Search results for: speech signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5629

Search results for: speech signal processing

2779 From User's Requirements to UML Class Diagram

Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa

Abstract:

The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.

Keywords: class diagram, user’s requirements, XMI, software engineering

Procedia PDF Downloads 471
2778 Designing and Simulation of a CMOS Square Root Analog Multiplier

Authors: Milad Kaboli

Abstract:

A new CMOS low voltage current-mode four-quadrant analog multiplier based on the squarer circuit with voltage output is presented. The proposed circuit is composed of a pair of current subtractors, a pair differential-input V-I converters and a pair of voltage squarers. The circuit was simulated using HSPICE simulator in standard 0.18 μm CMOS level 49 MOSIS (BSIM3 V3.2 SPICE-based). Simulation results show the performance of the proposed circuit and experimental results are given to confirm the operation. This topology of multiplier results in a high-frequency capability with low power consumption. The multiplier operates for a power supply ±1.2V. The simulation results of analog multiplier demonstrate a THD of 0.65% in 10MHz, a −3dB bandwidth of 1.39GHz, and a maximum power consumption of 7.1mW.

Keywords: analog processing circuit, WTA, LTA, low voltage

Procedia PDF Downloads 476
2777 Green Logistics Management and Performance for Thailand’s Logistic Enterprises

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Logistics is the integrated management of all of the activities required to move products through the supply chain. For a typical product, this supply chain extends from a raw material source through the production and distribution system to the point of consumption and the associated reverse logistics. The logistical activities are comprised of freight transport, storage, inventory management, materials handling and all related information processing. This paper analyzes the green management system of logistics enterprise for Thailand and advances the concept of Green Logistics, which should be held by the public. In addition, it proposes that the government should strengthen its supervision and support for green logistics, and companies should construct self-disciplined green logistics management systems and corresponding processes, a reverse logistics management system and a modern green logistics information collection and management system.

Keywords: logistics, green logistics, management system, ecological economics

Procedia PDF Downloads 403
2776 Evotrader: Bitcoin Trading Using Evolutionary Algorithms on Technical Analysis and Social Sentiment Data

Authors: Martin Pellon Consunji

Abstract:

Due to the rise in popularity of Bitcoin and other crypto assets as a store of wealth and speculative investment, there is an ever-growing demand for automated trading tools, such as bots, in order to gain an advantage over the market. Traditionally, trading in the stock market was done by professionals with years of training who understood patterns and exploited market opportunities in order to gain a profit. However, nowadays a larger portion of market participants are at minimum aided by market-data processing bots, which can generally generate more stable signals than the average human trader. The rise in trading bot usage can be accredited to the inherent advantages that bots have over humans in terms of processing large amounts of data, lack of emotions of fear or greed, and predicting market prices using past data and artificial intelligence, hence a growing number of approaches have been brought forward to tackle this task. However, the general limitation of these approaches can still be broken down to the fact that limited historical data doesn’t always determine the future, and that a lot of market participants are still human emotion-driven traders. Moreover, developing markets such as those of the cryptocurrency space have even less historical data to interpret than most other well-established markets. Due to this, some human traders have gone back to the tried-and-tested traditional technical analysis tools for exploiting market patterns and simplifying the broader spectrum of data that is involved in making market predictions. This paper proposes a method which uses neuro evolution techniques on both sentimental data and, the more traditionally human-consumed, technical analysis data in order to gain a more accurate forecast of future market behavior and account for the way both automated bots and human traders affect the market prices of Bitcoin and other cryptocurrencies. This study’s approach uses evolutionary algorithms to automatically develop increasingly improved populations of bots which, by using the latest inflows of market analysis and sentimental data, evolve to efficiently predict future market price movements. The effectiveness of the approach is validated by testing the system in a simulated historical trading scenario, a real Bitcoin market live trading scenario, and testing its robustness in other cryptocurrency and stock market scenarios. Experimental results during a 30-day period show that this method outperformed the buy and hold strategy by over 260% in terms of net profits, even when taking into consideration standard trading fees.

Keywords: neuro-evolution, Bitcoin, trading bots, artificial neural networks, technical analysis, evolutionary algorithms

Procedia PDF Downloads 123
2775 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry

Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes

Abstract:

The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.

Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium

Procedia PDF Downloads 167
2774 Analyzing the Potential of Job Creation by Taking the First Step Towards Circular Economy: Case Study of Brazil

Authors: R. Conde

Abstract:

The Brazilian economic projections and social indicators show a future of crisis for the country. Solutions to avoid this crisis scenario are necessary. Several developed countries implement initiatives linked to sustainability, mainly related to the circular economy, to solve their crises quickly - green recovery. This article aims to assess social gains if Brazil followed the same recovery strategy. Furthermore, with the use of data presented and recognized in the international academic society, the number of jobs that can be created, if Brazil took the first steps towards a more circular economy, was found. Moreover, in addition to the gross value in the number of jobs created, this article also detailed the number of these jobs by type of activity (collection, processing, and manufacturing) and by type of material.

Keywords: circular economy, green recovery, job creation, social gains

Procedia PDF Downloads 147
2773 Hand-Held X-Ray Fluorescence Spectroscopy for Pre-Diagnostic Studies in Conservation, and Limitations

Authors: Irmak Gunes Yuceil

Abstract:

This paper outlines interferences and analytical errors which are encountered in the qualification and quantification of archaeological and ethnographic artifacts, by means of handheld x-ray fluorescence. These shortcomings were evaluated through case studies carried out on metallic artifacts related to various periods and cultures around Anatolia. An Innov-X Delta Standard 2000 handheld x-ray fluorescence spectrometer was used to collect data from 1361 artifacts, through 6789 measurements and 70 hours’ tube usage, in between 2013-2017. Spectrum processing was done by Delta Advanced PC Software. Qualitative and quantitative results screened by the device were compared with the spectrum graphs, and major discrepancies associated with physical and analytical interferences were clarified in this paper.

Keywords: hand-held x-ray fluorescence spectroscopy, art and archaeology, interferences and analytical errors, pre-diagnosis in conservation

Procedia PDF Downloads 195
2772 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology

Authors: Weinian Wang, Joseph C. Chen

Abstract:

The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.

Keywords: CNC milling operation, CNC turning operation, surface roughness, Taguchi parameter design

Procedia PDF Downloads 176
2771 A Multi-Beneficial Gift of Nature (Noni Fruit): Nutritional, Functional, and Post-Harvest Aspects

Authors: Mahsa Moteshakeri

Abstract:

Morinda citrifolia L., a miracle fruit with common name of Noni, has been widely used as food and traditional medicine in the Polynesians culture. Current scientific evidences have proved the therapeautical and nutritional properties of this fruit so that its extensive production in tropical regions in recent years has emerged a competitive global Noni market mainly as a dietary supplement in the form of juice or tablet. However, there is not much record on the processing method applied on fresh fruit postharvest or even its mechanism of action in controlling diseases. This review aimed to provide a comprehensive data on phytochemicals, technical, and nutritional advances on Noni fruit and recent patents published, as well as medicinal properties of the fruit in order to benefit future investigations on this precious fruit either in industrial or therapeautical section.

Keywords: noni fruit, phytochemicals, therapeautic properties of fruit, nutritional properties of fruit

Procedia PDF Downloads 365
2770 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group

Authors: Vida Jodaeian, Behzad Sani

Abstract:

Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.

Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound

Procedia PDF Downloads 398
2769 Optimization Principles of Eddy Current Separator for Mixtures with Different Particle Sizes

Authors: Cao Bin, Yuan Yi, Wang Qiang, Amor Abdelkader, Ali Reza Kamali, Diogo Montalvão

Abstract:

The study of the electrodynamic behavior of non-ferrous particles in time-varying magnetic fields is a promising area of research with wide applications, including recycling of non-ferrous metals, mechanical transmission, and space debris. The key technology for recovering non-ferrous metals is eddy current separation (ECS), which utilizes the eddy current force and torque to separate non-ferrous metals. ECS has several advantages, such as low energy consumption, large processing capacity, and no secondary pollution, making it suitable for processing various mixtures like electronic scrap, auto shredder residue, aluminum scrap, and incineration bottom ash. Improving the separation efficiency of mixtures with different particle sizes in ECS can create significant social and economic benefits. Our previous study investigated the influence of particle size on separation efficiency by combining numerical simulations and separation experiments. Pearson correlation analysis found a strong correlation between the eddy current force in simulations and the repulsion distance in experiments, which confirmed the effectiveness of our simulation model. The interaction effects between particle size and material type, rotational speed, and magnetic pole arrangement were examined. It offer valuable insights for the design and optimization of eddy current separators. The underlying mechanism behind the effect of particle size on separation efficiency was discovered by analyzing eddy current and field gradient. The results showed that the magnitude and distribution heterogeneity of eddy current and magnetic field gradient increased with particle size in eddy current separation. Based on this, we further found that increasing the curvature of magnetic field lines within particles could also increase the eddy current force, providing a optimized method to improving the separation efficiency of fine particles. By combining the results of the studies, a more systematic and comprehensive set of optimization guidelines can be proposed for mixtures with different particle size ranges. The separation efficiency of fine particles could be improved by increasing the rotational speed, curvature of magnetic field lines, and electrical conductivity/density of materials, as well as utilizing the eddy current torque. When designing an ECS, the particle size range of the target mixture should be investigated in advance, and the suitable parameters for separating the mixture can be fixed accordingly. In summary, these results can guide the design and optimization of ECS, and also expand the application areas for ECS.

