Search results for: power network
7549 Vocal Advocacy: A Case Study at the First Black College Regarding Students Experiencing an Empowerment Workshop
Authors: Denise F. Brown, Melina McConatha
Abstract:
African Americans utilizing the art of vocal expressions, particularly for self-expression, has been a historical avenue of advocating for social justice and human rights. Vocal expressions can take many forms, such as singing, poetry, storytelling, and acting. Many well-known artists, politicians, leaders, and teachers used their voices to promote the causes and concerns of the African American community as well as the expression of their own experiences of being 'black' in America. The purpose of this project was to evaluate the perceptions of African American students in utilizing their voices for self-awareness, interview skills, and social change after attending a three-part workshop on vocal advocacy. This research utilized the framework of black feminism to understand empowerment in advocacy and self-expression. Students participated in learning about the power of their voices, and what purpose presence, and passion they discovered through the Immersive Voice workshop. There were three areas covered in the workshop. The first area was the power of the voice, the second area was the application of vocal passion, and the third area was applying the vocal power to express personal interest, interests of advocating for others, and confidence and speaking to others to further careers, i.e., using vocal power for job interviewing skills. The students were instructed to prepare for the workshops by completing a pre-workshop open-ended survey. There were a total of 15 students that participated. After the workshop ended, the students were instructed to complete a post-workshop survey. The surveys were assessed by evaluating both themes and codes from student's written feedback. From the pre-workshop survey, students were given a survey for them to provide feedback regarding the power of voice prior to participating in the workshops. From the student's responses, the theme (advocating for self and others) emerged as it related to student's feedback on what it means to advocate. There were three codes that led to the theme, having knowledge about advocating for self and others, gaining knowledge to advocate for self and others, and using that knowledge to advocate for self and others. After the students completed participation in the workshops, a post workshop- survey was given to the students. Students' feedback was assessed, and the same theme emerged, 'advocating for self and others.' The codes related to the theme, however, were different and included using vocal power (a term students learned during the workshop) to represent self, represent others, and obtain a job/career. In conclusion, the results of the survey showed that students still perceived advocating as speaking up for themselves and other people. After the workshop, students still continued to associate advocacy with helping themselves and helping others but were able to be more specific about how the sound of their voice could help in advocating, and how they could use their voice to represent themselves in getting a job or starting a career.Keywords: advocacy, command, self-expression, voice
Procedia PDF Downloads 1107548 Conception of a Reliable Low Cost, Autonomous Explorative Hovercraft 1
Authors: A. Brand, S. Burgalat, E. Chastel, M. Jumeline, L. Teilhac
Abstract:
The paper presents actual benefits and drawbacks of a multidirectional Hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. Those systems are usually powerful but have a certain price and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. Present approach is to build a compromise between cost, power consumption and results preciseness.Keywords: Hovercraft, indoor exploration, autonomous, multidirectional, wireless control
Procedia PDF Downloads 4177547 Open Circuit MPPT Control Implemented for PV Water Pumping System
Authors: Rabiaa Gammoudi, Najet Rebei, Othman Hasnaoui
Abstract:
Photovoltaic systems use different techniques for tracking the Maximum Power Point (MPPT) to provide the highest possible power to the load regardless of the climatic conditions variation. In this paper, the proposed method is the Open Circuit (OC) method with sudden and random variations of insolation. The simulation results of the water pumping system controlled by OC method are validated by an experimental experience in real-time using a test bench composed by a centrifugal pump powered by a PVG via a boost chopper for the adaptation between the source and the load. The output of the DC/DC converter supplies the motor pump LOWARA type, assembly by means of a DC/AC inverter. The control part is provided by a computer incorporating a card DS1104 running environment Matlab/Simulink for visualization and data acquisition. These results show clearly the effectiveness of our control with a very good performance. The results obtained show the usefulness of the developed algorithm in solving the problem of degradation of PVG performance depending on the variation of climatic factors with a very good yield.Keywords: PVWPS (PV Water Pumping System), maximum power point tracking (MPPT), open circuit method (OC), boost converter, DC/AC inverter
