Search results for: computer- supported collaborative learning
8400 The Use of Social Media and Its Impact on the Learning Behavior of ESL University Students for Sustainable Education in Pakistan
Authors: Abdullah Mukhtar, Shehroz Mukhtar, Amina Mukhtar, Choudhry Shahid, Hafiz Raza Razzaq, Saif Ur Rahman
Abstract:
The aim of this study is to find out the negative and positive impacts of social media platforms on the attitude of learning and educational environment of student’s community. Social Media platforms have become a source of collaboration with one another throughout the globe making it a small world. This study performs focalized investigation of the adverse and constructive factors that have a strong impact not only on the psychological adjustments but also on the academic performance of peers. This study is a quantitative research adopting random sampling method in which the participants were the students of university. Researcher distributed 1000 questionnaires among the university students from different departments and asked them to fill the data on Lickert Scale. The participants are from the age group of 18-24 years. Study applies user and gratification theory in order to examine behavior of students practicing social media in their academic and personal life. Findings of the study reveal that the use of social media platforms in Pakistani context has less positive impact as compared to negative impacts on the behavior of students towards learning. The research suggests that usage of online social media platforms should be taught to students; awareness must the created among the users of social media by the means of seminars, workshops and by media itself to overcome the negative impacts of social media leading towards sustainable education in Pakistan.Keywords: social media, positive impact, negative impact, learning behaviour
Procedia PDF Downloads 678399 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 738398 The Effect of Costus igneus Extract on Learning and Memory in Normal and Diabetic Rats
Authors: Shalini Adiga, Shashikant Chetty, Jisha, Shobha Kamath
Abstract:
Background: Moderate impairment of learning and memory has been observed in both type 1 and 2 diabetes mellitus in humans and experimental animals. A Change in glucose utilization and oxidative stress that occur in diabetes are considered the main reasons for cognitive dysfunction. Objective: Costus igneus (CI) which is known to possess hypoglycemic activity was evaluated in this study for its effect on learning and memory in normal and diabetic rats. Methods: Wistar rats were divided into control, CI-alcoholic extract treated normal (250 and 500mg/kg), diabetic control and CI-treated diabetic groups. CI treatment was continued for 4 weeks. For induction of diabetes, a single dose of streptozotocin was injected (30 mg/kg i.p). Entrance latency and time spent in the dark room during acquisition and at 24 and 48h after an aversive shock in a passive avoidance model was used as an index of learning and memory. Glutathione and malondialdehyde levels in brain and blood glucose were measured. Data was analysed using ANOVA. Results: During the three trials in exploration test, the diabetic control rats exhibited no significant change in entrance latency or in the total time spent in the dark compartment. During retention testing, the entrance latency of the diabetic treated groups was two times less at 24h and three times less at 48h after aversive stimulus as compared to diabetic rats. The normal drug-treated rats showed similar behaviour as the saline control. Treatment with CI significantly reduced the raised blood sugar and MDA levels of diabetic rats. Conclusion: Costus igneus prevented the cognitive dysfunction in diabetic rats which can be attributed to its antioxidant and antihyperglycemic activities.Keywords: Costus igneous, diabetes, learning and memory, cognitive dysfunction
Procedia PDF Downloads 3558397 The Size Effects of Keyboards (Keycaps) on Computer Typing Tasks
Authors: Chih-Chun Lai, Jun-Yu Wang
Abstract:
The keyboard is the most important equipment for computer tasks. However, improper design of keyboard would cause some symptoms like ulnar and/or radial deviations. The research goal of this study was to investigate the optimal size(s) of keycaps to increase efficiency. As shown in the questionnaire pre-study with 49 participants aged from 20 to 44, the most commonly used keyboards were 101-key standard keyboards. Most of the keycap sizes (W × L) were 1.3 × 1.5 cm and 1.5 × 1.5 cm. The fingertip breadths of most participants were 1.2 cm. Therefore, in the main study with 18 participants, a standard keyboard with each set of the 3-sized (1.2 × 1.4 cm, 1.3 × 1.5 cm, and 1.5 × 1.5 cm) keycaps was used to investigate their typing efficiency, respectively. The results revealed that the differences between the operating times for using 1.3 × 1.5 cm and 1.2 × 1.4 cm keycaps were insignificant while operating times for using 1.5 × 1.5 cm keycaps were significantly longer than for using 1.2 × 1.4 cm or 1.3 × 1.5 cm, respectively. As for the typing error rate, there was no significant difference.Keywords: keyboard, keycap size, typing efficiency, computer tasks