Keywords: eddy current separation, particle size, numerical simulation, metal recovery

Procedia PDF Downloads 89
2768 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 139
2767 Single Machine Scheduling Problem to Minimize the Number of Tardy Jobs

Authors: Ali Allahverdi, Harun Aydilek, Asiye Aydilek

Abstract:

Minimizing the number of tardy jobs is an important factor to consider while making scheduling decisions. This is because on-time shipments are vital for lowering cost and increasing customers’ satisfaction. This paper addresses the single machine scheduling problem with the objective of minimizing the number of tardy jobs. The only known information is the lower and upper bounds for processing times, and deterministic job due dates. A dominance relation is established, and an algorithm is proposed. Several heuristics are generated from the proposed algorithm. Computational analysis indicates that the performance of one of the heuristics is very close to the optimal solution, i.e., on average, less than 1.5 % from the optimal solution.

Keywords: single machine scheduling, number of tardy jobs, heuristi, lower and upper bounds

Procedia PDF Downloads 555
2766 The Cultural and Semantic Danger of English Transparent Words Translated from English into Arabic

Authors: Abdullah Khuwaileh

Abstract:

While teaching and translating vocabulary is no longer a neglected area in ELT in general and in translation in particular, the psychology of its acquisition has been a neglected area. Our paper aims at exploring some of the learning and translating conditions under which vocabulary is acquired and translated properly. To achieve this objective, two teaching methods (experiments) were applied on 4 translators to measure their acquisition of a number of transparent vocabulary items. Some of these items were knowingly chosen from 'deceptively transparent words'. All the data, sample, etc., were taken from Jordan University of Science and Technology (JUST) and Yarmouk University, where the researcher is employed. The study showed that translators might translate transparent words inaccurately, particularly if these words are uncontextualised. It was also shown that the morphological structures of words may lead translators or even EFL learners to misinterpretations of meaning.

Keywords: english, transparent, word, processing, translation

Procedia PDF Downloads 71
2765 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: LTE, MIMO, path loss, UAV

Procedia PDF Downloads 279
2764 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: Tricalcium phosphate (β-Ca3(PO4)2, bone regeneration, wet chemical processing, polymeric precipitation

Procedia PDF Downloads 298
2763 DeClEx-Processing Pipeline for Tumor Classification

Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba

Abstract:

Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.

Keywords: machine learning, healthcare, classification, explainability

Procedia PDF Downloads 55
2762 Modified RSA in Mobile Communication

Authors: Nagaratna Rajur, J. D. Mallapur, Y. B. Kirankumar

Abstract:

The security in mobile communication is very different from the internet or telecommunication, because of its poor user interface and limited processing capacity, as well as combination of complex network protocols. Hence, it poses a challenge for less memory usage and low computation speed based security system. Security involves all the activities that are undertaken to protect the value and on-going usability of assets and the integrity and continuity of operations. An effective network security strategies requires identifying threats and then choosing the most effective set of tools to combat them. Cryptography is a simple and efficient way to provide security in communication. RSA is an asymmetric key approach that is highly reliable and widely used in internet communication. However, it has not been efficiently implemented in mobile communication due its computational complexity and large memory utilization. The proposed algorithm modifies the current RSA to be useful in mobile communication by reducing its computational complexity and memory utilization.