Procedia PDF Downloads 4547546 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems
Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur
Abstract:
The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems
Procedia PDF Downloads 847545 Impact of Transportation on the Economic Growth of Nigeria
Authors: E. O. E. Nnadi
Abstract:
Transportation is a critical factor in the economic growth and development of any nation, region or state. Good transportation network supports every sector of the economy like the manufacturing, transportation and encourages investors thereby affect the overall economic prosperity. The paper evaluates the impact of transportation on the economic growth of Nigeria using south eastern states as a case study. The choice of the case study is its importance as the commercial and industrial nerve of the country. About 200 respondents who are of different professions such as dealers in goods, transporters, contractors, consultants, bankers were selected and a set of questionnaire were administered to using the systematic sampling technique in the five states of the region. Descriptive statistics and relative importance index (RII) technique was employed for the analysis of the data gathered. The findings of the analysis reveal that Nigeria has the least effective ratio per population in Africa of 949.91 km/Person. Conclusion was drawn to improve road network in the area and the country as a whole to enhance the economic activities of the people.Keywords: economic growth, south-east, transportation, transportation cost, Nigeria
Procedia PDF Downloads 2737544 Multisource (RF and Solar) Energy Harvesting for Internet of Things (IoT)
Authors: Emmanuel Ekwueme, Anwar Ali
Abstract:
As the Internet of Things (IoT) continues to expand, the demand for battery-free devices is increasing, which is crucial for the efficiency of 5G networks and eco-friendly industrial systems. The solution is a device that operates indefinitely, requires no maintenance, and has no negative impact on the ambient environment. One promising approach to achieve this is energy harvesting, which involves capturing energy from the ambient environment and transferring it to power devices. This method can revolutionize industries. Such as manufacturing, agriculture, and healthcare by enabling real-time data collection and analysis, reducing maintenance costs, improving efficiency, and contributing to a future with lower carbon emissions. This research explores various energy harvesting techniques, focusing on radio frequencies (RF) and multiple energy sources. It examines RF-based and solar methods for powering battery-free sensors, low-power circuits, and IoT devices. The study investigates a hybrid RF-solar harvesting circuit designed for remote sensing devices. The proposed system includes distinct RF and solar energy harvester circuits, with the RF harvester operating at 2.45GHz and the solar harvester utilizing a maximum power point tracking (MPPT) algorithm to maximize efficiency.Keywords: radio frequency, energy harvesting, Internet of Things (IoT), multisource, solar energy
Procedia PDF Downloads 107543 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance
Authors: Saad Odeh
Abstract:
Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.Keywords: PV panel, thermal performance, roof shading, energy efficiency
Procedia PDF Downloads 2167542 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.Keywords: building energy prediction, data mining, demand response, electricity market
Procedia PDF Downloads 3167541 A Study of Adult Lifelong Learning Consulting and Service System in Taiwan
Authors: Wan Jen Chang
Abstract:
Back ground: Taiwan's current adult lifelong learning services have expanded from vocational training to universal lifelong learning. However, both the professional knowledge training of learning guidance and consulting services and the provision of adult online learning consulting service systems still need to be established. Purpose: The purposes of this study are as follows: 1. Analyze the professional training mechanism for cultivating adult lifelong learning consultation and coaching; 2. Explore the feasibility of constructing a system that uses network technology to provide adult learning consultation services. Research design: This study conducts a literature analysis of counseling and coaching policy reports on lifelong learning in European countries and the United States. There are two focus discussions were conducted with 15 lifelong learning scholars, experts and practitioners as research subjects. The following two topics were discussed and suggested: 1. The current situation, needs and professional ability training mechanism of "Adult Lifelong Learning Consulting and Services"; 2. Strategies for establishing an "Adult Lifelong Learning Consulting and Service internet System". Conclusion: 1.Based on adult lifelong learning consulting and service needs, plan a professional knowledge training and certification system.2.Adult lifelong learning consulting and service professional knowledge and skills training should include the use of network technology to provide consulting service skills.3.To establish an adult lifelong learning consultation and service system, the Ministry of Education should promulgate policies and measures at the central level and entrust local governments or private organizations to implement them.4.The adult lifelong learning consulting and service system can combine the national qualifications framework, private sector and NPO to expand learning consulting service partners.Keywords: adult lifelong learning, profesional knowledge, consulting and service, network system
