authors: A. G. Cunha, M. Inácio, M. C. Freitas, C. Antunes, T. Silva, C. Andrade, V. Lopes

Abstract:

Saltmarshes are essential ecosystems both from an ecological and biological point of view. Furthermore, they constitute an important social niche, providing valuable economic and protection functions. Thus, understanding their rates and patterns of sedimentation is critical for functional management and rehabilitation, especially in an SLR scenario. The Sado estuary is located 40 km south of Lisbon. It is a bar built estuary, separated from the sea by a large sand spit: the Tróia barrier. Caldeira de Tróia is located on the free edge of this barrier, and encompasses a salt marsh with ca. 21,000 m². Sediment cores were collected in the high and low marshes and in the mudflat area of the North bank of Caldeira de Tróia. From the low marsh core, fifteen samples were chosen for ²¹⁰Pb and ¹³⁷Cs determination at University of Geneva. The cores from the high marsh and the mudflat are still being analyzed. A sedimentation rate of 2.96 mm/year was derived from ²¹⁰Pb using the Constant Flux Constant Sedimentation model. The ¹³⁷Cs profile shows a peak in activity (1963) between 15.50 and 18.50 cm, giving a 3.1 mm/year sedimentation rate for the past 53 years. The adopted sea level rise scenario was based on a model built with the initial rate of SLR of 2.1 mm/year in 2000 and an acceleration of 0.08 mm/year². Based on the harmonic analysis of Setubal-Tróia tide gauge of 2005 data, the tide model was estimated and used to build the tidal tables to the period 2000-2016. With these tables, the average mean water levels were determined for the same time span. A digital terrain model was created from LIDAR scanning with 2m horizontal resolution (APA-DGT, 2011) and validated with altimetric data obtained with a DGPS-RTK. The response model calculates a new elevation for each pixel of the DTM for 2050 and 2100 based on the sedimentation rates specific of each environment. At this stage, theoretical values were chosen for the high marsh and the mudflat (respectively, equal and double the low marsh rate – 2.92 mm/year). These values will be rectified once sedimentation rates are determined for the other environments. For both projections, the total surface of the marsh decreases: 2% in 2050 and 61% in 2100. Additionally, the high marsh coverage diminishes significantly, indicating a regression in terms of maturity.

Keywords: ¹³⁷Cs, ²¹⁰Pb, saltmarsh, sea level rise, response model

Procedia PDF Downloads 237
6479 Anticancer Effect of Doxorubicin Using Injectable Hydrogel

Authors: Prasamsha Panta, Da Yeon Kim, Ja Yong Jang, Min Jae Kim, Jae Ho Kim, Moon Suk Kim

Abstract:

Introduction: Among the many anticancer drugs used clinically, doxorubicin (Dox), was one of widely used drugs to treat many types of solid tumors such as liver, colon, breast, or lung. Intratumoral injection of chemotherapeutic agents is a potentially more effective alternative to systemic administration because direct delivery of the anticancer drug to the target may improve both the stability and efficacy of anticancer drugs. Injectable in situ-forming gels have attracted considerable attention because they can achieve site specific drug delivery, long term action periods, and improved patient compliance. Objective: Objective of present study is to confirm clinical benefit of intratumoral chemotherapy using injectable in situ-forming poly(ethylene glycol)-b-polycaprolactone diblock copolymer (MP) and Dox with increase in efficacy and reducing the toxicity in patients with cancer diseases. Methods and methodology: We prepared biodegradable MP hydrogel and measured viscosity for the evaluation of thermo-sensitive property. In vivo antitumor activity was performed with normal saline, MP only, single free Dox, repeat free Dox, and Dox-loaded MP gel. The remaining amount of Dox drug was measured using HPLC after the mouse was sacrified. For cytotoxicity studies WST-1 assay was performed. Histological analysis was done with H&E and TUNEL processes respectively. Results: The works in this experiment showed that Dox-loaded MP have biodegradable drug depot property. Dox-loaded MP gels showed remarkable in vitro cytotoxicity activities against cancer cells. Finally, this work indicates that injection of Dox-loaded MP allowed Dox to act effectively in the tumor and induced long-lasting supression of tumor growth. Conclusion: This work has examined the potential clinical utility of intratumorally injected Dox-loaded MP gel, which shows significant effect of higher local Dox retention compared with systemically administered Dox.

