Search results for: failure detection and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7739

Search results for: failure detection and prediction

4889 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 112
4888 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 95
4887 Transfigurative Changes of Governmental Responsibility

Authors: Ákos Cserny

Abstract:

The unequivocal increase of the area of operation of the executive power can happen with the appearance of new areas to be influenced and its integration in the power, or at the expense of the scopes of other organs with public authority. The extension of the executive can only be accepted within the framework of the rule of law if parallel with this process we get constitutional guarantees that the exercise of power is kept within constitutional framework. Failure to do so, however, may result in the lack, deficit of democracy and democratic sense, and may cause an overwhelming dominance of the executive power. Therefore, the aim of this paper is to present executive power and responsibility in the context of different dimensions.

Keywords: confidence, constitution, executive power, liabiliy, parliamentarism

Procedia PDF Downloads 406
4886 A Penny for Your Thoughts: Mind Wandering Tendencies of Individuals with Autistic Traits

Authors: Leilani Forby, Farid Pazhoohi, Alan Kingstone

Abstract:

There is abundant research on the nature and content of mind wandering (MW) in neurotypical (NT) adults, however, there is little to no research in these areas on autistic individuals. The objective of the current study was to uncover any differences between low and high autistic trait individuals in their MW. In particular, we examined their attitudes toward, and the themes and temporal dimensions (past, present, future) of, their MW episodes. For our online study, we recruited 518 students (394 women and 124 men), between the ages of 18 and 51 years (M = 20.93, SD = 3.40) from the undergraduate Human Subject Pool at the University of British Columbia. Participants completed the Short Imaginal Processes Inventory (SIPI), which includes the three subscales Positive-Constructive Daydreaming (SIPI-PC), Guilt and Fear of Failure Daydreaming (SIPI-GFF), and Poor Attentional Control (SIPI-PAC). Participants also completed the Past (IPI-past) and Present (IPI-present) subscales of the Imaginal Processes Inventory (IPI), the Deliberate (MW-D) and Spontaneous (MW-S) Mind Wandering scales, the Short Form Perceived Stress Scale (PSS-4), and the 10-item Autism Quotient (AQ-10). Results showed that overall, participant AQ-10 scores were significantly correlated with MW-S, SIPI-GFF, and PSS-4 scores, such that as the number of autistic traits endorsed by participants increased, so did their reports of spontaneous mind wandering, guilt and fear of failure themed day dreaming, and stress levels. This same pattern held for female participants, however, AQ-10 scores were positively correlated with only PSS-4 scores for males. These results suggest that compared to males with autistic traits, MW in females with autistic traits is more similar to individuals with low autistic traits in terms of content and intentionality. Results are discussed in terms of clinical implications, their limitations, and suggested directions for future research.

Keywords: autism, deliberate, mind wandering, spontaneous, perceived stress

Procedia PDF Downloads 148
4885 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 389
4884 Management Tools for Assessment of Adverse Reactions Caused by Contrast Media at the Hospital

Authors: Pranee Suecharoen, Ratchadaporn Soontornpas, Jaturat Kanpittaya

Abstract:

Background: Contrast media has an important role for disease diagnosis through detection of pathologies. Contrast media can, however, cause adverse reactions after administration of its agents. Although non-ionic contrast media are commonly used, the incidence of adverse events is relatively low. The most common reactions found (10.5%) were mild and manageable and/or preventable. Pharmacists can play an important role in evaluating adverse reactions, including awareness of the specific preparation and the type of adverse reaction. As most common types of adverse reactions are idiosyncratic or pseudo-allergic reactions, common standards need to be established to prevent and control adverse reactions promptly and effectively. Objective: To measure the effect of using tools for symptom evaluation in order to reduce the severity, or prevent the occurrence, of adverse reactions from contrast media. Methods: Retrospective review descriptive research with data collected on adverse reactions assessment and Naranjo’s algorithm between June 2015 and May 2016. Results: 158 patients (10.53%) had adverse reactions. Of the 1,500 participants with an adverse event evaluation, 137 (9.13%) had a mild adverse reaction, including hives, nausea, vomiting, dizziness, and headache. These types of symptoms can be treated (i.e., with antihistamines, anti-emetics) and the patient recovers completely within one day. The group with moderate adverse reactions, numbering 18 cases (1.2%), had hypertension or hypotension, and shortness of breath. Severe adverse reactions numbered 3 cases (0.2%) and included swelling of the larynx, cardiac arrest, and loss of consciousness, requiring immediate treatment. No other complications under close medical supervision were recorded (i.e., corticosteroids use, epinephrine, dopamine, atropine, or life-saving devices). Using the guideline, therapies are divided into general and specific and are performed according to the severity, risk factors and ingestion of contrast media agents. Patients who have high-risk factors were screened and treated (i.e., prophylactic premedication) for prevention of severe adverse reactions, especially those with renal failure. Thus, awareness for the need for prescreening of different risk factors is necessary for early recognition and prompt treatment. Conclusion: Studying adverse reactions can be used to develop a model for reducing the level of severity and setting a guideline for a standardized, multidisciplinary approach to adverse reactions.