Procedia PDF Downloads 3858396 Advances of Image Processing in Precision Agriculture: Using Deep Learning Convolution Neural Network for Soil Nutrient Classification
Authors: Halimatu S. Abdullahi, Ray E. Sheriff, Fatima Mahieddine
Abstract:
Agriculture is essential to the continuous existence of human life as they directly depend on it for the production of food. The exponential rise in population calls for a rapid increase in food with the application of technology to reduce the laborious work and maximize production. Technology can aid/improve agriculture in several ways through pre-planning and post-harvest by the use of computer vision technology through image processing to determine the soil nutrient composition, right amount, right time, right place application of farm input resources like fertilizers, herbicides, water, weed detection, early detection of pest and diseases etc. This is precision agriculture which is thought to be solution required to achieve our goals. There has been significant improvement in the area of image processing and data processing which has being a major challenge. A database of images is collected through remote sensing, analyzed and a model is developed to determine the right treatment plans for different crop types and different regions. Features of images from vegetations need to be extracted, classified, segmented and finally fed into the model. Different techniques have been applied to the processes from the use of neural network, support vector machine, fuzzy logic approach and recently, the most effective approach generating excellent results using the deep learning approach of convolution neural network for image classifications. Deep Convolution neural network is used to determine soil nutrients required in a plantation for maximum production. The experimental results on the developed model yielded results with an average accuracy of 99.58%.Keywords: convolution, feature extraction, image analysis, validation, precision agriculture
Procedia PDF Downloads 3208395 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1418394 Representativity Based Wasserstein Active Regression
Authors: Benjamin Bobbia, Matthias Picard
Abstract:
In recent years active learning methodologies based on the representativity of the data seems more promising to limit overfitting. The presented query methodology for regression using the Wasserstein distance measuring the representativity of our labelled dataset compared to the global distribution. In this work a crucial use of GroupSort Neural Networks is made therewith to draw a double advantage. The Wasserstein distance can be exactly expressed in terms of such neural networks. Moreover, one can provide explicit bounds for their size and depth together with rates of convergence. However, heterogeneity of the dataset is also considered by weighting the Wasserstein distance with the error of approximation at the previous step of active learning. Such an approach leads to a reduction of overfitting and high prediction performance after few steps of query. After having detailed the methodology and algorithm, an empirical study is presented in order to investigate the range of our hyperparameters. The performances of this method are compared, in terms of numbers of query needed, with other classical and recent query methods on several UCI datasets.Keywords: active learning, Lipschitz regularization, neural networks, optimal transport, regression
Procedia PDF Downloads 858393 Full-Scale Test of a Causeway Embankment Supported by Raft-Aggregate Column Foundation on Soft Clay Deposit
Authors: Tri Harianto, Lawalenna Samang, St. Hijraini Nur, Arwin
Abstract:
Recently, a port development is constructed in Makassar city, South Sulawesi Province, Indonesia. Makassar city is located in lowland area that dominated by soft marine clay deposit. A two kilometers causeway construction was built which is situated on the soft clay layer. In order to investigate the behavior of causeway embankment, a full-scale test was conducted of high embankment built on a soft clay deposit. The embankment with 3,5 m high was supported by two types of reinforcement such as raft and raft-aggregate column foundation. Since the ground was undergoing consolidation due to the preload, the raft and raft-aggregate column foundations were monitored in order to analyze the vertical ground movement by inducing the settlement of the foundation. In this study, two types of foundation (raft and raft-aggregate column) were tested to observe the effectiveness of raft-aggregate column compare to raft foundation in reducing the settlement. The settlement monitored during the construction stage by using the settlement plates, which is located in the center and toe of the embankment. Measurements were taken every day for each embankment construction stage (4 months). In addition, an analytical calculation was conducted in this study to compare the full-scale test result. The result shows that the raft-aggregate column foundation significantly reduces the settlement by 30% compared to the raft foundation. A raft-aggregate column foundation also reduced the time period of each loading stage. The Good agreement of analytical calculation compared to the full-scale test result also found in this study.Keywords: full-scale, preloading, raft-aggregate column, soft clay
