Search results for: e2e reliability prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4117

Search results for: e2e reliability prediction

1237 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion

Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy

Abstract:

The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.

Keywords: chemical composition, dual-energy computed tomography, inversion algorithm

Procedia PDF Downloads 439
1236 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 422
1235 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 411
1234 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 106
1233 A Convolutional Neural Network-Based Model for Lassa fever Virus Prediction Using Patient Blood Smear Image

Authors: A. M. John-Otumu, M. M. Rahman, M. C. Onuoha, E. P. Ojonugwa

Abstract:

A Convolutional Neural Network (CNN) model for predicting Lassa fever was built using Python 3.8.0 programming language, alongside Keras 2.2.4 and TensorFlow 2.6.1 libraries as the development environment in order to reduce the current high risk of Lassa fever in West Africa, particularly in Nigeria. The study was prompted by some major flaws in existing conventional laboratory equipment for diagnosing Lassa fever (RT-PCR), as well as flaws in AI-based techniques that have been used for probing and prognosis of Lassa fever based on literature. There were 15,679 blood smear microscopic image datasets collected in total. The proposed model was trained on 70% of the dataset and tested on 30% of the microscopic images in avoid overfitting. A 3x3x3 convolution filter was also used in the proposed system to extract features from microscopic images. The proposed CNN-based model had a recall value of 96%, a precision value of 93%, an F1 score of 95%, and an accuracy of 94% in predicting and accurately classifying the images into clean or infected samples. Based on empirical evidence from the results of the literature consulted, the proposed model outperformed other existing AI-based techniques evaluated. If properly deployed, the model will assist physicians, medical laboratory scientists, and patients in making accurate diagnoses for Lassa fever cases, allowing the mortality rate due to the Lassa fever virus to be reduced through sound decision-making.

Keywords: artificial intelligence, ANN, blood smear, CNN, deep learning, Lassa fever

Procedia PDF Downloads 122
1232 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization

Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar

Abstract:

Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.

Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method

Procedia PDF Downloads 59
1231 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics

Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar

Abstract:

Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.

Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic

Procedia PDF Downloads 51
1230 Convertible Lease, Risky Debt and Financial Structure with Growth Option

Authors: Ons Triki, Fathi Abid

Abstract:

The basic objective of this paper is twofold. It resides in designing a model for a contingent convertible lease contract that can ensure the financial stability of a company and recover the losses of the parties to the lease in the event of default. It also aims to compare the convertible lease contract on inefficiencies resulting from the debt-overhang problem and asset substitution with other financing policies. From this perspective, this paper highlights the interaction between investments and financing policies in a dynamic model with existing assets and a growth option where the investment cost is financed by a contingent convertible lease and equity. We explore the impact of the contingent convertible lease on the capital structure. We also check the reliability and effectiveness of the use of the convertible lease contract as a means of financing. Findings show that the rental convertible contract with a sufficiently high conversion ratio has less severe inefficiencies arising from risk-shifting and debt overhang than those entailed by risky debt and pure-equity financing. The problem of underinvestment pointed out by Mauer and Ott (2000) and the problem of overinvestment mentioned by Hackbarth and Mauer (2012) may be reduced under contingent convertible lease financing. Our findings predict that the firm value under contingent convertible lease financing increases globally with asset volatility instead of decreasing with business risk. The study reveals that convertible leasing contracts can stand for a reliable solution to ensure the lessee and quickly recover the counterparties of the lease upon default.

Keywords: contingent convertible lease, growth option, debt overhang, risk-shifting, capital structure

Procedia PDF Downloads 73
1229 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (Rsm)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarse-aggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: mix proportioning, response surface methodology, compressive strength, optimal design

Procedia PDF Downloads 269
1228 Determining the Relationship Between Maternal Stress and Depression and Child Obesity: The Mediating Role of Maternal Self-efficacy

Authors: Alireza Monzavi Chaleshtori, Mahnaz Aliakbari Dehkordi, Maryam Aliakbari, Solmaz Seyed Mostafaii

Abstract:

Objective: Considering the growing obesity among children and the role of mother's psychological factors as well as the need to prevent childhood obesity, this study aimed to investigate the mediating role of mother's self-efficacy in the relationship between mother's stress and depression and child obesity. Method: For this purpose, in a descriptive-correlation study, 222 mothers and children aged 1 to 5 years in Tehran, who had the opportunity to answer an online questionnaire, were selected by random sampling and to the depression scales of the Kroenke and Spitzer Patient Health Questionnaire, Cohen's stress and Self-efficacy of Berkeley mothers answered. Pearson correlation test and path analysis were used for data analysis. Findings: The findings showed that maternal depression had an indirect and significant effect on child obesity, and the effect of stress and depression on child obesity was indirect and non-significant. Therefore, the model has a good fit with the research data, and stress and depression indirectly predicted child obesity with the mediating role of self-efficacy. Conclusion: The hypothesized model tested based on mother's stress and depression with the mediating role of mother's self-efficacy was a good model in explaining the prediction of child obesity. Based on the findings of this research, a practical framework can be provided to explain the psychological factors of the mother in relation to child obesity and its treatment.

Keywords: stress, self-efficacy, child obesity, depression

Procedia PDF Downloads 75
1227 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
1226 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques

Authors: Edwin Javier Cortes, Surupa Shaw

Abstract:

In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.

Keywords: flow control, efficiency, passive control, active control

Procedia PDF Downloads 72
1225 Dielectric Properties of Mineral Oil Blended with Soyabean Oil for Power Transformers: A Laboratory Investigation

Authors: Deepa S N, Srinivasan a D, Veeramanju K T

Abstract:

The power transformer is a critical equipment in the transmission and distribution network that must be managed to ensure uninterrupted power service. The liquid insulation is essential for the proper functioning of the transformer, as it serves as both coolant and insulating medium, which influences the transformer’s durability. Further, the insulating state of a power transformer has a significant impact on its reliability. Mineral oil derived from petroleum crude oil has been employed as liquid dielectrics for decades due to its superior functional characteristics, however as a resource for the same are getting depleted over the years. Research is undertaken across the globe to identify a viable substitute for mineral oil. Further, alternate insulating oils are being investigated for better environmental impact, biodegradability and economics. Several combinations of vegetable oil derived natural esters are being inspected by researchers across the globe in these domains. In this work, mineral oil is blended with soyabean oil with various proportions and dielectric properties such as dielectric breakdown voltage, relative permittivity, dissipation factor, viscosity, flash and fire point have been investigated according to international standards. A quantitative comparison is made among various samples and is observed that the blended oil sample of equal proportion of mineral oil and soyabean oil, MO50+SO50 exhibits superior dielectric properties such as breakdown voltage of 65kV, dissipation factor of 0.0044, relative permittivity of 3.1680 that are closer to the range of values recommended for power transformer applications. Also, Breakdown voltage values of all the investigated oil samples obeyed the Weibull and Normal probability distribution.

Keywords: blended oil, dielectric breakdown, liquid insulation, power transformer

Procedia PDF Downloads 93
1224 Composite Approach to Extremism and Terrorism Web Content Classification

Authors: Kolade Olawande Owoeye, George Weir

Abstract:

Terrorism and extremism activities on the internet are becoming the most significant threats to national security because of their potential dangers. In response to this challenge, law enforcement and security authorities are actively implementing comprehensive measures by countering the use of the internet for terrorism. To achieve the measures, there is need for intelligence gathering via the internet. This includes real-time monitoring of potential websites that are used for recruitment and information dissemination among other operations by extremist groups. However, with billions of active webpages, real-time monitoring of all webpages become almost impossible. To narrow down the search domain, there is a need for efficient webpage classification techniques. This research proposed a new approach tagged: SentiPosit-based method. SentiPosit-based method combines features of the Posit-based method and the Sentistrenght-based method for classification of terrorism and extremism webpages. The experiment was carried out on 7500 webpages obtained through TENE-webcrawler by International Cyber Crime Research Centre (ICCRC). The webpages were manually grouped into three classes which include the ‘pro-extremist’, ‘anti-extremist’ and ‘neutral’ with 2500 webpages in each category. A supervised learning algorithm is then applied on the classified dataset in order to build the model. Results obtained was compared with existing classification method using the prediction accuracy and runtime. It was observed that our proposed hybrid approach produced a better classification accuracy compared to existing approaches within a reasonable runtime.

