Search results for: virtual hands-on learning
5241 Instructional Design Strategy Based on Stories with Interactive Resources for Learning English in Preschool
Authors: Vicario Marina, Ruiz Elena, Peredo Ruben, Bustos Eduardo
Abstract:
the development group of Educational Computing of the National Polytechnic (IPN) in Mexico has been developing interactive resources at preschool level in an effort to improve learning in the Child Development Centers (CENDI). This work describes both a didactic architecture and a strategy for teaching English with digital stories using interactive resources available through a Web repository designed to be used in mobile platforms. It will be accessible initially to 500 children and worldwide by the end of 2015.Keywords: instructional design, interactive resources, digital educational resources, story based English teaching, preschool education
Procedia PDF Downloads 4725240 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1685239 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching
Authors: Mohammed Shaath
Abstract:
Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.Keywords: TEL, orthodontic, teaching, traditional
Procedia PDF Downloads 425238 Impact of Blended Learning in Interior Architecture Programs in Academia: A Case Study of Arcora Garage Academy from Turkey
Authors: Arzu Firlarer, Duygu Gocmen, Gokhan Uysal
Abstract:
There is currently a growing trend among universities towards blended learning. Blended learning is becoming increasingly important in higher education, with the aims of better accomplishing course learning objectives, meeting students’ changing needs and promoting effective learning both in a theoretical and practical dimension like interior architecture discipline. However, the practical dimension of the discipline cannot be supported in the university environment. During the undergraduate program, the practical training which is tried to be supported by two different internship programs cannot fully meet the requirements of the blended learning. The lack of education program frequently expressed by our graduates and employers is revealed in the practical knowledge and skills dimension of the profession. After a series of meetings for curriculum studies, interviews with the chambers of profession, meetings with interior architects, a gap between the theoretical and practical training modules is seen as a problem in all interior architecture departments. It is thought that this gap can be solved by a new education model which is formed by the cooperation of University-Industry in the concept of blended learning. In this context, it is considered that theoretical and applied knowledge accumulation can be provided by the creation of industry-supported educational environments at the university. In the application process of the Interior Architecture discipline, the use of materials and technical competence will only be possible with the cooperation of industry and participation of students in the production/manufacture processes as observers and practitioners. Wood manufacturing is an important part of interior architecture applications. Wood productions is a sustainable structural process where production details, material knowledge, and process details can be observed in the most effective way. From this point of view, after theoretical training about wooden materials, wood applications and production processes are given to the students, practical training for production/manufacture planning is supported by active participation and observation in the processes. With this blended model, we aimed to develop a training model in which theoretical and practical knowledge related to the production of wood works will be conveyed in a meaningful, lasting way by means of university-industry cooperation. The project is carried out in Ankara with Arcora Architecture and Furniture Company and Başkent University Department of Interior Design where university-industry cooperation is realized. Within the scope of the project, every week the video of that week’s lecture is recorded and prepared to be disseminated by digital medias such as Udemy. In this sense, the program is not only developed by the project participants, but also other institutions and people who are trained and practiced in the field of design. Both academicians from University and at least 15-year experienced craftsmen in the wood metal and dye sectors are preparing new training reference documents for interior architecture undergraduate programs. These reference documents will be a model for other Interior Architecture departments of the universities and will be used for creating an online education module.Keywords: blended learning, interior design, sustainable training, effective learning.
