Search results for: state of learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14021

Search results for: state of learning

11141 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 158
11140 Predictive Machine Learning Model for Assessing the Impact of Untreated Teeth Grinding on Gingival Recession and Jaw Pain

Authors: Joseph Salim

Abstract:

This paper proposes the development of a supervised machine learning system to predict the consequences of untreated bruxism (teeth grinding) on gingival (gum) recession and jaw pain (most often bilateral jaw pain with possible headaches and limited ability to open the mouth). As a general dentist in a multi-specialty practice, the author has encountered many patients suffering from these issues due to uncontrolled bruxism (teeth grinding) at night. The most effective treatment for managing this problem involves wearing a nightguard during sleep and receiving therapeutic Botox injections to relax the muscles (the masseter muscle) responsible for grinding. However, some patients choose to postpone these treatments, leading to potentially irreversible and costlier consequences in the future. The proposed machine learning model aims to track patients who forgo the recommended treatments and assess the percentage of individuals who will experience worsening jaw pain, gingival (gum) recession, or both within a 3-to-5-year timeframe. By accurately predicting these outcomes, the model seeks to motivate patients to address the root cause proactively, ultimately saving time and pain while improving quality of life and avoiding much costlier treatments such as full-mouth rehabilitation to help recover the loss of vertical dimension of occlusion due to shortened clinical crowns because of bruxism, gingival grafts, etc.

Keywords: artificial intelligence, machine learning, predictive insights, bruxism, teeth grinding, therapeutic botox, nightguard, gingival recession, gum recession, jaw pain

Procedia PDF Downloads 98
11139 A Phishing Email Detection Approach Using Machine Learning Techniques

Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani

Abstract:

Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.

Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning

Procedia PDF Downloads 344
11138 Unsteady and Steady State in Natural Convection

Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni

Abstract:

This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.

Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady

Procedia PDF Downloads 493
11137 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 119
11136 Nation Building versus Self Determination: Thai State’s Response to Insurgency in South

Authors: Sunaina Sunaina

Abstract:

The emergence of Thailand as a modern nation was amalgamation of several minority groups. Eventually, the nation tried to mitigate these diversities in the name of nationalism in the backdrop of colonial powers presence in neighboring nations. However, the continued imposition of modern nation building processes (which is a western concept) in the post-colonial era deepen the feelings of alienation among the minority groups and leads to separatist conflicts. It is significant that whatever form these conflicts take, will impact the security of nation as well as the region of Southeast Asia. This paper tries to explore the possible factors behind the state policies adopted by the government of Thailand to manage the insurgency in Southern provinces in the south. The protracted insurgency in the South has historical roots as Pattani kingdom had glorious period whether it was trade or commerce or education and its assimilation was never accepted by the leaders of these areas. But after assimilation of southern provinces in the state, it has been the state policy as an important factor in promoting or mitigating the insurgency. Initial protests from the elite class of southern provinces inflated into a more organized and violent uprising after Second World War. It was only the decade of 1990s that a relative peace could prevail for some time. The violence reemerged in 2004 with more intensity and till today this area is suffering with violence. Period of different Prime Ministers dealt this insurgency in different ways sometimes very hard line approach had been adopted especially under Primeminstership of Thaksin Shinawatra. Recently, the peace talks which were started during the period of Yinglunck Shinawatra and were carried forward by Junta government also halted. And again, the region stays in a very volatile state. Violence in these provinces not only questions the capability of government to provide political solution to the problem, but also emerges as a major threat to the internal security of the state. The current era where global terrorism is spreading fast, such vulnerable areas may work as a new ground for its proliferation in Southeast Asia. The paper attempts to understand how Thailand’s historical experience of security determines a different approach to national unity which limits the prospects for autonomy in the South. In conjunction with this experience it is nature of national politics and leadership that influences the nature of policies on the ground in Southern Thailand. The paper also tries to bring out conflict between state sovereignty and self-determination as demanded by many in the southern provinces.

Keywords: insurgency, southern Thailand, security, nation building

Procedia PDF Downloads 130
11135 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 363
11134 Is There a Group of "Digital Natives" at Secondary Schools?