Keywords: sentiposit, classification, extremism, terrorism

Procedia PDF Downloads 281
1223 Size Effect on Shear Strength of Slender Reinforced Concrete Beams

Authors: Subhan Ahmad, Pradeep Bhargava, Ajay Chourasia

Abstract:

Shear failure in reinforced concrete beams without shear reinforcement leads to loss of property and life since a very little or no warning occurs before failure as in case of flexural failure. Shear strength of reinforced concrete beams decreases as its depth increases. This phenomenon is generally called as the size effect. In this paper, a comparative analysis is performed to estimate the performance of shear strength models in capturing the size effect of reinforced concrete beams made with conventional concrete, self-compacting concrete, and recycled aggregate concrete. Four shear strength models that account for the size effect in shear are selected from the literature and applied on the datasets of slender reinforced concrete beams. Beams prepared with conventional concrete, self-compacting concrete, and recycled aggregate concrete are considered for the analysis. Results showed that all the four models captured the size effect in shear effectively and produced conservative estimates of the shear strength for beams made with normal strength conventional concrete. These models yielded unconservative estimates for high strength conventional concrete beams with larger effective depths ( > 450 mm). Model of Bazant and Kim (1984) captured the size effect precisely and produced conservative estimates of shear strength of self-compacting concrete beams at all the effective depths. Also, shear strength models considered in this study produced unconservative estimates of shear strength for recycled aggregate concrete beams at all effective depths.

Keywords: reinforced concrete beams; shear strength; prediction models; size effect

Procedia PDF Downloads 162
1222 Success Factors for Innovations in SME Networks

Authors: J. Gochermann

Abstract:

Due to complex markets and products, and increasing need to innovate, cooperation between small and medium size enterprises arose during the last decades, which are not prior driven by process optimization or sales enhancement. Especially small and medium sized enterprises (SME) collaborate increasingly in innovation and knowledge networks to enhance their knowledge and innovation potential, and to find strategic partners for product and market development. These networks are characterized by dual objectives, the superordinate goal of the total network, and the specific objectives of the network members, which can cause target conflicts. Moreover, most SMEs do not have structured innovation processes and they are not accustomed to collaborate in complex innovation projects in an open network structure. On the other hand, SMEs have suitable characteristics for promising networking. They are flexible and spontaneous, they have flat hierarchies, and the acting people are not anonymous. These characteristics indeed distinguish them from bigger concerns. Investigation of German SME networks have been done to identify success factors for SME innovation networks. The fundamental network principles, donation-return and confidence, could be confirmed and identified as basic success factors. Further factors are voluntariness, adequate number of network members, quality of communication, neutrality and competence of the network management, as well as reliability and obligingness of the network services. Innovation and knowledge networks with an appreciable number of members from science and technology institutions need also active sense-making to bring different disciplines into successful collaboration. It has also been investigated, whether and how the involvement in an innovation network impacts the innovation structure and culture inside the member companies. The degree of reaction grows with time and intensity of commitment.

Keywords: innovation and knowledge networks, SME, success factors, innovation structure and culture

Procedia PDF Downloads 284
1221 Light-Weight Network for Real-Time Pose Estimation

Authors: Jianghao Hu, Hongyu Wang

Abstract:

The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).

Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone

Procedia PDF Downloads 155
1220 The Availability Degree of Transformational Leadership Dimensions among Heads of Scientific Departments in the Education Faculty at King Saud University

Authors: Yahya Al-Gabri

Abstract:

This study aimed to identify the availability degree of transformational leadership dimensions among heads of scientific departments in the Education Faculty at King Saud University. It also aimed to identify the degree of opinions divergence of the study sample on the availability degree of transformational leadership dimensions among the department heads according to the variable of scientific rank. The researcher used the descriptive approach. The study sample consisted of (34) members of education faculty which chosen randomly. To collect the data, the researcher developed a questionnaire consisting of (47) items distributed on four areas after ensuring validity and reliability. Results showed that the degree of practicing the dimensions of transformational leadership by the heads of scientific departments was medium and the mean was (3.21). The dimension of Individualized consideration came first and had a high degree of availability with a mean of (3.31) and the dimension of idealized influence came secondly and had a medium degree (near of high) of availability with a mean of (3.25), also and the dimension of inspirational motivation came thirdly and had a medium degree of availability with a mean of (3.16), whereas the dimension of intellectual stimulation came finally and had a medium degree of availability with a mean of (3.13). The study also showed that there are no statistically significant differences at the level of significance (0.05) in the availability degree of transformational leadership dimensions among the heads of scientific departments at the Faculty of Education according to the scientific rank variable. Finally, the researcher made a number of recommendations and suggestions.