Keywords: injectable in-situ forming hydrogel, anticancer, doxorubicin, intratumoral injection

Procedia PDF Downloads 387
6478 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 362
6477 A Matched Case-Control Study to Asses the Association of Chikunguynya Severity among Blood Groups and Other Determinants in Tesseney, Gash Barka Zone, Eritrea

Authors: Ghirmay Teklemicheal, Samsom Mehari, Sara Tesfay

Abstract:

Objectives: A total of 1074 suspected chikungunya cases were reported in Tesseney Province, Gash Barka region, Eritrea, during an outbreak. This study was aimed to assess the possible association of chikungunya severity among ABO blood groups and other potential determinants. Methods: A sex-matched and age-matched case-control study was conducted during the outbreak. For each case, one control subject had been selected from the mild Chikungunya cases. Along the same line of argument, a second control subject had also been designated through which neighborhood of cases were analyzed, scrutinized, and appeared to the scheme of comparison. Time is always the most sacrosanct element in pursuance of any study. According to the temporal calculation, this study was pursued from October 15, 2018, to November 15, 2018. Coming to the methodological dependability, calculating odds ratios (ORs) and conditional (fixed-effect) logistic regression methods were being applied. As a consequence of this, the data was analyzed and construed on the basis of the aforementioned methodological systems. Results: In this outbreak, 137 severe suspected chikungunya cases and 137 mild chikungunya suspected patients, and 137 controls free of chikungunya from the neighborhood of cases were analyzed. Non-O individuals compared to those with O blood group indicated as significant with a p-value of 0.002. Separate blood group comparison among A and O blood groups reflected as significant with a p-value of 0.002. However, there was no significant difference in the severity of chikungunya among B, AB, and O blood groups with a p-value of 0.113 and 0.708, respectively, and a strong association of chikungunya severity was found with hypertension and diabetes (p-value of < 0.0001); whereas, there was no association between chikungunya severity and asthma with a p-value of 0.695 and also no association with pregnancy (p-value =0.881), ventilator (p-value =0.181), air conditioner (p-value = 0.247), and didn’t use latrine and pit latrine (p-value = 0.318), among individuals using septic and pit latrine (p-value = 0.567) and also among individuals using flush and pit latrine (p-value = 0.194). Conclusions: Non- O blood groups were found to be at risk more than their counterpart O blood group individuals with severe form of chikungunya disease. By the same token, individuals with chronic disease were more prone to severe forms of the disease in comparison with individuals without chronic disease. Prioritization is recommended for patients with chronic diseases and non-O blood group since they are found to be susceptible to severe chikungunya disease. Identification of human cell surface receptor(s) for CHIKV is quite necessary for further understanding of its pathophysiology in humans. Therefore, molecular and functional studies will necessarily be helpful in disclosing the association of blood group antigens and CHIKV infections.

Keywords: Chikungunya, Chikungunya virus, disease outbreaks, case-control studies, Eritrea

Procedia PDF Downloads 140
6476 Deep Injection Wells for Flood Prevention and Groundwater Management

Authors: Mohammad R. Jafari, Francois G. Bernardeau

Abstract:

With its arid climate, Qatar experiences low annual rainfall, intense storms, and high evaporation rates. However, the fast-paced rate of infrastructure development in the capital city of Doha has led to recurring instances of surface water flooding as well as rising groundwater levels. Public Work Authority (PWA/ASHGHAL) has implemented an approach to collect and discharge the flood water into a) positive gravity systems; b) Emergency Flooding Area (EFA) – Evaporation, Infiltration or Storage off-site using tankers; and c) Discharge to deep injection wells. As part of the flood prevention scheme, 21 deep injection wells have been constructed to discharge the collected surface and groundwater table in Doha city. These injection wells function as an alternative in localities that do not possess either positive gravity systems or downstream networks that can accommodate additional loads. These injection wells are 400-m deep and are constructed in a complex karstic subsurface condition with large cavities. The injection well system will discharge collected groundwater and storm surface runoff into the permeable Umm Er Radhuma Formation, which is an aquifer present throughout the Persian Gulf Region. The Umm Er Radhuma formation contains saline water that is not being used for water supply. The injection zone is separated by an impervious gypsum formation which acts as a barrier between upper and lower aquifer. State of the art drilling, grouting, and geophysical techniques have been implemented in construction of the wells to assure that the shallow aquifer would not be contaminated and impacted by injected water. Injection and pumping tests were performed to evaluate injection well functionality (injectability). The results of these tests indicated that majority of the wells can accept injection rate of 200 to 300 m3 /h (56 to 83 l/s) under gravity with average value of 250 m3 /h (70 l/s) compared to design value of 50 l/s. This paper presents design and construction process and issues associated with these injection wells, performing injection/pumping tests to determine capacity and effectiveness of the injection wells, the detailed design of collection system and conveying system into the injection wells, and the operation and maintenance process. This system is completed now and is under operation, and therefore, construction of injection wells is an effective option for flood control.