Procedia PDF Downloads 3048392 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5158391 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning
Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim
Abstract:
Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation
Procedia PDF Downloads 998390 Exploring the Use of Universal Design for Learning to Support The Deaf Learners in Lesotho Secondary Schools: English Teachers Voice
Authors: Ntloyalefu Justinah, Fumane Khanare
Abstract:
English learning has been found as one of the prevalent areas of difficulty for Deaf learners. However, studies conducted indicated that this challenge experienced by Deaf learners is an upsetting concern globally as is blamed and hampered by various reasons such as the way English is taught at schools, lack of teachers ' skills and knowledge, therefore, impact negatively on their academic performance. Despite any difficulty in English learning, this language is considered nowadays as the key tool to an educational and occupational career especially in Lesotho. This paper, therefore, intends to contribute to the existing literature by providing the views of Lesotho English teachers, which focuses on how effectively Universal design for learning can be implemented to enhance the academic performance of Deaf learners in context of the English language classroom. The purpose of this study sought to explore the use of universal design for learning (UDL) to support Deaf learners in Lesotho Secondary schools. The present study is informed by interpretative paradigm and situated within a qualitative research approach. Ten participating English teachers from two inclusive schools were purposefully selected and telephonically interviewed to generate data for this study. The data were thematically analysed. The findings indicated that even though UDL is identified as highly proficient and promotes flexibility in teaching methods teachers reflect limited knowledge of the UDL approach. The findings further showed that UDL ensures education for all learners, including marginalised groups, such as learners with disabilities through different teaching strategies. This means that the findings signify the effective use of UDL for the better performance of the English language by Deaf learners (DLs). This aligns with literature that shows mobilizing English teachers as assets help DLs to be engaged and have control in their communities by defining and solving problems using their resources and connections to other networks for asset and exchange. The study, therefore, concludes that teachers acknowledge that even though they assume to be knowledgeable about the definition of UDL, they have a limited practice of the approach, thus they need to be equipped with some techniques and skills to apply for supporting the performance of DLs by using UDL approach in their English teaching. The researchers recommend the awareness of UDL principles by the ministry of Education and Training and teachers training Universities, as well as teachers training colleges, for them to include it in their curricula so that teachers could be properly trained on how to apply it in their teaching effectivelyKeywords: deaf learners, Lesotho, support learning, universal design for learning
Procedia PDF Downloads 1178389 A Positive Neuroscience Perspective for Child Development and Special Education
Authors: Amedeo D'Angiulli, Kylie Schibli
Abstract:
Traditionally, children’s brain development research has emphasized the limitative aspects of disability and impairment, electing as an explanatory model the classical clinical notions of brain lesion or functional deficit. In contrast, Positive Educational Neuroscience (PEN) is a new approach that emphasizes strengths and human flourishing related to the brain by exploring how learning practices have the potential to enhance neurocognitive flexibility through neuroplastic overcompensation. This mini-review provides an overview of PEN and shows how it links to the concept of neurocognitive flexibility. We provide examples of how the present concept of neurocognitive flexibility can be applied to special education by exploring examples of neuroplasticity in the learning domain, including: (1) learning to draw in congenitally totally blind children, and (2) music training in children from disadvantaged neighborhoods. PEN encourages educators to focus on children’s strengths by recognizing the brain’s capacity for positive change and to incorporate activities that support children’s individual development.Keywords: neurocognitive development, positive educational neuroscience, sociocultural approach, special education
Procedia PDF Downloads 2468388 L2 Exposure Environment, Teaching Skills, and Beliefs about Learners’ Out-of-Class Learning: A Survey on Teachers of English as a Foreign Language
Authors: Susilo Susilo
Abstract:
In the process of foreign language acquisition, L2 exposure has been evidently assumed efficient for learners to help increase their proficiency. However, to get enough L2 exposure in the context of learning English as a foreign language is not as easy as that of the first language learning context. Therefore, beyond the classroom L2 exposure is helpful for EFL learners to achieve the language tasks. Alongside the rapid development of technology and media, English as a foreign language is virtually used in the social media of almost all regions, affecting the faces of Teaching English as a Foreign Language (TEFL). This different face of TEFL unavoidably intrigues teachers to treat their students differently in the classroom in order that they can put more effort in maximizing beyond-the-class learning to help improve their in-class achievements. The study aims to investigate: 1) EFL teachers’ teaching skills and beliefs about students’ out-of-class activities in different L2 exposure environments, and 2) the effect on EFL teachers’ teaching skills and beliefs about students’ out-of-class activities of different L2 exposure environments. This is a survey for 80 EFL teachers from Senior High Schools in three regions of two provinces in Indonesia. A questionnaire using a four-point Likert scale was distributed to the respondents to elicit data. The questionnaires were developed by reffering to the constructs of teaching skills (i.e. teaching preparation, teaching action, and teaching evaluation) and beliefs about out-of-class learning (i.e. setting, process and atmosphere), which have been taken from some expert definitions. The internal consistencies for those constructs were examined by using Cronbach Alpha. The data of the study were analyzed by using SPSS program, i.e. descriptive statistics and independent sample t-test. The standard for determining the significance was p < .05. The results revealed that: 1) teaching skills performed by the teachers of English as a foreign language in different exposure environments showed various focus of teaching skills, 2) the teachers showed various ways of beliefs about students’ out-of-class activities in different exposure environments, 3) there was a significant difference in the scores for NNESTs’ teaching skills in urban regions (M=34.5500, SD=4.24838) and those in rural schools (M=24.9500, SD=2.42794) conditions; t (78)=12.408, p = 0.000; and 4) there was a significant difference in the scores for NNESTs’ beliefs about students’ out-of-class activities in urban schools (M=36.9250, SD=6.17434) and those in rural regions (M=29.4250, SD=4.56793) conditions; t (78)=6.176, p = 0.000. These results suggest that different L2 exposure environments really do have effects on teachers’ teaching skills and beliefs about their students’ out-of-class learning.Keywords: belief about EFL out-of-class learning, L2 exposure environment, teachers of English as a foreign language, teaching skills
Procedia PDF Downloads 3438387 Space Weather and Earthquakes: A Case Study of Solar Flare X9.3 Class on September 6, 2017
Authors: Viktor Novikov, Yuri Ruzhin
Abstract:
The studies completed to-date on a relation of the Earth's seismicity and solar processes provide the fuzzy and contradictory results. For verification of an idea that solar flares can trigger earthquakes, we have analyzed a case of a powerful surge of solar flash activity early in September 2017 during approaching the minimum of 24th solar cycle was accompanied by significant disturbances of space weather. On September 6, 2017, a group of sunspots AR2673 generated a large solar flare of X9.3 class, the strongest flare over the past twelve years. Its explosion produced a coronal mass ejection partially directed towards the Earth. We carried out a statistical analysis of the catalogs of earthquakes USGS and EMSC for determination of the effect of solar flares on global seismic activity. New evidence of earthquake triggering due to the Sun-Earth interaction has been demonstrated by simple comparison of behavior of Earth's seismicity before and after the strong solar flare. The global number of earthquakes with magnitude of 2.5 to 5.5 within 11 days after the solar flare has increased by 30 to 100%. A possibility of electric/electromagnetic triggering of earthquake due to space weather disturbances is supported by results of field and laboratory studies, where the earthquakes (both natural and laboratory) were initiated by injection of electrical current into the Earth crust. For the specific case of artificial electric earthquake triggering the current density at a depth of earthquake, sources are comparable with estimations of a density of telluric currents induced by variation of space weather conditions due to solar flares. Acknowledgment: The work was supported by RFBR grant No. 18-05-00255.Keywords: solar flare, earthquake activity, earthquake triggering, solar-terrestrial relations
Procedia PDF Downloads 1518386 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 3518385 ROOP: Translating Sequential Code Fragments to Distributed Code Fragments Using Deep Reinforcement Learning
Authors: Arun Sanjel, Greg Speegle
Abstract:
Every second, massive amounts of data are generated, and Data Intensive Scalable Computing (DISC) frameworks have evolved into effective tools for analyzing such massive amounts of data. Since the underlying architecture of these distributed computing platforms is often new to users, building a DISC application can often be time-consuming and prone to errors. The automated conversion of a sequential program to a DISC program will consequently significantly improve productivity. However, synthesizing a user’s intended program from an input specification is complex, with several important applications, such as distributed program synthesizing and code refactoring. Existing works such as Tyro and Casper rely entirely on deductive synthesis techniques or similar program synthesis approaches. Our approach is to develop a data-driven synthesis technique to identify sequential components and translate them to equivalent distributed operations. We emphasize using reinforcement learning and unit testing as feedback mechanisms to achieve our objectives.Keywords: program synthesis, distributed computing, reinforcement learning, unit testing, DISC
Procedia PDF Downloads 1158384 English for Academic and Specific Purposes: A Corpus-Informed Approach to Designing Vocabulary Teaching Materials
Authors: Said Ahmed Zohairy
Abstract:
Significant shifts in the theory and practice of teaching vocabulary affect teachers’ decisions about learning materials’ design. Relevant literature supports teaching specialised, authentic, and multi-word lexical items rather than focusing on single-word vocabulary lists. Corpora, collections of texts stored in a database, presents a reliable source of teaching and learning materials. Although corpus-informed studies provided guidance for teachers to identify useful language chunks and phraseological units, there is a scarcity in the literature discussing the use of corpora in teaching English for academic and specific purposes (EASP). The aim of this study is to improve teaching practices and provide a description of the pedagogical choices and procedures of an EASP tutor in an attempt to offer guidance for novice corpus users. It draws on the researcher’s experience of utilising corpus linguistic tools to design vocabulary learning activities without focusing on students’ learning outcomes. Hence, it adopts a self-study research methodology which is based on five methodological components suggested by other self-study researchers. The findings of the study noted that designing specialised and corpus-informed vocabulary learning activities could be challenging for teachers, as they require technical knowledge of how to navigate corpora and utilise corpus analysis tools. Findings also include a description of the researcher’s approach to building and analysing a specialised corpus for the benefit of novice corpus users; they should be able to start their own journey of designing corpus-based activities.Keywords: corpora, corpus linguistics, corpus-informed, English for academic and specific purposes, agribusiness, vocabulary, phraseological units, materials design
Procedia PDF Downloads 328383 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ
Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell
Abstract:
This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction
Procedia PDF Downloads 3568382 A Machine Learning Approach for Detecting and Locating Hardware Trojans
Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He
Abstract:
The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.Keywords: hardware trojans, physical properties, machine learning, hardware security
Procedia PDF Downloads 1538381 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms
Authors: Gabriela Steffen
Abstract:
Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism
Procedia PDF Downloads 1658380 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN
Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo
Abstract:
This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.Keywords: PM2.5 forecast, machine learning, convLSTM, DNN
Procedia PDF Downloads 608379 COVID-19 Analysis with Deep Learning Model Using Chest X-Rays Images
Authors: Uma Maheshwari V., Rajanikanth Aluvalu, Kumar Gautam
Abstract:
The COVID-19 disease is a highly contagious viral infection with major worldwide health implications. The global economy suffers as a result of COVID. The spread of this pandemic disease can be slowed if positive patients are found early. COVID-19 disease prediction is beneficial for identifying patients' health problems that are at risk for COVID. Deep learning and machine learning algorithms for COVID prediction using X-rays have the potential to be extremely useful in solving the scarcity of doctors and clinicians in remote places. In this paper, a convolutional neural network (CNN) with deep layers is presented for recognizing COVID-19 patients using real-world datasets. We gathered around 6000 X-ray scan images from various sources and split them into two categories: normal and COVID-impacted. Our model examines chest X-ray images to recognize such patients. Because X-rays are commonly available and affordable, our findings show that X-ray analysis is effective in COVID diagnosis. The predictions performed well, with an average accuracy of 99% on training photographs and 88% on X-ray test images.Keywords: deep CNN, COVID–19 analysis, feature extraction, feature map, accuracy