Procedia PDF Downloads 677540 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid
Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani
Abstract:
As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.Keywords: computational grid, job scheduling, learning automata, dynamic scheduling
Procedia PDF Downloads 3437539 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 3457538 Resource Assessment of Animal Dung for Power Generation: A Case Study
Authors: Gagandeep Kaur, Yadwinder Singh Brar, D. P. Kothari
Abstract:
The paper has an aggregate analysis of animal dung for converting it into renewable biomass fuel source that could be used to help the Indian state Punjab to meet rising power demand. In Punjab district Bathinda produces over 4567 tonnes of animal dung daily on a renewable basis. The biogas energy potential has been calculated using values for the daily per head animal dung production and total no. of large animals in Bathinda of Punjab. The 379540 no. of animals in district could produce nearly 116918 m3 /day of biogas as renewable energy. By converting this biogas into electric energy could produce 89.8 Gwh energy annually.Keywords: livestock, animal dung, biogas, renewable energy
Procedia PDF Downloads 5107537 Genome-Wide Expression Profiling of Cicer arietinum Heavy Metal Toxicity
Authors: B. S. Yadav, A. Mani, S. Srivastava
Abstract:
Chickpea (Cicer arietinum L.) is an annual, self-pollinating, diploid (2n = 2x = 16) pulse crop that ranks second in world legume production after common bean (Phaseolus vulgaris). ICC 4958 flowers approximately 39 days after sowing under peninsular Indian conditions and the crop matures in less than 90 days in rained environments. The estimated collective yield losses due to abiotic stresses (6.4 million t) have been significantly higher than for biotic stresses (4.8 million t). Most legumes are known to be salt sensitive, and therefore, it is becoming increasingly important to produce cultivars tolerant to high-salinity in addition to other abiotic and biotic stresses for sustainable chickpea production. Our aim was to identify the genes that are involved in the defence mechanism against heavy metal toxicity in chickpea and establish the biological network of heavy metal toxicity in chickpea. ICC4958 variety of chick pea was taken and grown in normal condition and 150µM concentration of different heavy metal salt like CdCl₂, K₂Cr2O₇, NaAsO₂. At 15th day leave samples were collected and stored in RNA Later solution microarray was performed for checking out differential gene expression pattern. Our studies revealed that 111 common genes that involved in defense mechanism were up regulated and 41 genes were commonly down regulated during treatment of 150µM concentration of CdCl₂, K₂Cr₂O₇, and NaAsO₂. Biological network study shows that the genes which are differentially expressed are highly connected and having high betweenness and centrality.Keywords: abiotic stress, biological network, chickpea, microarray
Procedia PDF Downloads 1977536 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.Keywords: cognitive radio, base station, best effort, MLPNN, prediction, real time
Procedia PDF Downloads 3317535 Impact Study on a Load Rich Island and Development of Frequency Based Auto-Load Shedding Scheme to Improve Service Reliability of the Island
Authors: Md. Shafiullah, M. Shafiul Alam, Bandar Suliman Alsharif
Abstract:
Electrical quantities such as frequency, voltage, current are being fluctuated due to abnormalities in power system. Most of the abnormalities cause fluctuation in system frequency and sometimes extreme abnormalities lead to system blackout. To protect the system from complete blackout planned and proper islanding plays a very important role even in case of extreme abnormalities. Islanding operation not only helps stabilizing a faulted system but also supports power supplies to critical and important loads, in extreme emergency. But the islanding systems are weaker than integrated system so the stability of islands is the prime concern when an integrated system is disintegrated. In this paper, different impacts on a load rich island have been studied and a frequency based auto-load shedding scheme has been developed for sudden load addition, generation outage and combined effect of both to the island. The developed scheme has been applied to Khulna-Barisal Island to validate the effectiveness of the developed technique. Various types of abnormalities to the test system have been simulated and for the simulation purpose CYME PSAF (Power System Analysis Framework) has been used.Keywords: auto load shedding, FS&FD relay, impact study, island, PSAF, ROCOF
Procedia PDF Downloads 4577534 Nation Branding as Reframing: From the Perspective of Translation Studies
Authors: Ye Tian
Abstract:
Soft power has replaced hard power and become one of the most attractive ways nations pursue to expand their international influence. One of the ways to improve a nation’s soft power is to commercialise the country and brand or rebrand it to the international audience, and thus attract interests or foreign investments. In this process, translation has often been regarded as merely a tool, and researches in it are either in translating literature as culture export or in how (in)accuracy of translation influences the branding campaign. This paper proposes to analyse nation branding campaign with framing theory, and thus gives an entry for translation studies to come to a central stage in today’s soft power research. To frame information or elements of a text, an event, or, as in this paper, a nation is to put them in a mental structure. This structure can be built by outsiders or by those who create the text, the event, or by citizens of the nation. To frame information like this can be regarded as a process of translation, as what translation does in its traditional meaning of ‘translating a text’ is to put a framework on the text to, deliberately or not, highlight some of the elements while hiding the others. In the discourse of nations, then, people unavoidably simplify a national image and put the nation into their imaginary framework. In this way, problems like stereotype and prejudice come into being. Meanwhile, if nations seek ways to frame or reframe themselves, they make efforts to have in control what and who they are in the eyes of international audiences, and thus make profits, economically or politically, from it. The paper takes African nations, which are usually perceived as a whole, and the United Kingdom as examples to justify passive and active framing process, and assesses both positive and negative influence framing has on nations. In conclusion, translation as framing causes problems like prejudice, and the image of a nation is not always in the hands of nation branders, but reframing the nation in a positive way has the potential to turn the tide.Keywords: framing, nation branding, stereotype, translation
Procedia PDF Downloads 1557533 Deep Learning for SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network
Procedia PDF Downloads 677532 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1227531 State of Emergency in Turkey (July 2016-July 2018): A Case of Utilization of Law as a Political Instrument
Authors: Neslihan Cetin
Abstract:
In this study, we will aim to analyze how the period of the state of emergency in Turkey lead to gaps in law and the formation of areas in which there was a complete lack of supervision. The state of emergency that was proclaimed following the coup attempt of July 15, 2016, continued until July 18, 2018, that is to say, 2 years, without taking into account whether the initial circumstances persisted. As part of this work, we claim that the state of emergency provided the executive power with important tools for governing, which it took constant use. We can highlight how the concern for security at the center of the basic considerations of the people in a city was exploited as a foundation by the military power in Turkey to interfere in the political, legal, and social spheres. The constitutions of 1924, 1961, and 1982 entrusted the army with the role of protector of the integrity of the state. This became an instrument at the hands of the military to legitimize their interventions in the name of public security. Its interventions in the political field are indeed politically motivated. The constitution, the legislative, and regulatory systems are modified and monopolized by the military power that dominates the legislative, regulatory, and judicial power, leading to a state of exception. With the political convulsions over a decade, the government was able to usurp the instrument called the state of exception. In particular, the decree-laws of the state of emergency, which the executive makes frequent and generally abusive use, became instruments in the hands of the government to take measures that it wishes to escape from the rules and the pre-established control mechanisms. Thus the struggle against the political opposition becomes more unbalanced and destructive. To this must also be added the ineffectiveness of ex-post controls and domestic remedies. This research allows us to stress how a legal concept, such as ‘the state of emergency’ can be politically exploited to make it a legal weapon that continues to produce victims.Keywords: constitutional law, state of emergency, rule of law, instrumentalization of law
Procedia PDF Downloads 1427530 Solution of the Blast Wave Problem in Dusty Gas
Authors: Triloki Nath, R. K. Gupta, L. P. Singh
Abstract:
The aim of this paper is to find the new exact solution of the blast wave problem in one-dimensional unsteady adiabatic flow for generalized geometry in a compressible, inviscid ideal gas with dust particles. The density of the undisturbed region is assumed to vary according to a power law of the distance from the point of explosion. The exact solution of the problem in form of a power in the distance and the time is obtained. Further, the behaviour of the total energy carried out by the blast wave for planar, cylindrically symmetric and spherically symmetric flow corresponding to different Mach number of the fluid flow in dusty gas is presented. It is observed that the presence of dust particles in the gas yields more complex expression as compared to the ordinary Gasdynamics.Keywords: shock wave, blast wave, dusty gas, strong shock