Procedia PDF Downloads 1365237 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1545236 Introducing Transport Engineering through Blended Learning Initiatives
Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi
Abstract:
Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.Keywords: blended learning, highway design, teaching, transport planning
Procedia PDF Downloads 1495235 Inclusive Education in Early Childhood Settings: Fostering a Diverse Learning Environment
Authors: Rodrique Watong Tchounkeu
Abstract:
This paper investigated the implementation and impact of inclusive education practices in early childhood settings (ages 3-6) with the overarching aim of fostering a diverse learning environment. The primary objectives were to assess the then-current state of inclusive practices, identify effective methodologies for accommodating diverse learning needs, and evaluate the outcomes of implementing inclusive education in early childhood settings. To achieve these objectives, a mixed-methods approach was employed, combining qualitative interviews with early childhood educators and parents, along with quantitative surveys distributed to a diverse sample of participants. The qualitative phase involved semi-structured interviews with 30 educators and 50 parents, selected through purposive sampling. The interviews aimed to gather insights into the challenges faced in implementing inclusive education, the strategies employed, and the perceived benefits and drawbacks. The quantitative phase included surveys administered to 300 early childhood educators across various settings, measuring their familiarity with inclusive practices, their perceived efficacy, and their willingness to adapt teaching methods. The results revealed a significant gap between the theoretical understanding and practical implementation of inclusive education in early childhood settings. While educators demonstrated a high level of theoretical knowledge, they faced challenges in effectively translating these concepts into practice. Parental perspectives highlighted the importance of collaboration between educators and parents in supporting inclusive education. The surveys indicated a positive correlation between educators' familiarity with inclusive practices and their willingness to adapt teaching methods, emphasizing the need for targeted professional development. The implications of this study suggested the necessity for comprehensive training programs for early childhood educators focused on the practical implementation of inclusive education strategies. Additionally, fostering stronger partnerships between educators and parents was crucial for creating a supportive learning environment for all children. By addressing these findings, this research contributed to the advancement of inclusive education practices in early childhood settings, ultimately leading to more inclusive and effective learning environments for diverse groups of young learners.Keywords: inclusive education, early childhood settings, diverse learning, young learners, practical implementation, parental collaboration
Procedia PDF Downloads 675234 Advancing Communication Theory in the Age of Digital Technology: Bridging the Gap Between Traditional Models and Emerging Platforms
Authors: Sidique Fofanah
Abstract:
This paper explores the intersection of traditional communication theories and modern digital technologies, analyzing how established models adapt to contemporary communication platforms. It examines the evolving nature of interpersonal, group, and mass communication within digital environments, emphasizing the role of social media, AI-driven communication tools, and virtual reality in reshaping communication paradigms. The paper also discusses the implications for future research and practice in communication studies, proposing an integrated framework that accommodates both classical and emerging theories.Keywords: communication, traditional models, emerging platforms, digital media
Procedia PDF Downloads 255233 The Cloud Systems Used in Education: Properties and Overview
Authors: Agah Tuğrul Korucu, Handan Atun
Abstract:
Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.Keywords: cloud systems, cloud systems in education, online learning environment, integration of information technologies, e-learning, distance learning
Procedia PDF Downloads 3495232 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 765231 Learners’ Conspicuous and Significant Errors in Arithmetic
Authors: Michael Lousis
Abstract:
The systematic identification of the most conspicuous and significant errors made by learners during three-years of testing of their progress in learning Arithmetic are presented in this article. How these errors have changed over three-years of school instruction of Arithmetic also is shown. The sample is comprised of two hundred (200) English students and one hundred and fifty (150) Greek students. These students were purposefully selected according to their participation in each testing session in the development of the three-year Kassel Project in England and Greece, in both domains simultaneously in Arithmetic and Algebra. The data sample includes six test-scripts corresponding to three testing sessions in both Arithmetic and Algebra respectively.Keywords: arithmetic, errors, Kassel Project, progress of learning
Procedia PDF Downloads 2645230 Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures
Authors: Milad Abbasi
Abstract:
Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading.Keywords: CFRP composite tubes, energy absorption, crushing behavior, machine learning, neural network
Procedia PDF Downloads 1535229 Students’ Speech Anxiety in Blended Learning
Authors: Mary Jane B. Suarez
Abstract:
Public speaking anxiety (PSA), also known as speech anxiety, is innumerably persistent in any traditional communication classes, especially for students who learn English as a second language. The speech anxiety intensifies when communication skills assessments have taken their toll in an online or a remote mode of learning due to the perils of the COVID-19 virus. Both teachers and students have experienced vast ambiguity on how to realize a still effective way to teach and learn speaking skills amidst the pandemic. Communication skills assessments like public speaking, oral presentations, and student reporting have defined their new meaning using Google Meet, Zoom, and other online platforms. Though using such technologies has paved for more creative ways for students to acquire and develop communication skills, the effectiveness of using such assessment tools stands in question. This mixed method study aimed to determine the factors that affected the public speaking skills of students in a communication class, to probe on the assessment gaps in assessing speaking skills of students attending online classes vis-à-vis the implementation of remote and blended modalities of learning, and to recommend ways on how to address the public speaking anxieties of students in performing a speaking task online and to bridge the assessment gaps based on the outcome of the study in order to achieve a smooth segue from online to on-ground instructions maneuvering towards a much better post-pandemic academic milieu. Using a convergent parallel design, both quantitative and qualitative data were reconciled by probing on the public speaking anxiety of students and the potential assessment gaps encountered in an online English communication class under remote and blended learning. There were four phases in applying the convergent parallel design. The first phase was the data collection, where both quantitative and qualitative data were collected using document reviews and focus group discussions. The second phase was data analysis, where quantitative data was treated using statistical testing, particularly frequency, percentage, and mean by using Microsoft Excel application and IBM Statistical Package for Social Sciences (SPSS) version 19, and qualitative data was examined using thematic analysis. The third phase was the merging of data analysis results to amalgamate varying comparisons between desired learning competencies versus the actual learning competencies of students. Finally, the fourth phase was the interpretation of merged data that led to the findings that there was a significantly high percentage of students' public speaking anxiety whenever students would deliver speaking tasks online. There were also assessment gaps identified by comparing the desired learning competencies of the formative and alternative assessments implemented and the actual speaking performances of students that showed evidence that public speaking anxiety of students was not properly identified and processed.Keywords: blended learning, communication skills assessment, public speaking anxiety, speech anxiety
Procedia PDF Downloads 1025228 Embodied Communication - Examining Multimodal Actions in a Digital Primary School Project
Authors: Anne Öman
Abstract:
Today in Sweden and in other countries, a variety of digital artefacts, such as laptops, tablets, interactive whiteboards, are being used at all school levels. From an educational perspective, digital artefacts challenge traditional teaching because they provide a range of modes for expression and communication and are not limited to the traditional medium of paper. Digital technologies offer new opportunities for representations and physical interactions with objects, which put forward the role of the body in interaction and learning. From a multimodal perspective the emphasis is on the use of multiple semiotic resources for meaning- making and the study presented here has examined the differential use of semiotic resources by pupils interacting in a digitally designed task in a primary school context. The instances analyzed in this paper come from a case study where the learning task was to create an advertising film in a film-software. The study in focus involves the analysis of a single case with the emphasis on the examination of the classroom setting. The research design used in this paper was based on a micro ethnographic perspective and the empirical material was collected through video recordings of small-group work in order to explore pupils’ communication within the group activity. The designed task described here allowed students to build, share, collaborate upon and publish the redesigned products. The analysis illustrates the variety of communicative modes such as body position, gestures, visualizations, speech and the interaction between these modes and the representations made by the pupils. The findings pointed out the importance of embodied communication during the small- group processes from a learning perspective as well as a pedagogical understanding of pupils’ representations, which were similar from a cultural literacy perspective. These findings open up for discussions with further implications for the school practice concerning the small- group processes as well as the redesigned products. Wider, the findings could point out how multimodal interactions shape the learning experience in the meaning-making processes taking into account that language in a globalized society is more than reading and writing skills.Keywords: communicative learning, interactive learning environments, pedagogical issues, primary school education