Keywords: M-RSA, sensor networks, sensor applications, security

Procedia PDF Downloads 342
2761 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 274
2760 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 67
2759 Urban Traffic: Understanding the Traffic Flow Factor Through Fluid Dynamics

Authors: Sathish Kumar Jayaraj

Abstract:

The study of urban traffic dynamics, underpinned by the principles of fluid dynamics, offers a distinct perspective to comprehend and enhance the efficiency of traffic flow within bustling cityscapes. Leveraging the concept of the Traffic Flow Factor (TFF) as an analog to the Reynolds number, this research delves into the intricate interplay between traffic density, velocity, and road category, drawing compelling parallels to fluid dynamics phenomena. By introducing the notion of Vehicle Shearing Resistance (VSR) as an analogy to dynamic viscosity, the study sheds light on the multifaceted influence of traffic regulations, lane management, and road infrastructure on the smoothness and resilience of traffic flow. The TFF equation serves as a comprehensive metric for quantifying traffic dynamics, enabling the identification of congestion hotspots, the optimization of traffic signal timings, and the formulation of data-driven traffic management strategies. The study underscores the critical significance of integrating fluid dynamics principles into the domain of urban traffic management, fostering sustainable transportation practices, and paving the way for a more seamless and resilient urban mobility ecosystem.

Keywords: traffic flow factor (TFF), urban traffic dynamics, fluid dynamics principles, vehicle shearing resistance (VSR), traffic congestion management, sustainable urban mobility

Procedia PDF Downloads 62
2758 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 157
2757 Reconstruction of Complex Post Oncologic Maxillectomy Defects

Authors: Vinay Kant Shankhdhar

Abstract:

Purpose: Maxillary defects are three dimensional and require complex bone and soft tissue reconstruction. Maxillary reconstruction using fibula osteocutaneous flaps in situation requiring orbital floor, orbital wall, palatal defects, and external skin, all at the same time require special planning and multiple osteotomies. We tried to improvise our reconstruction using multiple osteotomies and skin paddle designs for fibula and Flexor Hallucis Longus Muscle. This study aims at discussing the planning and outcome in complex maxillary reconstructions using fibula flaps and soft tissue flaps with or without bone grafts. Material and Methods: From 2011 to 2017 a total of 129 Free fibula flaps were done, 67 required two or more struts, 164 Anterolateral Thigh Flaps, 11 Deep Inferior Epigastric Artery perforator flaps and 3 vertical rectus abdominis muscle flaps with iliac crest bone graft. The age range was 2 to 70 years. The reconstruction was evaluated based on the post-operative rehabilitation including orbital support (prevention of diplopia), oral diet, speech and cosmetic appearance. Results: The follow- up is from 5 years to 1 year. In this series, we observed that the common complications were the de-vascularisation of most distal segment of osteotomised fibula and native skin necrosis. Commonest area of breakdown is the medial canthal region. Plate exposure occurs most commonly at the pyriform sinus. There was extrusion of one non-vascularized bone graft. All these complications were noticed post-radiotherapy. Conclusions: The use of free fibula osteocutaneous flap gives very good results when only alveolar reconstruction is required. The reconstruction of orbital floor with extensive skin loss with post operative radiotherapy has maximum complication rate in long term follow up. A soft tissue flap with non vascularized bone graft may be the best option in such cases.

Keywords: maxilla reconstruction, fibula maxilla, post cancer maxillary reconstruction

Procedia PDF Downloads 134
2756 A Case Study on Quantitatively and Qualitatively Increasing Student Output by Using Available Word Processing Applications to Teach Reluctant Elementary School-Age Writers

Authors: Vivienne Cameron

Abstract:

Background: Between 2010 and 2017, teachers in a suburban public school district struggled to get students to consistently produce adequate writing samples as measured by the Pennsylvania state writing rubric for measuring focus, content, organization, style, and conventions. A common thread in all of the data was the need to develop stamina in the student writers. Method: All of the teachers used the traditional writing process model (prewrite, draft, revise, edit, final copy) during writing instruction. One teacher taught the writing process using word processing and incentivizing with publication instead of the traditional pencil/paper/grading method. Students did not have instruction in typing/keyboarding. The teacher submitted resulting student work to real-life contests, magazines, and publishers. Results: Students in the test group increased both the quantity and quality of their writing over a seven month period as measured by the Pennsylvania state writing rubric. Reluctant writers, as well as students with autism spectrum disorder, benefited from this approach. This outcome was repeated consistently over a five-year period. Interpretation: Removing the burden of pencil and paper allowed students to participate in the writing process more fully. Writing with pencil and paper is physically tiring. Students are discouraged when they submit a draft and are instructed to use the Add, Remove, Move, Substitute (ARMS) method to revise their papers. Each successive version becomes shorter. Allowing students to type their papers frees them to quickly and easily make changes. The result is longer writing pieces in shorter time frames, allowing the teacher to spend more time working on individual needs. With this additional time, the teacher can concentrate on teaching focus, content, organization, style, conventions, and audience. S/he also has a larger body of works from which to work on whole group instruction such as developing effective leads. The teacher submitted the resulting student work to contests, magazines, and publishers. Although time-consuming, the submission process was an invaluable lesson for teaching about audience and tone. All students in the test sample had work accepted for publication. Students became highly motivated to succeed when their work was accepted for publication. This motivation applied to special needs students, regular education students, and gifted students.