Procedia PDF Downloads 848378 The Contribution of Vygotsky's Social and Cultural Theory to the Understanding of Cognitive Development
Authors: Salah Eddine Ben Fadhel
Abstract:
Lev Vygotsky (1896–1934) was one of the most significant psychologists of the twentieth century despite his short life. His cultural-historical theory is still inspiring many researchers today. At the same time, we observe in many studies a lack of understanding of his thoughts. Vygotsky poses in this theory the contribution of society to individual development and learning. Thus, it suggests that human learning is largely a social and cultural process, further mentioning the influence of interactions between people and the culture in which they live. In this presentation, we highlight, on the one hand, the strong points of the theory by highlighting the major questions it raises and its contribution to developmental psychology in general. On the other hand, we will demonstrate what Vygotsky's theory brings today to the understanding of the cognitive development of children and adolescents. The major objective is to better understand the cognitive mechanisms involved in the learning process in children and adolescents and, therefore, demonstrate the complex nature of psychological development. The main contribution is to provide conceptual insight, which allows us to better understand the importance of the theory and its major pedagogical implications.Keywords: vygotsky, society, culture, history
Procedia PDF Downloads 708377 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 1478376 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1268375 Hear My Voice: The Educational Experiences of Disabled Students
Authors: Karl Baker-Green, Ian Woolsey
Abstract:
Historically, a variety of methods have been used to access the student voice within higher education, including module evaluations and informal classroom feedback. However, currently, the views articulated in student-staff-committee meetings bear the most weight and can therefore have the most significant impact on departmental policy. Arguably, these forums are exclusionary as several students, including those who experience severe anxiety, might feel unable to participate in this face-to-face (large) group activities. Similarly, students who declare a disability, but are not in possession of a learning contract, are more likely to withdraw from their studies than those whose additional needs have been formally recognised. It is also worth noting that whilst the number of disabled students in Higher Education has increased in recent years, the percentage of those who have been issued a learning contract has decreased. These issues foreground the need to explore the educational experiences of students with or without a learning contract in order to identify their respective aspirations and needs and therefore help shape education policy. This is in keeping with the ‘Nothing about us without us’, agenda, which recognises that disabled individuals are best placed to understand their own requirements and the most effective strategies to meet these.Keywords: education, student voice, student experience, student retention
Procedia PDF Downloads 968374 Cultural Adaptation of an Appropriate Intervention Tool for Mental Health among the Mohawk in Quebec
Authors: Liliana Gomez Cardona, Mary McComber, Kristyn Brown, Arlene Laliberté, Outi Linnaranta
Abstract:
The history of colonialism and more contemporary political issues have resulted in the exposure of Kanien'kehá:ka: non (Kanien'kehá:ka of Kahnawake) to challenging and even traumatic experiences. Colonization, religious missions, residential schools as well as economic and political marginalization are the factors that have challenged the wellbeing and mental health of these populations. In psychiatry, screening for mental illness is often done using questionnaires with which the patient is expected to respond to how often he/she has certain symptoms. However, the Indigenous view of mental wellbeing may not fit well with this approach. Moreover, biomedical treatments do not always meet the needs of Indigenous people because they do not understand the culture and traditional healing methods that persist in many communities. Assess whether the questionnaires used to measure symptoms, commonly used in psychiatry are appropriate and culturally safe for the Mohawk in Quebec. Identify the most appropriate tool to assess and promote wellbeing and follow the process necessary to improve its cultural sensitivity and safety for the Mohawk population. Qualitative, collaborative, and participatory action research project which respects First Nations protocols and the principles of ownership, control, access, and possession (OCAP). Data collection based on five focus groups with stakeholders working with these populations and members of Indigenous communities. Thematic analysis of the data collected and emerging through an advisory group that led a revision of the content, use, and cultural and conceptual relevance