Keywords: deep injection well, flood prevention scheme, geophysical tests, pumping and injection tests, wellhead assembly

Procedia PDF Downloads 102
6475 Electrochemical Performance of Femtosecond Laser Structured Commercial Solid Oxide Fuel Cells Electrolyte

Authors: Mohamed A. Baba, Gazy Rodowan, Brigita Abakevičienė, Sigitas Tamulevičius, Bartlomiej Lemieszek, Sebastian Molin, Tomas Tamulevičius

Abstract:

Solid oxide fuel cells (SOFC) efficiently convert hydrogen to energy without producing any disturbances or contaminants. The core of the cell is electrolyte. For improving the performance of electrolyte-supported cells, it is desirable to extend the available exchange surface area by micro-structuring of the electrolyte with laser-based micromachining. This study investigated the electrochemical performance of cells micro machined using a femtosecond laser. Commercial ceramic SOFC (Elcogen, AS) with a total thickness of 400 μm was structured by 1030 nm wavelength Yb: KGW fs-laser Pharos (Light Conversion) using 100 kHz repetition frequency and 290 fs pulse length light by scanning with the galvanometer scanner (ScanLab) and focused with a f-Theta telecentric lens (SillOptics). The sample height was positioned using a motorized z-stage. The microstructures were formed using a laser spiral trepanning in Ni/YSZ anode supported membrane at the central part of the ceramic piece of 5.5 mm diameter at active area of the cell. All surface was drilled with 275 µm diameter holes spaced by 275 µm. The machining processes were carried out under ambient conditions. The microstructural effects of the femtosecond laser treatment on the electrolyte surface were investigated prior to the electrochemical characterisation using a scanning electron microscope (SEM) Quanta 200 FEG (FEI). The Novo control Alpha-A was used for electrochemical impedance spectroscopy on a symmetrical cell configuration with an excitation amplitude of 25 mV and a frequency range of 1 MHz to 0.1 Hz. The fuel cell characterization of the cell was examined on open flanges test setup by Fiaxell. Using nickel mesh on the anode side and au mesh on the cathode side, the cell was electrically linked. The cell was placed in a Kittec furnace with a Process IDentifier temperature controller. The wires were connected to a Solartron 1260/1287 frequency analyzer for the impedance and current-voltage characterization. In order to determine the impact of the anode's microstructure on the performance of the commercial cells, the acquired results were compared to cells with unstructured anode. Geometrical studies verified that the depth of the -holes increased linearly according to laser energy and scanning times. On the other hand, it reduced as the scanning speed increased. The electrochemical analysis demonstrates that the open circuit voltage OCV values of the two cells are equal. Further, the modified cell's initial slope reduces to 0.209 from 0.253 of the unmodified cell, revealing that the surface modification considerably decreases energy loss. Plus, the maximum power density for the cell with the microstructure and the reference cell respectively, are 1.45 and 1.16 Wcm⁻².

Keywords: electrochemical performance, electrolyte-supported cells, laser micro-structuring, solid oxide fuel cells

Procedia PDF Downloads 49
6474 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition

Authors: D. Kaczorek

Abstract:

Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.

Keywords: concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues

Procedia PDF Downloads 147
6473 Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents

Authors: Suhas Pednekar, Prashant Chavan, Ramesh Chaughule, Deepak Patkar

Abstract:

Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water.

Keywords: cancer drug, hydrodynamic size, magnetic nanoparticles, MRI

Procedia PDF Downloads 469
6472 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies

Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan

Abstract:

The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.

Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping

Procedia PDF Downloads 74
6471 Tunable Optoelectronic Properties of WS₂ by Local Strain Engineering and Folding

Authors: Ahmed Raza Khan

Abstract:

Local-strain engineering is an exciting approach to tune the optoelectronic properties of materials and enhance the performance of devices. Two dimensional (2D) materials such as 2D transition metal dichalcogenides (TMDCs) are particularly well-suited for this purpose because they have high flexibility and can withstand high deformations before rupture. Wrinkles on thick TMDC layers have been reported to show the interesting photoluminescence enhancement due to bandgap modulation and funneling effect. However, the wrinkles in ultrathin TMDCs have not been investigated, because the wrinkles can easily fall down to form folds in these ultrathin layers of TMDCs. Here, we have achieved both wrinkle and fold nano-structures simultaneously on 1-3L WS₂ using a new fabrication technique. The comparable layer dependent reduction in surface potential is observed for both folded layers and corresponding perfect pack layers due to the dominant interlayer screening effect. The strains produced from the wrinkle nanostructures considerably vary semi conductive junction properties. Thermo-ionic modelling suggests that the strained (1.6%) wrinkles can lower the Schottky barrier height (SBH) by 20%. The photo-generated carriers would further significantly lower the SBH. These results present an important advance towards controlling the optoelectronic properties of atomically thin WS₂ using strain engineering, with important implications for practical device applications.

Keywords: strain engineering, folding, WS₂, Kelvin probe force microscopy, KPFM, surface potential, photo current, layer dependence

Procedia PDF Downloads 96
6470 Transverse Behavior of Frictional Flat Belt Driven by Tapered Pulley -Change of Transverse Force Under Driving State–

Authors: Satoko Fujiwara, Kiyotaka Obunai, Kazuya Okubo

Abstract:

A skew is one of important problems for designing the conveyor and transmission with frictional flat belt, in which running belt is deviated in width direction due to the transverse force applied to the belt. The skew often not only degrades the stability of the path of belt but also causes some damages of the belt and auxiliary machines. However, the transverse behavior such as the skew has not been discussed quantitatively in detail for frictional belts. The objective of this study is to clarify the transverse behavior of frictional flat belt driven by tapered pulley. Commercially available rubber flat belt reinforced by polyamide film was prepared as the test belt where the thickness and length were 1.25 mm and 630 mm, respectively. Test belt was driven between two pulleys made of aluminum alloy, where diameter and inter-axial length were 50 mm and 150 mm, respectively. Some tapered pulleys were applied where tapered angles were 0 deg (for comparison), 2 deg, 4 deg, and 6 deg. In order to alternatively investigate the transverse behavior, the transverse force applied to the belt was measured when the skew was constrained at the string under driving state. The transverse force was measured by a load cell having free rollers contacting on the side surface of the belt when the displacement in the belt width direction was constrained. The conditions of observed bending stiffness in-plane of the belt were changed by preparing three types of belts (the width of the belt was 20, 30, and 40 mm) where their observed stiffnesses were changed. The contributions of the bending stiffness in-plane of belt and initial inter-axial force to the transverse were discussed in experiments. The inter-axial force was also changed by setting a distance (about 240 mm) between the two pulleys. Influence of observed bending stiffness in-plane of the belt and initial inter-axial force on the transverse force were investigated. The experimental results showed that the transverse force was increased with an increase of observed bending stiffness in-plane of the belt and initial inter-axial force. The transverse force acting on the belt running on the tapered pulley was classified into multiple components. Those were components of forces applied with the deflection of the inter-axial force according to the change of taper angle, the resultant force by the bending moment applied on the belt winding around the tapered pulley, and the reaction force applied due to the shearing deformation. The calculation result of the transverse force was almost agreed with experimental data when those components were formulated. It was also shown that the most contribution was specified to be the shearing deformation, regardless of the test conditions. This study found that transverse behavior of frictional flat belt driven by tapered pulley was explained by the summation of those components of forces.

Keywords: skew, frictional flat belt, transverse force, tapered pulley

Procedia PDF Downloads 136
6469 Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onyango, Christian Wolkersdorfer

Abstract:

Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated.