Keywords: transformational leadership, heads of scientific departments, individualized consideration, idealized influence, inspirational motivation, intellectual stimulation

Procedia PDF Downloads 156
1219 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 98
1218 Development of GIS-Based Geotechnical Guidance Maps for Prediction of Soil Bearing Capacity

Authors: Q. Toufeeq, R. Kauser, U. R. Jamil, N. Sohaib

Abstract:

Foundation design of a structure needs soil investigation to avoid failures due to settlements. This soil investigation is expensive and time-consuming. Developments of new residential societies involve huge leveling of large sites that is accompanied by heavy land filling. Poor practices of land fill for deep depths cause differential settlements and consolidations of underneath soil that sometimes result in the collapse of structures. The extent of filling remains unknown to the individual developer unless soil investigation is carried out. Soil investigation cannot be performed on each available site due to involved costs. However, fair estimate of bearing capacity can be made if such tests are already done in the surrounding areas. The geotechnical guidance maps can provide a fair assessment of soil properties. Previously, GIS-based approaches have been used to develop maps using extrapolation and interpolations techniques for bearing capacities, underground recharge, soil classification, geological hazards, landslide hazards, socio-economic, and soil liquefaction mapping. Standard penetration test (SPT) data of surrounding sites were already available. Google Earth is used for digitization of collected data. Few points were considered for data calibration and validation. Resultant Geographic information system (GIS)-based guidance maps are helpful to anticipate the bearing capacity in the real estate industry.

Keywords: bearing capacity, soil classification, geographical information system, inverse distance weighted, radial basis function

Procedia PDF Downloads 137
1217 Predicting of Hydrate Deposition in Loading and Offloading Flowlines of Marine CNG Systems

Authors: Esam I. Jassim

Abstract:

The main aim of this paper is to demonstrate the prediction of the model capability of predicting the nucleation process, the growth rate, and the deposition potential of second phase particles in gas flowlines. The primary objective of the research is to predict the risk hazards involved in the marine transportation of compressed natural gas. However, the proposed model can be equally used for other applications including production and transportation of natural gas in any high-pressure flow-line. The proposed model employs the following three main components to approach the problem: computational fluid dynamics (CFD) technique is used to configure the flow field; the nucleation model is developed and incorporated in the simulation to predict the incipient hydrate particles size and growth rate; and the deposition of the gas/particle flow is proposed using the concept of the particle deposition velocity. These components are integrated in a comprehended model to locate the hydrate deposition in natural gas flowlines. The present research is prepared to foresee the deposition location of solid particles that could occur in a real application in Compressed Natural Gas loading and offloading. A pipeline with 120 m length and different sizes carried a natural gas is taken in the study. The location of particle deposition formed as a result of restriction is determined based on the procedure mentioned earlier and the effect of water content and downstream pressure is studied. The critical flow speed that prevents such particle to accumulate in the certain pipe length is also addressed.

Keywords: hydrate deposition, compressed natural gas, marine transportation, oceanography

Procedia PDF Downloads 491
1216 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission

Authors: V. Mentl, V. Koula, P. Mazal, J. Volák

Abstract:

Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.

Keywords: fatigue, crack growth rate, acoustic emission, material damage

Procedia PDF Downloads 373
1215 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 125
1214 Shear Stress and Effective Structural Stress ‎Fields of an Atherosclerotic Coronary Artery

Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis

Abstract:

A three-dimensional numerical model of an atherosclerotic coronary ‎artery is developed for the determination of high-risk situation and ‎hence heart attack prediction. Employing the finite element method ‎‎(FEM) using ANSYS, fluid-structure interaction (FSI) model of the ‎artery is constructed to determine the shear stress distribution as well ‎as the von Mises stress field. A flexible model for an atherosclerotic ‎coronary artery conveying pulsatile blood is developed incorporating ‎three-dimensionality, artery’s tapered shape via a linear function for ‎artery wall distribution, motion of the artery, blood viscosity via the ‎non-Newtonian flow theory, blood pulsation via use of one-period ‎heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity ‎via the Prony series shear relaxation scheme, and micro-calcification ‎inside the plaque. The material properties used to relate the stress field ‎to the strain field have been extracted from clinical data from previous ‎in-vitro studies. The determined stress fields has potential to be used as ‎a predictive tool for plaque rupture and dissection.‎ The results show that stress concentration due to micro-calcification ‎increases the von Mises stress significantly; chance of developing a ‎crack inside the plaque increases. Moreover, the blood pulsation varies ‎the stress distribution substantially for some cases.‎