Authors: L. Janská, J. Kubrický

Abstract:

The article describes a research focused on the influence of the information and communication technology (ICT) on the pupils' learning. The investigation deals with the influences that distinguish between the group of pupils influenced by ICT and the group of pupils not influenced by ICT. The group influenced by ICT should evince a different approach in number of areas (in managing of two and more activities at once, in a quick orientation and searching for information on the Internet, in an ability to quickly and effectively assess the data sources, in the assessment of attitudes and opinions of the other users of the network, in critical thinking, in the preference to work in teams, in the sharing of information and personal data via the virtual social networking, in insisting on the immediate reaction on their every action etc.).

Keywords: ICT influence, digital natives, pupil´s learning

Procedia PDF Downloads 295
11133 Gamification Teacher Professional Development: Engaging Language Learners in STEMS through Game-Based Learning

Authors: Karen Guerrero

Abstract:

Kindergarten-12th grade teachers engaged in teacher professional development (PD) on game-based learning techniques and strategies to support teaching STEMSS (STEM + Social Studies with an emphasis on geography across the curriculum) to language learners. Ten effective strategies have supported teaching content and language in tandem. To provide exiting teacher PD on summer and spring breaks, gamification has integrated these strategies to engage linguistically diverse student populations to provide informal language practice while students engage in the content. Teachers brought a STEMSS lesson to the PD, engaged in a wide variety of games (dice, cards, board, physical, digital, etc.), critiqued the games based on gaming elements, then developed, brainstormed, presented, piloted, and published their game-based STEMSS lessons to share with their colleagues. Pre and post-surveys and focus groups were conducted to demonstrate an increase in knowledge, skills, and self-efficacy in using gamification to teach content in the classroom. Provide an engaging strategy (gamification) to support teaching content and language to linguistically diverse students in the K-12 classroom. Game-based learning supports informal language practice while developing academic vocabulary utilized in the game elements/content focus, building both content knowledge through play and language development through practice. The study also investigated teacher's increase in knowledge, skills, and self-efficacy in using games to teach language learners. Mixed methods were used to investigate knowledge, skills, and self-efficacy prior to and after the gamification teacher training (pre/post) and to understand the content and application of developing and utilizing game-based learning to teach. This study will contribute to the body of knowledge in applying game-based learning theories to the K-12 classroom to support English learners in developing English skills and STEMSS content knowledge.

Keywords: gamification, teacher professional development, STEM, English learners, game-based learning

Procedia PDF Downloads 97
11132 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach

Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar

Abstract:

The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.

Keywords: context bases learning, physics teachers, views

Procedia PDF Downloads 378
11131 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 109
11130 Integrated Education at Jazan University: Budding Hope for Employability

Authors: Jayanthi Rajendran

Abstract:

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand a language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

Keywords: consistent language, employability, phonological awareness, balanced curriculum

Procedia PDF Downloads 404
11129 Economic Neoliberalism: Property Right and Redistribution Policy

Authors: Aleksandar Savanović

Abstract:

In this paper we will analyze the relationship between the neo-liberal concept of property rights and redistribution policy. This issue is back in the focus of interest due to the crisis 2008. The crisis has reaffirmed the influence of the state on the free-market processes. The interference of the state with property relations re-opened a classical question: is it legitimate to redistribute resources of a man in favor of another man with taxes? The dominant view is that the neoliberal philosophy of natural rights is incompatible with redistributive measures. In principle, this view can be accepted. However, when we look into the details of the theory of natural rights proposed by some coryphaei of neoliberal philosophy, such as Hayek, Nozick, Buchanan and Rothbard, we can see that it is not such an unequivocal view.

Keywords: economic neoliberalism, natural law, property, redistribution

Procedia PDF Downloads 381
11128 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 345
11127 Improving Taint Analysis of Android Applications Using Finite State Machines

Authors: Assad Maalouf, Lunjin Lu, James Lynott

Abstract:

We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid.