Procedia PDF Downloads 3327529 The Friendship Network Stability of Preschool Children during One Pedagogical Season
Authors: Yili Wang, Jarmo Kinos, Tuire Palonen, Tarja-Riitta Hurme
Abstract:
This longitudinal study aims to examine how five- and six-year-old children’s peer relationships are formed and fostered during one preschool year in a southwestern Finnish preschool. All 16 kindergarteners participated in the study (at dyad level N=240; i.e., 16 x 15 relationships among the children). The children were divided into four daily groups, based on the table order during the daily routines, and four intervention groups, based on the teachers’ pedagogical plan. During the intervention, one iPad was given to each group in order to stimulate interaction among peers and, thus, enable the children to form new peer relationships. In the data gathering, sociometric nomination techniques were used to investigate the nature (i.e., stability and mutuality) of the peer relationships. The data was collected five times during the year to see what kind of peer relationship changes occurred at the dyad level and the group level, i.e., in establishing and losing friendship ties among the children. Social network analyses were used to analyze the data. The results indicate that the children’s preference for gender segregation was strong compared to age preference and intervention. In all, the number of reciprocal friendship ties and the mutual absence of friendship ties increased towards the end of the year, whereas the number of unilateral friendship ties decreased. This indicates that children’s nominations narrow down; thus, the group structure becomes more crystalized. Instead of extending their friendship networks, children seek stable and mutual relationships with their peers in their middle childhood years. The intervention only had a slightly negative influence on children’s peer relationships.Keywords: intervention study, peer relationship, preschool education, social network analysis, sociometric ratings
Procedia PDF Downloads 2737528 Generalized Rough Sets Applied to Graphs Related to Urban Problems
Authors: Mihai Rebenciuc, Simona Mihaela Bibic
Abstract:
Branch of modern mathematics, graphs represent instruments for optimization and solving practical applications in various fields such as economic networks, engineering, network optimization, the geometry of social action, generally, complex systems including contemporary urban problems (path or transport efficiencies, biourbanism, & c.). In this paper is studied the interconnection of some urban network, which can lead to a simulation problem of a digraph through another digraph. The simulation is made univoc or more general multivoc. The concepts of fragment and atom are very useful in the study of connectivity in the digraph that is simulation - including an alternative evaluation of k- connectivity. Rough set approach in (bi)digraph which is proposed in premier in this paper contribute to improved significantly the evaluation of k-connectivity. This rough set approach is based on generalized rough sets - basic facts are presented in this paper.Keywords: (bi)digraphs, rough set theory, systems of interacting agents, complex systems
Procedia PDF Downloads 2437527 Fake Accounts Detection in Twitter Based on Minimum Weighted Feature Set
Authors: Ahmed ElAzab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny
Abstract:
Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, then the determined factors have been applied using different classification techniques, a comparison of the results for these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent research in the same area, this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts, moreover, the study can be applied on different Social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.Keywords: fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques
Procedia PDF Downloads 4167526 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 767525 Efficacy of Computer Mediated Power Point Presentations on Students' Learning Outcomes in Basic Science in Oyo State, Nigeria
Authors: Sunmaila Oyetunji Raimi, Olufemi Akinloye Bolaji, Abiodun Ezekiel Adesina
Abstract:
The lingering poor performance of students in basic science spells doom for a vibrant scientific and technological development which pivoted the economic, social and physical upliftment of any nation. This calls for identifying appropriate strategies for imparting basic science knowledge and attitudes to the teaming youths in secondary schools. This study, therefore, determined the impact of computer mediated power point presentations on students’ achievement in basic science in Oyo State, Nigeria. A pre-test, posttest, control group quazi-experimental design adopted for the study. Two hundred and five junior secondary two students selected using stratified random sampling technique participated in the study. Three research questions and three hypotheses guided the study. Two evaluative instruments – Students’ Basic Science Attitudes Scale (SBSAS, r = 0.91); Students’ Knowledge of Basic Science Test (SKBST, r = 0.82) were used for data