Keywords: role of pharmacist, management of adverse reactions, guideline for contrast media, non-ionic contrast media

Procedia PDF Downloads 304
4883 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 345
4882 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring

Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau

Abstract:

The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.

Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems

Procedia PDF Downloads 204
4881 Saudi Arabia and the Yemen War: A Fruitless Struggle

Authors: Majid Dashtgerd, Eisa Moradi Afrapoli

Abstract:

The “Yemen War” is one of the longest wars of the recent century, which was launched on 26 March 2015 after the Saudi Arabia-led alliance's military intervention in Yemen. The war began with the aim of fighting Yemen's Houthis and preventing Iranian influence in the region, and Saudi leaders expected a quick victory; However, the “Yemen War” lasted about seven years and is still going on (May 2022), and Saudi Arabia has not been able to achieve its strategic objectives. This study seeks to examine some of the most important reasons for Saudi Arabia's protracted war and failure in Yemen.

Keywords: Saudi Arabia, yemen war, houthis, Iran

Procedia PDF Downloads 133
4880 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.

Keywords: improved quality of experience (QoE), OpenFlow SDN controller, IPTV service application, softwarization

Procedia PDF Downloads 151
4879 Explantation of Osseo-Integrated Implant Using Electrosurgery and Ultrasonic Instrumentation

Authors: Stefano Andrea Denes

Abstract:

The use of dental implants to rehabilitate edentulous patients has become a well-established and effective treatment option; however, despite its high success rate, this treatment is not free of complications. The fracture of implant body is a rare cause of failure but when it does occur it can present technical challenges. In this article, we report the complete removal of a fractured osseointegrated implant using electrosurgery and ultrasonic instrumentation. The postoperative course was uneventful, no bleeding, infection, or hematoma formation was observed.

Keywords: dental implant, oral surgery, electrosurgery, piezosurgery

Procedia PDF Downloads 275
4878 Application of 2D Electrical Resistivity Tomographic Imaging Technique to Study Climate Induced Landslide and Slope Stability through the Analysis of Factor of Safety: A Case Study in Ooty Area, Tamil Nadu, India

Authors: S. Maniruzzaman, N. Ramanujam, Qazi Akhter Rasool, Swapan Kumar Biswas, P. Prasad, Chandrakanta Ojha

Abstract:

Landslide is one of the major natural disasters in South Asian countries. Applying 2D Electrical Resistivity Tomographic Imaging estimation of geometry, thickness, and depth of failure zone of the landslide can be made. Landslide is a pertinent problem in Nilgris plateau next to Himalaya. Nilgris range consists of hard Archean metamorphic rocks. Intense weathering prevailed during the Pre-Cambrian time had deformed the rocks up to 45m depth. The landslides are dominant in the southern and eastern part of plateau of is comparatively smaller than the northern drainage basins, as it has low density of drainage; coarse texture permitted the more of infiltration of rainwater, whereas in the northern part of the plateau entombed with high density of drainage pattern and fine texture with less infiltration than run off, and low to the susceptible to landslide. To get comprehensive information about the landslide zone 2D Electrical Resistivity Tomographic imaging study with CRM 500 Resistivity meter are used in Coonoor– Mettupalyam sector of Nilgiris plateau. To calculate Factor of Safety the infinite slope model of Brunsden and Prior is used. Factor of Safety can be expressed (FS) as the ratio of resisting forces to disturbing forces. If FS < 1 disturbing forces are larger than resisting forces and failure may occur. The geotechnical parameters of soil samples are calculated on the basis upon the apparent resistivity values for litho units of measured from 2D ERT image of the landslide zone. Relationship between friction angles for various soil properties is established by simple regression analysis from apparent resistivity data. Increase of water content in slide zone reduces the effectiveness of the shearing resistance and increase the sliding movement. Time-lapse resistivity changes to slope failure is determined through geophysical Factor of Safety which depends on resistivity and site topography. This ERT technique infers soil property at variable depths in wider areas. This approach to retrieve the soil property and overcomes the limit of the point of information provided by rain gauges and porous probes. Monitoring of slope stability without altering soil structure through the ERT technique is non-invasive with low cost. In landslide prone area an automated Electrical Resistivity Tomographic Imaging system should be installed permanently with electrode networks to monitor the hydraulic precursors to monitor landslide movement.

Keywords: 2D ERT, landslide, safety factor, slope stability

Procedia PDF Downloads 324
4877 Investigation of Ascochyta Blight Resistance in Registered Turkish Chickpea (Cicer arietinum L.) Varieties by Using Molecular Techniques

Authors: Ibrahim Ilker Ozyigit, Fatih Tabanli, Sezin Adinir

Abstract:

In this study, Ascochyta blight resistance was investigated in 34 registered chickpea varieties, which are widely planting in different regions of Turkey. For this aim, molecular marker techniques, such as STMS, RAPD and ISSR were used. Ta2, Ta146 and Ts54 primers were used for STMS, while UBC733 and UBC681 primers for RAPD, and UBC836 and UBC858 primers for ISSR. Ta2, Ts54 and Ta146 (STMS), and UBC733 (RAPD) primers demonstrated the distinctive feature for Ascochyta blight resistance. Ta2, Ts54 and Ta146 primers yielded the quite effective results in detection of resistant and sensitive varieties. Besides, UBC 733 primer distinguished all kinds of standard did not give any reliable results for other varieties since it demonstrated all as resistant. In addition, monomorphic bands were obtained from UBC681 (RAPD), and UBC836 and UBC858 (ISSR) primers, not demonstrating reliable results in detection of resistance against Ascochyta blight disease. Obtained results informed us about both disease resistance and genetic diversity in registered Turkish chickpea varieties. This project was funded through the Scientific Research Projects of Marmara University under Grant Number FEN-C-YLP-070617-0365 and The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 113O070.

Keywords: plant genetics, ISSR, RAPD, STMS

Procedia PDF Downloads 200
4876 A Spatial Approach to Model Mortality Rates

Authors: Yin-Yee Leong, Jack C. Yue, Hsin-Chung Wang

Abstract:

Human longevity has been experiencing its largest increase since the end of World War II, and modeling the mortality rates is therefore often the focus of many studies. Among all mortality models, the Lee–Carter model is the most popular approach since it is fairly easy to use and has good accuracy in predicting mortality rates (e.g., for Japan and the USA). However, empirical studies from several countries have shown that the age parameters of the Lee–Carter model are not constant in time. Many modifications of the Lee–Carter model have been proposed to deal with this problem, including adding an extra cohort effect and adding another period effect. In this study, we propose a spatial modification and use clusters to explain why the age parameters of the Lee–Carter model are not constant. In spatial analysis, clusters are areas with unusually high or low mortality rates than their neighbors, where the “location” of mortality rates is measured by age and time, that is, a 2-dimensional coordinate. We use a popular cluster detection method—Spatial scan statistics, a local statistical test based on the likelihood ratio test to evaluate where there are locations with mortality rates that cannot be described well by the Lee–Carter model. We first use computer simulation to demonstrate that the cluster effect is a possible source causing the problem of the age parameters not being constant. Next, we show that adding the cluster effect can solve the non-constant problem. We also apply the proposed approach to mortality data from Japan, France, the USA, and Taiwan. The empirical results show that our approach has better-fitting results and smaller mean absolute percentage errors than the Lee–Carter model.