Procedia PDF Downloads 4085227 Prospective Mathematics Teachers' Content Knowledge on the Definition of Limit and Derivative
Authors: Reyhan Tekin Sitrava
Abstract:
Teachers should have robust and comprehensive content knowledge for effective mathematics teaching. It was explained that content knowledge includes knowing the facts, truths, and concepts; explaining the reasons behind these facts, truths and concepts, and making relationship between the concepts and other disciplines. By virtue of its importance, it will be significant to explore teachers and prospective teachers’ content knowledge related to variety of topics in mathematics. From this point of view, the purpose of this study was to investigate prospective mathematics teachers’ content knowledge. Particularly, it was aimed to reveal the prospective teachers’ knowledge regarding the definition of limit and derivate. To achieve the purpose and to get in-depth understanding, a qualitative case study method was used. The data was collected from 34 prospective mathematics teachers through a questionnaire containing 2 questions. The first question required the prospective teachers to define the limit and the second one required to define the derivative. The data was analyzed using content analysis method. Based on the analysis of the data, although half of the prospective teachers (50%) could write the definition of the limit, nine prospective teachers (26.5%) could not define limit. However, eight prospective teachers’ definition was regarded as partially correct. On the other hand, twenty-seven prospective teachers (79.5%) could define derivative, but seven of them (20.5%) defined it partially. According to the findings, most of the prospective teachers have robust content knowledge on limit and derivative. This result is important because definitions have a virtual role in learning and teaching of mathematics. More specifically, definition is starting point to understand the meaning of a concept. From this point of view, prospective teachers should know the definitions of the concepts to be able to teach them correctly to the students. In addition, they should have knowledge about the relationship between limit and derivative so that they can explain these concepts conceptually. Otherwise, students may memorize the rules of calculating the derivative and the limit. In conclusion, the present study showed that most of the prospective mathematics teachers had enough knowledge about the definition of derivative and limit. However, the rest of them should learn their definition conceptually. The examples of correct, partially correct, and incorrect definition of both concepts will be presented and discussed based on participants’ statements. This study has some implications for instructors. Instructors should be careful about whether students learn the definition of these concepts or not. In order to this, the instructors may give prospective teachers opportunities to discuss the definition of these concepts and the relationship between the concepts.Keywords: content knowledge, derivative, limit, prospective mathematics teachers
Procedia PDF Downloads 2215226 Comparing the Detection of Autism Spectrum Disorder within Males and Females Using Machine Learning Techniques
Authors: Joseph Wolff, Jeffrey Eilbott
Abstract:
Autism Spectrum Disorders (ASD) are a spectrum of social disorders characterized by deficits in social communication, verbal ability, and interaction that can vary in severity. In recent years, researchers have used magnetic resonance imaging (MRI) to help detect how neural patterns in individuals with ASD differ from those of neurotypical (NT) controls for classification purposes. This study analyzed the classification of ASD within males and females using functional MRI data. Functional connectivity (FC) correlations among brain regions were used as feature inputs for machine learning algorithms. Analysis was performed on 558 cases from the Autism Brain Imaging Data Exchange (ABIDE) I dataset. When trained specifically on females, the algorithm underperformed in classifying the ASD subset of our testing population. Although the subject size was relatively smaller in the female group, the manual matching of both male and female training groups helps explain the algorithm’s bias, indicating the altered sex abnormalities in functional brain networks compared to typically developing peers. These results highlight the importance of taking sex into account when considering how generalizations of findings on males with ASD apply to females.Keywords: autism spectrum disorder, machine learning, neuroimaging, sex differences
Procedia PDF Downloads 2095225 Data Modeling and Calibration of In-Line Pultrusion and Laser Ablation Machine Processes
Authors: David F. Nettleton, Christian Wasiak, Jonas Dorissen, David Gillen, Alexandr Tretyak, Elodie Bugnicourt, Alejandro Rosales
Abstract:
In this work, preliminary results are given for the modeling and calibration of two inline processes, pultrusion, and laser ablation, using machine learning techniques. The end product of the processes is the core of a medical guidewire, manufactured to comply with a user specification of diameter and flexibility. An ensemble approach is followed which requires training several models. Two state of the art machine learning algorithms are benchmarked: Kernel Recursive Least Squares (KRLS) and Support Vector Regression (SVR). The final objective is to build a precise digital model of the pultrusion and laser ablation process in order to calibrate the resulting diameter and flexibility of a medical guidewire, which is the end product while taking into account the friction on the forming die. The result is an ensemble of models, whose output is within a strict required tolerance and which covers the required range of diameter and flexibility of the guidewire end product. The modeling and automatic calibration of complex in-line industrial processes is a key aspect of the Industry 4.0 movement for cyber-physical systems.Keywords: calibration, data modeling, industrial processes, machine learning
Procedia PDF Downloads 2985224 Managing the Cognitive Load of Medical Students during Anatomy Lecture
Authors: Siti Nurma Hanim Hadie, Asma’ Hassan, Zul Izhar Ismail, Ahmad Fuad Abdul Rahim, Mohd. Zarawi Mat Nor, Hairul Nizam Ismail
Abstract:
Anatomy is a medical subject, which contributes to high cognitive load during learning. Despite its complexity, anatomy remains as the most important basic sciences subject with high clinical relevancy. Although anatomy knowledge is required for safe practice, many medical students graduated without having sufficient knowledge. In fact, anatomy knowledge among the medical graduates was reported to be declining and this had led to various medico-legal problems. Applying cognitive load theory (CLT) in anatomy teaching particularly lecture would be able to address this issue since anatomy information is often perceived as cognitively challenging material. CLT identifies three types of loads which are intrinsic, extraneous and germane loads, which combine to form the total cognitive load. CLT describe that learning can only occur when the total cognitive load does not exceed human working memory capacity. Hence, managing these three types of loads with the aim of optimizing the working memory capacity would be beneficial to the students in learning anatomy and retaining the knowledge for future application.Keywords: cognitive load theory, intrinsic load, extraneous load, germane load
Procedia PDF Downloads 4665223 “CheckPrivate”: Artificial Intelligence Powered Mobile Application to Enhance the Well-Being of Sextual Transmitted Diseases Patients in Sri Lanka under Cultural Barriers
Authors: Warnakulasuriya Arachichige Malisha Ann Rosary Fernando, Udalamatta Gamage Omila Chalanka Jinadasa, Bihini Pabasara Amandi Amarasinghe, Manul Thisuraka Mandalawatta, Uthpala Samarakoon, Manori Gamage
Abstract:
The surge in sexually transmitted diseases (STDs) has become a critical public health crisis demanding urgent attention and action. Like many other nations, Sri Lanka is grappling with a significant increase in STDs due to a lack of education and awareness regarding their dangers. Presently, the available applications for tracking and managing STDs cover only a limited number of easily detectable infections, resulting in a significant gap in effectively controlling their spread. To address this gap and combat the rising STD rates, it is essential to leverage technology and data. Employing technology to enhance the tracking and management of STDs is vital to prevent their further propagation and to enable early intervention and treatment. This requires adopting a comprehensive approach that involves raising public awareness about the perils of STDs, improving access to affordable healthcare services for early detection and treatment, and utilizing advanced technology and data analysis. The proposed mobile application aims to cater to a broad range of users, including STD patients, recovered individuals, and those unaware of their STD status. By harnessing cutting-edge technologies like image detection, symptom-based identification, prevention methods, doctor and clinic recommendations, and virtual counselor chat, the application offers a holistic approach to STD management. In conclusion, the escalating STD rates in Sri Lanka and across the globe require immediate action. The integration of technology-driven solutions, along with comprehensive education and healthcare accessibility, is the key to curbing the spread of STDs and promoting better overall public health.Keywords: STD, machine learning, NLP, artificial intelligence
Procedia PDF Downloads 815222 Numerical Study for Structural Design of Composite Rotor with Crack Initiation
Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir
Abstract:
In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.Keywords: rotor, composite, damage, finite element, numerical
Procedia PDF Downloads 4885221 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems
Authors: Ting Gao, Mingyue He
Abstract:
Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning
Procedia PDF Downloads 1505220 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4005219 Young People, the Internet and Inequality: What are the Causes and Consequences of Exclusion?