of the instruments. The questionnaires measuring psychiatric symptoms face significant limitations in the local indigenous context. We present the factors that make these tools not relevant among Mohawks. Although the scale called Growth and Empowerment Measure (GEM) was originally developed among Indigenous in Australia, the Mohawk in Quebec found that this tool comprehends critical aspects of their mental health and wellbeing more respectfully and accurately than questionnaires focused on measuring symptoms. We document the process of cultural adaptation of this tool which was supported by community members to create a culturally safe tool that helps in growth and empowerment. The cultural adaptation of the GEM provides valuable information about the factors affecting wellbeing and contributes to mental health promotion. This process improves mental health services by giving health care providers useful information about the Mohawk population and their clients. We believe that integrating this tool in interventions can help create a bridge to improve communication between the Indigenous cultural perspective of the patient and the biomedical view of health care providers. Further work is needed to confirm the clinical utility of this tool in psychological and psychiatric intervention along with social and community services.Keywords: cultural adaptation, cultural safety, empowerment, Mohawks, mental health, Quebec
Procedia PDF Downloads 1608373 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment
Authors: Mei-Hui Liu
Abstract:
This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience
Procedia PDF Downloads 2628372 Cognitive and Metacognitive Space in the Task Design at Postgraduate Taught Level
Authors: Mei Lin, Lana Yj Liu, Thin Ngoc Pham
Abstract:
Postgraduate taught (PGT) students’ learning strategies align with what the learning task constitutes and the environment that the task creates. Cognitively, they can discover new perspectives, challenge general assumptions, establish clear connections, and synthesise information. Metacognitively, their engagement is conducive to the development of planning, monitoring, and evaluating strategies. Given that there has been a lack of longitudinal insights into international PGT students’ experiences of the cognitive and metacognitive space created in the tasks, this paper presentation aims to fill the gaps by longitudinally exploring (1) the fundamentals of task designs to create cognitive and metacognitive space and (2) the opportunities and challenges of multicultural group discussions as a pedagogical approach for the implementation of cognitive and metacognitive space in the learning tasks. Data were collected from the two rounds of semi-structured interviews with 11 international PGT students in two programmes at a UK university -at the end of semester one and at the end of semester two. The findings show that the task designs, to create cognitive and metacognitive space, need to include four interconnected factors: clarity, relevance, motivation, and practicality. In addition, international PGT students perceived that they practised and developed their cognitive and metacognitive abilities while getting immersed in multicultural group discussions. The findings, from the learners’ point of view, make some pedagogy-related suggestions to the task designs at the master’s level, particularly how to engage students in learning during their transition into higher education in a different cultural setting.Keywords: cognitive space, master students, metacognitive space, task design
Procedia PDF Downloads 628371 The Emotional Education in the Development of Intercultural Competences
Authors: Montserrrat Dopico Gonzalez, Ramon Lopez Facal
Abstract:
The development of a critical, open and plural citizenship constitutes one of the main challenges of the school institution in the present multicultural societies. Didactics in Social Sciences has conducted important contributions to the development of active methodologies to promote the development of the intercultural competencies of the student body. Research in intercultural education has demonstrated the efficiency of the cooperative learning techniques to improve the intercultural relations in the classroom. Our study proposes to check the effect that, concerning the development of intercultural competencies of the student body, the emotional education can have in the context of the use of active methodologies such as the learning by projects and the cooperative learning. To that purpose, a programme of intervention based on activities focussed on controversial issues related to cultural diversity has been implemented in several secondary schools. Through a methodology which combines intercultural competence scales with interviews and also with the analysis of the school body’s productions, the persistence of stereotypes against immigration and the efficacy of the introduction of emotional education elements in the development of intercultural competencies have both been observed.Keywords: active methodologies, didactics in social sciences, intercultural competences, intercultural education
Procedia PDF Downloads 157