collection. Descriptive statistics of mean, standard deviation and inferential statistics of ANCOVA, scheffe post-hoc test were used to analyse the data. The results indicated significant main effect of treatment on students cognitive (F(1,200)= 171.680; p < 0.05) and attitudinal (F(1,200)= 34.466; p < 0.05) achievement in Basic science with the experimental group having higher mean gain than the control group. Gender has significant main effect (F(1,200)= 23.382; p < 0.05) on students cognitive outcomes but not significant for attitudinal achievement in Basic science. The study therefore recommended among others that computer mediated power point presentations should be incorporated into curriculum methodology of Basic science in secondary schools.Keywords: basic science, computer mediated power point presentations, gender, students’ achievement
Procedia PDF Downloads 4297524 Gas Sweetening Process Simulation: Investigation on Recovering Waste Hydraulic Energy
Authors: Meisam Moghadasi, Hassan Ali Ozgoli, Foad Farhani
Abstract:
In this research, firstly, a commercial gas sweetening unit with methyl-di-ethanol-amine (MDEA) solution is simulated and comprised in an integrated model in accordance with Aspen HYSYS software. For evaluation purposes, in the second step, the results of the simulation are compared with operating data gathered from South Pars Gas Complex (SPGC). According to the simulation results, the considerable energy potential contributed to the pressure difference between absorber and regenerator columns causes this energy driving force to be applied in power recovery turbine (PRT). In the last step, the amount of waste hydraulic energy is calculated, and its recovery methods are investigated.Keywords: gas sweetening unit, simulation, MDEA, power recovery turbine, waste-to-energy
Procedia PDF Downloads 1787523 Scheduling in a Single-Stage, Multi-Item Compatible Process Using Multiple Arc Network Model
Authors: Bokkasam Sasidhar, Ibrahim Aljasser
Abstract:
The problem of finding optimal schedules for each equipment in a production process is considered, which consists of a single stage of manufacturing and which can handle different types of products, where changeover for handling one type of product to the other type incurs certain costs. The machine capacity is determined by the upper limit for the quantity that can be processed for each of the products in a set up. The changeover costs increase with the number of set ups and hence to minimize the costs associated with the product changeover, the planning should be such that similar types of products should be processed successively so that the total number of changeovers and in turn the associated set up costs are minimized. The problem of cost minimization is equivalent to the problem of minimizing the number of set ups or equivalently maximizing the capacity utilization in between every set up or maximizing the total capacity utilization. Further, the production is usually planned against customers’ orders, and generally different customers’ orders are assigned one of the two priorities – “normal” or “priority” order. The problem of production planning in such a situation can be formulated into a Multiple Arc Network (MAN) model and can be solved sequentially using the algorithm for maximizing flow along a MAN and the algorithm for maximizing flow along a MAN with priority arcs. The model aims to provide optimal production schedule with an objective of maximizing capacity utilization, so that the customer-wise delivery schedules are fulfilled, keeping in view the customer priorities. Algorithms have been presented for solving the MAN formulation of the production planning with customer priorities. The application of the model is demonstrated through numerical examples.Keywords: scheduling, maximal flow problem, multiple arc network model, optimization
Procedia PDF Downloads 4027522 A Novel Idea to Benefit of the Load Side’s Harmonics
Authors: Hussein Al-bayaty
Abstract:
This paper presents a novel idea to show the ability to benefit of the harmonic currents which are produced on the load side of the power grid. The proposed circuit contributes in reduction of the total harmonic distortion (THD) percentage through adding a high pass filter to draw harmonic currents with 150 Hz and multiple frequencies a and convert them to DC current and then reconvert it to AC current with 50 Hz frequency in order to feed different loads. The circuit has been designed, investigated and simulated in the MATLAB, Simulink program; the results will be assessed and compared the two cases: firstly, the system without adding the new circuit. Secondly, with adding the high pas filter circuit to the power system.Keywords: harmonics elimination, passive filters, Total Harmonic Distortion (THD), filter circuit
Procedia PDF Downloads 4137521 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluate the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.Keywords: convolutional neural network, electronic medical record, feature representation, lexical semantics, semantic decision
Procedia PDF Downloads 1267520 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images
Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez
Abstract:
Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking
Procedia PDF Downloads 106