Authors: Albin Wallace
Abstract:
Part of the provision within educational institutions is the design, commissioning and implementation of ICT facilities to improve teaching and learning. Inevitably, these facilities focus largely on Internet Protocol (IP) based provisions including access to the World Wide Web, email, interactive software and hardware tools. Educators should be committed to the use of ICT to improve learning and teaching as well as to issues relating to the Internet and educational disadvantage, especially with respect to access and exclusion concerns. In this paper I examine some recent research into the issue of inequality and use of the Internet during which I discuss the causes and consequences of exclusion in the context of social inequality, digital literacy and digital inequality, also touching on issues of global inequality.Keywords: inequality, internet, education, design
Procedia PDF Downloads 4885218 Constructive Alignment in the Digital Age: Challenges and Opportunities at the University of Sulaimani
Authors: Daban Mohammed Haji
Abstract:
This paper explores the application of constructive alignment in digital education at the University of Sulaimani, focusing specifically on the Language and Culture Center, Translation Department, and English Department. Constructive alignment, an outcome-based pedagogical framework developed by John Biggs, ensures that learning activities and assessments are directly aligned with the intended learning outcomes (ILOs). The study's findings reveal a significant gap in awareness and understanding of this pedagogical concept among lecturers. Many instructors are unfamiliar with constructive alignment, and those who have some knowledge of it face considerable challenges. These challenges include aligning learning activities and assessments with the ILOs and fostering higher-order cognitive skills as outlined in the SOLO taxonomy and revised Bloom’s taxonomy. To address this issue, the existing pedagogy center at the University of Sulaimani could play a pivotal role. This center has the potential to foster faculty development and promote the adoption of constructive alignment in online teaching. By leveraging the center's expertise and resources, a tailored program can be designed to enhance faculty understanding and application of this pedagogical framework.Keywords: constructive alignment, student-centerdness, pedagogy, bologna process
Procedia PDF Downloads 325217 Research Study on the Environmental Conditions in the Foreign
Authors: Vahid Bairami Rad, Shapoor Norazar, Moslem Talebi Asl
Abstract:
The fast growing accessibility and capability of emerging technologies have fashioned enormous possibilities of designing, developing and implementing innovative teaching methods in the classroom. Using teaching methods and technology together have a fantastic results, because the global technological scenario has paved the way to new pedagogies in teaching-learning process. At the other side methods by focusing on students and the ways of learning in them, that can demonstrate logical ways of improving student achievement in English as a foreign language in Iran. The sample of study was 90 students of 10th grade of high school located in Ardebil. A pretest-posttest equivalent group designed to compare the achievement of groups. Students divided to 3 group, Control base, computer base, method and technology base. Pretest and post test contain 30 items each from English textbook were developed and administrated, then obtained data were analyzed. The results showed that there was an important difference. The 3rd group performance was better than other groups. On the basis of this result it was obviously counseled that teaching-learning capabilities.Keywords: method, technology based environment, computer based environment, english as a foreign language, student achievement
Procedia PDF Downloads 4745216 Exploring Equity and Inclusion in the Context of Distance Education Using a Social Location Perspective
Authors: Boadi Agyekum
Abstract:
In this study, a social location perspective is used to explore the challenges of creating opportunities that will foster lifelong education, inclusion, and equity for residents of rural communities in Ghana. The differentiated experiences of rural adults are under-researched and often unacknowledged in lifelong education literature and distance education policy. There is a need to examine carefully the structural inequalities that create disadvantages for residents of rural communities and women in pursuing distance education in designated cities in Ghana. The paper uses in-depth interviews to explore participants’ experiences of learning at a distance and to scrutinise the narratives of lifelong education. The paper reflects on the implications of the framework employed for educators and social justice in lifelong education. It further recommends the need to provide IT laboratories and fully online programs that would require stable and regular internet and access to ICT equipment for potential learning in rural communities. The social location approach presented a number of axes of diversity as comparatively more important than others; these included gender, age, education, work commitment, geography, and degree of social connectedness. This can inform lifelong education policy and programs to sustain quality education.Keywords: equity, distance education, lifelong learning, social location, intersectionality, rural communities
Procedia PDF Downloads 985215 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 985214 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 775213 The Use of Authentic Materials in the Chinese Language Classroom
Authors: Yiwen Jin, Jing Xiao, Pinfang Su
Abstract:
The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching
Procedia PDF Downloads 1735212 Comparison of Different Machine Learning Algorithms for Solubility Prediction
Authors: Muhammet Baldan, Emel Timuçin
Abstract:
Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.Keywords: random forest, machine learning, comparison, feature extraction
Procedia PDF Downloads 40