Keywords: atherosclerosis, fluid-structure interaction‎, coronary arteries‎, pulsatile flow

Procedia PDF Downloads 175
1213 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: crack initiation, fatigue reliability, inspection planning, welded joints

Procedia PDF Downloads 354
1212 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 80
1211 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review

Authors: Rajkumar Ghosh

Abstract:

The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.

Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements

Procedia PDF Downloads 88
1210 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities

Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson

Abstract:

Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.

Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport

Procedia PDF Downloads 226
1209 Relationship between Strategic Management and Organizational Culture in Sport Organization (Case Study: Selected Sport Federations of Islamic Republic of Iran)

Authors: Mohammad Ali Ghareh, Habib Honari, Alireza Ahmadi

Abstract:

The aim of this study was to investigate the relationship between strategic management and organizational culture in sport federations of Islamic Republic of Iran. Strategic management is a set of decisions and actions which define the long term performance of an organization. Organizational culture can be considered as an identity for every organization and somehow gives an identification to organization members. Organizational culture result in a certain commitments in organization members which is more valuable than individual profits and interests. The method of research was descriptive and correlational, conducted as a field study. The statistical population consisted of the employees of 10 sports federations and 170 persons were selected as sample. For data gathering, Barringer and Bluedorn’s strategic management questionnaire (1999) and Sakyn’s organizational culture questionnaire (2001) were used. The reliability of the questionnaires were 0.82 and 0.80 respectively, and the validity was approved by 8 experienced professors in sport management. To analyze data, KS (Kolmogorov–Smirnov) test and Pearson's coefficient were used. The results have shown that there is a significant meaningful relationship between strategic management and organizational culture (p < 0.05, r= 0.62). Beside this, there is a positive relationship between strategic management variables including scanning intensity, planning flexibility, locus of planning, planning horizon, strategic controls, and organizational culture (p < 0.05). Based on this research result it can be derived that strategic management planning and operation in terms of appropriate organizational culture is more applicable. By agreeing on their values and beliefs, adaptation to changes, caring about the individualities, coordination in tasks, modifying the individual and organizational goals, the federations will be able to achieve their strategic goals.

Keywords: strategic management, organizational culture, sports federations, Islamic Republic of Iran

Procedia PDF Downloads 376
1208 Perceived Determinants of Obesity among Primary School Pupils in Eti Osa Local Government Area of Lagos State, Nigeria

Authors: B. O. Diyaolu, E. A. Okebanjo

Abstract:

Children in today’s world need attention and care even with their physique as obesity is also at the increased. Several factors can be responsible for obesity in children and adequate attention is paramount in other not to accommodate it into adolescent period. This study investigated perceived determinants of obesity among primary school pupils in Eti Osa Local Government area of Lagos State. Descriptive survey research design was used and population was all obese pupils in Eti Osa Local Government Area of Lagos State. 92 pupils were selected from randomly picked 12 primary schools while purposive sampling technique was used to pick primary 4-6 pupils. With the aid of body mass index (BMI) and age percentile chart the obese pupils were selected. The instrument for the study was a self-developed and structured questionnaire on perceived determinant of obesity. The questionnaire was divided into three sections. The Cronbach’s Alpha reliability coefficient of 0.74 was obtained. The hypotheses were tested at 0.05 significant levels. The completed questionnaire was collated coded and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that physical activities and parental influences were determinant of obesity. Physical activity is essential in reducing the rate of obesity in Eti Osa Local Government Area both at home and within the school environment. Primary schools need to create more playing ground for pupils to exercise themselves. Parents need to cater for their children diet ensuring not just the quantity but the quality as well.

Keywords: feeding pattern, obese pupils, parental influence, physical activities

Procedia PDF Downloads 147