Keywords: elementary-age students, reluctant writers, teaching strategies, writing process

Procedia PDF Downloads 175
2755 Application of Three Phase Partitioning (TPP) for the Purification of Serratiopeptidase

Authors: Swapnil V. Pakhale, Sunil S. Bhagwat

Abstract:

Three phase partitioning (TPP) an efficient bioseparation technique integrates the concentration and partial purification step of downstream processing of a biomolecule. Three Phase Partitioning is reported here for the first time for purification of Serratiopeptidase from fermentation broths of Serratia marcescens NRRL B-23112. The influence of various salts and solvents, Concentration of ammonium sulphate (20-60% w/v), Crude extract to t-butanol ratio (1:0.5-1:2.5) and system pH on Serratiopeptidase partitioning were investigated and optimum conditions for TPP were obtained in order to enhance the degree of purification and activity recovery of Serratiopeptidase. Under the optimal conditions of TPP, serratiopeptidase has been efficiently separated and concentrated with maximum recovery and degree of purification of 95.70% and 4.95 fold respectively. The present study shows TPP as an attractive downstream process for the purification of serratiopeptidase.

Keywords: three phase partitioning, serratiopeptidase, serratia marcescens NRRL B-23112, t-butanol, bioseparation

Procedia PDF Downloads 548
2754 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges

Authors: M. Kowalski, M. Kastek, M. Szustakowski

Abstract:

Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz

Keywords: terahertz, infrared, object detection, screening camera, image processing

Procedia PDF Downloads 357
2753 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 135
2752 Examining Employers’ Health Responsibility

Authors: Ildikó Balatoni, Nikolett Kosztin

Abstract:

In this study the importance of maintaining the mental and physical health of employees was examined from the perspective of the employers. To this end companies in Hajdú-Bihar county of Hungary that are within in the TOP 100 based on their net revenue were interviewed. Economic sectors that were represented the most in this survey were processing, services, trade, agriculture, and construction. We examined whether or not companies provided any benefits to their employees concerning health awareness. Among respondents those who offered various services of medical specialists and/or discounted gym or swim passes in addition to compulsory medical examinations were hard to find, however more employers organize health and sports days. Nevertheless, a significant albeit very shallow positive correlation were found between the number of offered benefits vs. total gross income and vs. number of employees (r2=0.2555, p<0.001 and r2=0.1196 and p<0.05, respectively). In conclusion, while workplace health promotion is necessary it requires a change in employers’attitudes.

Keywords: corporate health promotion, employees, employers, health

Procedia PDF Downloads 128
2751 The Impact of Information and Communication Technology on the Performance of Office Technology Managers

Authors: Sunusi Tijjani

Abstract:

Information and communication technology is an indispensable tool in the performance of office technology managers. Today's offices are automated and equipped with modern office machines that enhances and improve the work of office managers. However, today's office technology managers can process, evaluate, manage and communicate all forms of information using technological devices. Information and Communication Technology is viewed as the process of processing, storing ad dissemination information while office technology managers are trained professional who can effectively operate modern office machines, perform administrative duties and attend meetings to take dawn minute of meetings. This paper examines the importance of information and communication technology toward enhancing the work of office managers. It also stresses the importance of information and communication technology toward proper and accurate record management.

Keywords: communication, information, technology, managers

Procedia PDF Downloads 485
2750 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases

Authors: Daniel C. Bonzo

Abstract:

Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.

Keywords: clustered data, estimand, extrapolation, mixed model

Procedia PDF Downloads 136