Keywords: mortality improvement, Lee–Carter model, spatial statistics, cluster detection

Procedia PDF Downloads 174
4875 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 149
4874 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 141
4873 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 433
4872 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 138
4871 A Systematic Review of the Methodological and Reporting Quality of Case Series in Surgery

Authors: Riaz A. Agha, Alexander J. Fowler, Seon-Young Lee, Buket Gundogan, Katharine Whitehurst, Harkiran K. Sagoo, Kyung Jin Lee Jeong, Douglas G. Altman, Dennis P. Orgill

Abstract:

Introduction: Case Series are an important and common study type. Currently, no guideline exists for reporting case series and there is evidence of key data being missed from such reports. We propose to develop a reporting guideline for case series using a methodologically robust technique. The first step in this process is a systematic review of literature relevant to the reporting deficiencies of case series. Methods: A systematic review of methodological and reporting quality in surgical case series was performed. The electronic search strategy was developed by an information specialist and included MEDLINE, EMBASE, Cochrane Methods Register, Science Citation index and Conference Proceedings Citation index, from the start of indexing until 5th November 2014. Independent screening, eligibility assessments and data extraction was performed. Included articles were analyzed for five areas of deficiency: failure to use standardized definitions missing or selective data transparency or incomplete reporting whether alternate study designs were considered. Results: The database searching identified 2,205 records. Through the process of screening and eligibility assessments, 92 articles met inclusion criteria. Frequency of methodological and reporting issues identified was a failure to use standardized definitions (57%), missing or selective data (66%), transparency, or incomplete reporting (70%), whether alternate study designs were considered (11%) and other issues (52%). Conclusion: The methodological and reporting quality of surgical case series needs improvement. Our data shows that clear evidence-based guidelines for the conduct and reporting of a case series may be useful to those planning or conducting them.

Keywords: case series, reporting quality, surgery, systematic review

Procedia PDF Downloads 361
4870 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 245
4869 Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry

Authors: Kaouther Bergaui, Nafaa Reguigui, Charles Gary

Abstract:

Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations.

Keywords: neutron generator deuterium-deuterium, Monte Carlo method, radiation, neutron flux, neutron activation analysis, born, neutron radiography, explosive detection, BNCT

Procedia PDF Downloads 201
4868 The History and Pattern of Migration from Punjab to West: Colonial to Global Punjab

Authors: Malkit Singh

Abstract:

This paper presents an in-depth analysis of the problem of migration from Punjab to the West while analyzing the history and patterns of generations of migration of Punjabis to the West. A special emphasis is given to link the present socio-economic and political crisis with the historical pattern of Punjabis’ migration to the West from colonial India to Independent Bharat, along with the stories of the success and failures of Western aspirants’ youth from Punjab. The roots of the migration from Punjab to the West have been traced from the invasion of the British in Punjab, resulting in the socio-economic and political dismantling of the Punjabi society, which resulted in the migration of the Punjabis to the other colonies of the British Empire. The grim position at home despite of all the efforts and hard work by the majority of the Punjabis, particularly from the farmer community and the shining lifestyle of some families of the village or vicinity who have some relatives in the West have encouraged the large number of Punjabis to change their fortune by working in West. However, the Visa and Work Permit regime has closed the doors of the West for those who are unskilled, semi-skilled and not qualified for the visa and work permit norms, but their inspiration to change their fortune by working abroad at any cost has resulted into the development of big business fraud of immigration agent and firms in Punjab that resulted into the loss of the thousands lives, imprisonment in the foreign and selling of the properties of the Punjabis. The greed for the greener pastures in the West and, the plight of the deserted wives of NRIs and the illegal routes adopted by the Punjabi youth due to the non-availability of visas and work permits are dealt in a comprehensive method. The rise and fall of Punjab as a land of the breadbasket of Bharat and the marginalization of the farmers with middle and small holdings due to the capital-intensive techniques are linked with the forced migration of the Punjabis. The failure of the government to address and respond to the rampant corruption, agriculture failure and the resulting problems of law and order before and after the troubled period of militancy in Punjab and the resulting migration to the West are comprehensively covered. The new trend of the Student Visa and Study abroad, particularly in Canada, Australia, and New Zealand, despite of the availability of quality education at very low cost in India. The early success of some students in getting study visas from Australia, Canada, New Zealand etc. and getting permanent immigration to these countries have encouraged the majority of Punjabi youth to leave their motherland for better opportunities in the prosperous lands, that is, again, failed as these countries are flooded with the Punjabi students. Moreover, the total failure of the political leadership of Punjab to address the basic needs of society, like law and order and stop the drug menace issues in the post-militancy Punjab is also done to understand the problem.