Keywords: android, static analysis, string analysis, taint analysis

Procedia PDF Downloads 186
11126 Human Resources and Business Result: An Empirical Approach Based on RBV Theory

Authors: Xhevrie Mamaqi

Abstract:

Organization capacity learning is a process referring to the sum total of individual and collective learning through training programs, experience and experimentation, among others. Today, in-business ongoing training is one of the most important strategies for human capital development and it is crucial to sustain and improve workers’ knowledge and skills. Many organizations, firms and business are adopting a strategy of continuous learning, encouraging employees to learn new skills continually to be innovative and to try new processes and work in order to achieve a competitive advantage and superior business results. This paper uses the Resource Based View and Capacities (RBV) approach to construct a hypothetical relationships model between training and business results. The test of the model is applied on transversal data. A sample of 266 business of Spanish sector service has been selected. A Structural Equation Model (SEM) is used to estimate the relationship between ongoing training, represented by two latent dimension denominated Human and Social Capital resources and economic business results. The coefficients estimated have shown the efficient of some training aspects explaining the variation in business results.

Keywords: business results, human and social capital resources, training, RBV theory, SEM

Procedia PDF Downloads 304
11125 Review of Studies on Agility in Knowledge Management

Authors: Ferdi Sönmez, Başak Buluz

Abstract:

Agility in Knowledge Management (AKM) tries to capture agility requirements and their respective answers within the framework of knowledge and learning for organizations. Since it is rather a new construct, it is difficult to claim that it has been sufficiently discussed and analyzed in practical and theoretical realms. Like the term ‘agile learning’, it is also commonly addressed in the software development and information technology fields and across the related areas where those technologies can be applied. The organizational perspective towards AKM, seems to need some more time to become scholarly mature. Nevertheless, in the literature one can come across some implicit usages of this term occasionally. This research is aimed to explore the conceptual background of agility in KM, re-conceptualize it and extend it to business applications with a special focus on e-business.

Keywords: knowledge management, agility requirements, agility, knowledge

Procedia PDF Downloads 270
11124 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 275
11123 Chilean Business Orientalism: The Role of Non-State Actors in the Frame of Asymmetric Bilateral Relations

Authors: Pablo Ampuero, Claudia Labarca

Abstract:

The current research paper assesses how the narrative of Chilean businesspeople about China shapes a new Orientalism Analyses on the role of non-state actors in foreign policy that have hitherto theorized about Orientalism as a narrative of hegemonic power. Hence, it has been instrumental to the efforts of imperialist powers to justify their mission civilisatrice. However, such conceptualization can seldom explain new complexities of international interactions at the height of globalization. Hence, we assessed the case of Chile, a small Latin American country, and its relationship with China, its largest trading partner. Through a discourse analysis of interviews with Chilean businesspeople engaged in the Chinese market, we could determine that Chile is building an Orientalist image of China. This new business Orientalism reinforces a relation of alterity based on commercial opportunities, traditional values, and natural dispositions. Hence, the perception of the Chinese Other amongst Chilean business people frames a new set of representations as part of the essentially commercial nature of current bilateral relations. It differs from previous frames, such as the racial bias frame of the early 20th century, or the anti-communist frame in reaction to Mao’s leadership. As in every narrative of alterity, there is not only a construction of the Other but also a definition of the Self. Consequently, this analysis constitutes a relevant case of the role of non-state actors in asymmetrical bilateral relations, where the non-state actors of the minor power build and act upon an Orientalist frame, which is not representative of its national status in the relation. This study emerges as a contribution on the relation amongst non-state actors in asymmetrical relations, where the smaller power’s business class acts on a negative prejudice of its interactions with its counterpart. The research builds upon the constructivist approach to international relations, linking the idea of Nation Branding with Orientalism in the case of Chile-China relations.

Keywords: new business Orientalism, small power, framing, Chile-China relations

Procedia PDF Downloads 330
11122 Challenge in Teaching Physics during the Pandemic: Another Way of Teaching and Learning

Authors: Edson Pierre, Gustavo de Jesus Lopez Nunez

Abstract:

The objective of this work is to analyze how physics can be taught remotely through the use of platforms and software to attract the attention of 2nd-year high school students at Colégio Cívico Militar Professor Carmelita Souza Dias and point out how remote teaching can be a teaching-learning strategy during the period of social distancing. Teaching physics has been a challenge for teachers and students, permeating common sense with the great difficulty of teaching and learning the subject. The challenge increased in 2020 and 2021 with the impact caused by the new coronavirus pandemic (Sars-Cov-2) and its variants that have affected the entire world. With these changes, a new teaching modality emerged: remote teaching. It brought new challenges and one of them was promoting distance research experiences, especially in physics teaching, since there are learning difficulties and it is often impossible for the student to relate the theory observed in class with the reality that surrounds them. Teaching physics in schools faces some difficulties, which makes it increasingly less attractive for young people to choose this profession. Bearing in mind that the study of physics is very important, as it puts students in front of concrete and real situations, situations that physical principles can respond to, helping to understand nature, nourishing and nurturing a taste for science. The use of new platforms and software, such as PhET Interactive Simulations from the University of Colorado at Boulder, is a virtual laboratory that has numerous simulations of scientific experiments, which serve to improve the understanding of the content taught practically, facilitating student learning and absorption of content, being a simple, practical and free simulation tool, attracts more attention from students, causing them to acquire greater knowledge about the subject studied, or even a quiz, bringing certain healthy competitiveness to students, generating knowledge and interest in the themes used. The present study takes the Theory of Social Representations as a theoretical reference, examining the content and process of constructing the representations of teachers, subjects of our investigation, on the evaluation of teaching and learning processes, through a methodology of qualitative. The result of this work has shown that remote teaching was really a very important strategy for the process of teaching and learning physics in the 2nd year of high school. It provided greater interaction between the teacher and the student. Therefore, the teacher also plays a fundamental role since technology is increasingly present in the educational environment, and he is the main protagonist of this process.

Keywords: physics teaching, technologies, remote learning, pandemic

Procedia PDF Downloads 69
11121 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 368
11120 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction

Procedia PDF Downloads 564
11119 A New Learning Automata-Based Algorithm to the Priority-Based Target Coverage Problem in Directional Sensor Networks

Authors: Shaharuddin Salleh, Sara Marouf, Hosein Mohammadi

Abstract:

Directional sensor networks (DSNs) have recently attracted a great deal of attention due to their extensive applications in a wide range of situations. One of the most important problems associated with DSNs is covering a set of targets in a given area and, at the same time, maximizing the network lifetime. This is due to limitation in sensing angle and battery power of the directional sensors. This problem gets more complicated by the possibility that targets may have different coverage requirements. In the present study, this problem is referred to as priority-based target coverage (PTC). As sensors are often densely deployed, organizing the sensors into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set could satisfy coverage requirements of all the targets. Several experiments are conducted to evaluate the performance of the proposed algorithm. The results demonstrated that the algorithms were able to contribute to solving the problem.

Keywords: directional sensor networks, target coverage problem, cover set formation, learning automata

Procedia PDF Downloads 419
11118 Rural School English Teacher Motivational Practice on Facilitating Student Motivation

Authors: Hsiao-Wen Hsu

Abstract:

It is generally believed that the teacher’s use of motivational strategies can enhance student motivation, especially in a place like Taiwan where teacher usually dominates student EFL learning. However, only little empirical studies support this claim. This study examined the connection between teachers’ use of motivational teaching practice and observed student motivated behavior in rural junior high schools in Taiwan. The use of motivational strategies by 12 teachers in five recognized rural junior high schools was investigated observed using a classroom observation instrument, the Motivation Orientation of Language Teaching. Meanwhile, post-lesson teacher evaluations accomplished by both the researcher and the teacher were functioning as part of the measure of teacher motivational practice. The data collected through observation scheme follows the real-time coding principle to examine observable teacher motivational practice and learner motivated behaviors. The results support the previous research findings that teachers’ use of motivational strategies is associated with the student motivated behaviors as well as the students’ level of motivation regarding English learning.

Keywords: English learning, motivational strategies, student motivation, teacher motivational practices

Procedia PDF Downloads 411
11117 Attitude of Youth Farmers to Climate Change Adaptation and Mitigation in Benue State, Nigeria

Authors: Cynthia E. Nwobodo, A. E. Agwu

Abstract:

The study was carried out in Benue State, Nigeria. Multi-stage sampling technique was used to select 120 respondents from two agricultural zones in the State. Data was collected using interview schedule. Descriptive statistics was used in data analysis. Findings showed that youth farmers in the area had positive attitude to climate change adaptation and mitigation as shown by their response to a set of positive and negative statement including: the youth are very important stakeholders in climate change issues (M= 2.91), youths should be encouraged to be climate change conscious (2.90), everybody should be involved in planting trees not just the government (M= 2.89), I will be glad to participate in climate change seminars (M= 2.89) among others. Findings on information seeking behavior indicate that majority (80.8 %) of the respondents sought climate change information from radio at an average of 19.78 times per month, 53.3 % sought from friends and neighbours at an average of 12.55 times per month and 42.5 % sought from family members at an average of 12.55 times per month among others. It was recommended that Youth farmers should be made important stakeholders in climate change policies and programmes since they have a very positive attitude to climate change adaptation and mitigation.