Keywords: characterization, nanostructure, nanosorbent, eco-friendly, banana peels, mechanical milling, water quality

Procedia PDF Downloads 260
6468 Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System

Authors: H. Mohit

Abstract:

In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process.

Keywords: cryogenic treatment, corrosion resistance, dimensional stability, materials science

Procedia PDF Downloads 241
6467 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data

Authors: J. Bahrawi, M. Elhag

Abstract:

Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.

Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta

Procedia PDF Downloads 241
6466 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition

Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher

Abstract:

Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.

Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication

Procedia PDF Downloads 280
6465 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 424
6464 Using Photogrammetric Techniques to Map the Mars Surface

Authors: Ahmed Elaksher, Islam Omar

Abstract:

For many years, Mars surface has been a mystery for scientists. Lately with the help of geospatial data and photogrammetric procedures researchers were able to capture some insights about this planet. Two of the most imperative data sources to explore Mars are the The High Resolution Imaging Science Experiment (HiRISE) and the Mars Orbiter Laser Altimeter (MOLA). HiRISE is one of six science instruments carried by the Mars Reconnaissance Orbiter, launched August 12, 2005, and managed by NASA. The MOLA sensor is a laser altimeter carried by the Mars Global Surveyor (MGS) and launched on November 7, 1996. In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images for generating a more accurate and trustful surface of Mars. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. In this project, we employed three different 3D to 2D transformation models. These are the parallel projection (3D affine) transformation model; the extended parallel projection transformation model; the Direct Linear Transformation (DLT) model. A set of tie-points was digitized from both datasets. These points were split into two sets: Ground Control Points (GCPs), used to evaluate the transformation parameters using least squares adjustment techniques, and check points (ChkPs) to evaluate the computed transformation parameters. Results were evaluated using the RMSEs between the precise horizontal coordinates of the digitized check points and those estimated through the transformation models using the computed transformation parameters. For each set of GCPs, three different configurations of GCPs and check points were tested, and average RMSEs are reported. It was found that for the 2D transformation models, average RMSEs were in the range of five meters. Increasing the number of GCPs from six to ten points improve the accuracy of the results with about two and half meters. Further increasing the number of GCPs didn’t improve the results significantly. Using the 3D to 2D transformation parameters provided three to two meters accuracy. Best results were reported using the DLT transformation model. However, increasing the number of GCPS didn’t have substantial effect. The results support the use of the DLT model as it provides the required accuracy for ASPRS large scale mapping standards. However, well distributed sets of GCPs is a key to provide such accuracy. The model is simple to apply and doesn’t need substantial computations.

Keywords: mars, photogrammetry, MOLA, HiRISE

Procedia PDF Downloads 46
6463 Efficient Production of Cell-Adhesive Motif From Human Fibronectin Domains to Design a Bio-Functionalized Scaffold for Tissue Engineering

Authors: Amina Ben Abla, Sylvie Changotade, Geraldine Rohman, Guilhem Boeuf, Cyrine Dridi, Ahmed Elmarjou, Florence Dufour, Didier Lutomski, Abdellatif Elm’semi

Abstract:

Understanding cell adhesion and interaction with the extracellular matrix is essential for biomedical and biotechnological applications, including the development of biomaterials. In recent years, numerous biomaterials have emerged and were used in the field of tissue engineering. Nevertheless, the lack of interaction of biomaterials with cells still limits their bio-integration. Thus, the design of bioactive biomaterials to improve cell attachment and proliferation is of growing interest. In this study, bio-functionalized material was developed combining a synthetic polymer scaffold surface with selected domains of type III human fibronectin (FNIII-DOM) to promote cell adhesion and proliferation. Bioadhesive ligand includes cell-binding domains of human fibronectin, a major ECM protein that interacts with a variety of integrins cell-surface receptors, and ECM proteins through specific binding domains were engineered. FNIII-DOM was produced in bacterial system E. coli in 5L fermentor with a high yield level reaching 20mg/L. Bioactivity of the produced fragment was validated by studying cellular adhesion of human cells. The adsorption and immobilization of FNIII-DOM onto the polymer scaffold were evaluated in order to develop an innovative biomaterial.

Keywords: biomaterials, cellular adhesion, fibronectin, tissue engineering

Procedia PDF Downloads 129
6462 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.

Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content

Procedia PDF Downloads 399