Keywords: adaptation, mitigation, attitude, climate change, youth farmers

Procedia PDF Downloads 653
11116 Fashion and Soft War: Analysis of Iran's Regulatory Measures for Fashion Industry

Authors: Leili Nekounazar

Abstract:

Since 2009, when the Green movement, Iran’s most significant political uprising in post-Islamic revolution materialized, the term 'soft war' has become an integral part of the Iranian regime’s lexicon when addressing the media propaganda waged by the west and the regime’s so-called 'enemies'. Iran’s authorities describe soft war as a western campaign aiming at undermining the revolutionary values by covert activities, deploying cultural tools and purposeful dissemination of information. With this respect, Internet and in particular, the social media networks, and oppositional radio-television broadcasts have been considered as the west’s soft war conduits. With the rising of the underground fashion industry in the past couple of years that does not conform to the compulsory dress codes prescribed by the state, the Islamic regime expands the soft war narrative to include any undesired fashion-related activities and frames the rising fashion industry as a cultural war intoxicating the Iranian-Islamic identity. Accordingly, fashion products created by the Iranian fashion intermediators have been attributed to the westerners and outsiders and are regarded as the matter of national security. This study examines the reactive and proactive measures deployed by the Iranian regime to control the rise of fashion industry. It further puts under the scrutiny how the state as a part of its proactive measure shapes the narrative of 'soft war' in relation to fashion in Iran and explores how the notion of soft war has been articulated in relation to the modeling and fashion in the state’s political rhetoric. Through conducting a content analysis of the authorities’ statements, it describes how the narrative of soft war assists the state policing the fashion industry.

Keywords: censorship, fashion, Iran, soft war

Procedia PDF Downloads 348
11115 Teachers' and Learners' ICT-Readiness Assessment for Agricultural Science Instruction in Secondary Schools in Ogun State, Nigeria

Authors: A. Olusegun Egunjobi, Samson Sunday Adekunte

Abstract:

This study investigated the teachers’ and learners’ ICT-readiness assessment for agricultural science instruction in secondary schools in Ogun State, Nigeria. However, the sample population of 6 and 120 agricultural science teachers and learners were randomly selected respectively from 3 public and 3 private senior secondary schools in Ado-Odo/Ota Local Government Area of Ogun State, Nigeria. Descriptive survey design of ex post-facto type was adopted for the study. Two structured questionnaires tagged Teachers’ and Learners’ Questionnaires on ICT-Readiness for Agricultural Science Instruction TQICTRASI and LQICTRASI respectively were used for data collection. The two questionnaires were subjected to Cronbach alpha coefficient with the results 0.86 and 0.82 respectively. Five research hypotheses were tested at 0.05 level of significance. Findings revealed that teachers in private senior secondary school (SSS) were more ready and prepared than their counterparts in public SSS with the result t-value = 4.25 greater than t-critical = 2.77, df = 4 at p<0.05. Also, learners in private SSS were more prepared and ready for the utilisation of ICT-facilities for agricultural science instruction with the result t-value = 3.51 greater than t-critical = 1.98, df = 118 at p<0.05. However, male and female learners in both private and public SSS were equally prepared and ready for the ICT-facilities utilisation for agricultural science instruction, thus, there were no significant differences in their ICT-readiness. Therefore, the study proffered that, both male and female teachers and learners should be more ICT-compliant and always ready to upgrade their skills and knowledge in ICT-facilities, utilisation for agricultural science instruction and even for other school subjects particularly in Ogun State and in generally in Nigeria.

Keywords: ICT-readiness, teachers’ and learners’ assessment, private and public senior secondary schools, agricultural science instruction

Procedia PDF Downloads 376
11114 Teachers' Design and Implementation of Collaborative Learning Tasks in Higher Education

Authors: Bing Xu, Kerry Lee, Jason M. Stephen

Abstract:

Collaborative learning (CL) has been regarded as a way to facilitate students to gain knowledge and improve social skills. In China, lecturers in higher education institutions have commonly adopted CL in their daily practice. However, such a strategy could not be effective when it is designed and applied in an inappropriate way. Previous research hardly focused on how CL was applied in Chinese universities. This present study aims to gain a deep understanding of how Chinese lecturers design and implement CL tasks. The researchers interviewed ten lecturers from different faculties in various universities in China and usedGroup Learning Activity Instructional Design (GLAID) framework to analyse the data. We found that not all lecturers pay enough attention to eight essential components (proposed by GLAID) when they designed CL tasks, especially the components of Structure and Guidance. Meanwhile, only a small part of lecturers made formative assessment to help students improve learning. We also discuss the strengths and limitations and CL design and further provide suggestions to the lecturers who intend to use CL in class. Research Objectives: The aims of the present research are threefold. We intend to 1) gain a deep understanding of how Chinese lecturers design and implement collaborative learning (CL) tasks, 2) find strengths and limitations of CL design in higher education, and 3) give suggestions about how to improve the design and implement. Research Methods: This research adopted qualitative methods. We applied the semi-structured interview method to interview ten Chinese lecturers about how they designed and implemented CL tasks in their courses. There were 9 questions in the interview protocol focusing on eight components of GLAID. Then, underpinning the GLAID framework, we utilized the coding reliability thematic analysis method to analyse the research data. The coding work was done by two PhD students whose research fields are CL, and the Cohen’s Kappa was 0.772 showing the inter-coder reliability was good. Contribution: Though CL has been commonly adopted in China, few studies have paid attention to the details about how lecturers designed and implemented CL tasks in practice. This research addressed such a gap and found not lecturers were aware of how to design CL and felt it difficult to structure the task and guide the students on collaboration, and further ensure student engagement in CL. In summary, this research advocates for teacher training; otherwise, students may not gain the expected learning outcomes.

Keywords: collaborative learning, higher education, task design, GLAID framework

Procedia PDF Downloads 102
11113 Development of National Education Policy-2020 Aligned Student-Centric-Outcome-Based-Curriculum of Engineering Programmes of Polytechnics in India: Faculty Preparedness and Challenges Ahead

Authors: Jagannath P. Tegar

Abstract:

The new National Education Policy (NEP) 2020 of Govt. of India has envisaged a major overhaul of the education system of India, in particular, the revamping of the Curriculum of Higher Education. In this process, the faculty members of the Indian universities and institutions have a challenging role in developing the curriculum, which is a shift from the traditional (content-based) curriculum to a student-centric- outcome-based Curriculum (SC-OBC) to be implemented in all of the Universities and institutions. The efforts and initiatives on the design and implementation of SC-OBC are remarkable in the engineering and technical education landscape of the country, but it is still in its early stages and many more steps are needed for the successful adaptation in every level of Higher Education. The premier institute of Govt. of India (NITTTR, Bhopal) has trained and developed the capacity and capability among the teachers of Polytechnics on the design and development of Student Centric - Outcome Based Curriculum and also providing academic consultancy for reforming curriculum in line of NEP- 2020 envisions for the states such as Chhattisgarh, Bihar and Maharashtra to make them responsibly ready for such a new shift in Higher Education. This research-based paper is on three main aspects: 1) the level of acceptance and preparedness of teachers /faculty towards NEP-2020 and student-centred outcome-based learning. 2) the extent of implementing NEP-2020 and student-centered outcome-based learning at Indian institutions/ universities and 3) the challenges of implementing NEP-2020 and student-centered outcome-based learning outcome-based education in the Indian context. The paper content will inspire curriculum designers and developers to prepare SC-OBC that meets the specific needs of industry and society at large, which is intended in the NEP-2020 of Govt. of India

Keywords: outcome based curriculum, student centric learning, national education policy -2020, implementation of nep-2020. outcome based learning, higher education curriculum

Procedia PDF Downloads 84
11112 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview

Authors: Yasmeen Cheema, Parvinder Singh

Abstract:

The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.

Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack

Procedia PDF Downloads 233