Keywords: Punjab, migration, West, agriculture

Procedia PDF Downloads 71
4867 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras

Abstract:

Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.

Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality

Procedia PDF Downloads 349
4866 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 487
4865 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 78
4864 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model

Authors: N. Nivedita, S. Durbha

Abstract:

Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.

Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain

Procedia PDF Downloads 531
4863 The Toxicity of Doxorubicin Connected with Nanotransporters

Authors: Iva Blazkova, Amitava Moulick, Vedran Milosavljevic, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Doxorubicin is one of the most commonly used and the most effective chemotherapeutic drugs. This antracycline drug isolated from the bacteria Streptomyces peuceticus var. caesius is sold under the trade name Adriamycin (hydroxydaunomycin, hydroxydaunorubicin). Doxorubicin is used in single therapy to treat hematological malignancies (blood cancers, leukaemia, lymphoma), many types of carcinoma (solid tumors) and soft tissue sarcomas. It has many serious side effects like nausea and vomiting, hair lost, myelosupression, oral mucositis, skin reactions and redness, but the most serious one is the cardiotoxicity. Because of the risk of heart attack and congestive heart failure, the total dose administered to patients has to be accurately monitored. With the aim to lower the side effects and to targeted delivery of doxorubicin into the tumor tissue, the different nanoparticles are studied. The drug can be bound on a surface of nanoparticle, encapsulated in the inner cavity, or incorporated into the structure of nanoparticle. Among others, carbon nanoparticles (graphene, carbon nanotubes, fullerenes) are highly studied. Besides the number of inorganic nanoparticles, a great potential exhibit also organic ones mainly lipid-based and polymeric nanoparticle. The aim of this work was to perform a toxicity study of free doxorubicin compared to doxorubicin conjugated with various nanotransporters. The effect of liposomes, fullerenes, graphene, and carbon nanotubes on the toxicity was analyzed. As a first step, the binding efficacy of between doxorubicin and the nanotransporter was determined. The highest efficacy was detected in case of liposomes (85% of applied drug was encapsulated) followed by graphene, carbon nanotubes and fullerenes. For the toxicological studies, the chicken embryos incubated under controlled conditions (37.5 °C, 45% rH, rotation every 2 hours) were used. In 7th developmental day of chicken embryos doxorubicin or doxorubicin-nanotransporter complex was applied on the chorioallantoic membrane of the eggs and the viability was analyzed every day till the 17th developmental day. Then the embryos were extracted from the shell and the distribution of doxorubicin in the body was analyzed by measurement of organs extracts using laser induce fluorescence detection. The chicken embryo mortality caused by free doxorubicin (30%) was significantly lowered by using the conjugation with nanomaterials. The highest accumulation of doxorubicin and doxorubicin nanotransporter complexes was observed in the liver tissue

Keywords: doxorubicin, chicken embryos, nanotransporters, toxicity

Procedia PDF Downloads 450
4862 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 199
4861 Row Detection and Graph-Based Localization in Tree Nurseries Using a 3D LiDAR

Authors: Ionut Vintu, Stefan Laible, Ruth Schulz

Abstract:

Agricultural robotics has been developing steadily over recent years, with the goal of reducing and even eliminating pesticides used in crops and to increase productivity by taking over human labor. The majority of crops are arranged in rows. The first step towards autonomous robots, capable of driving in fields and performing crop-handling tasks, is for robots to robustly detect the rows of plants. Recent work done towards autonomous driving between plant rows offers big robotic platforms equipped with various expensive sensors as a solution to this problem. These platforms need to be driven over the rows of plants. This approach lacks flexibility and scalability when it comes to the height of plants or distance between rows. This paper proposes instead an algorithm that makes use of cheaper sensors and has a higher variability. The main application is in tree nurseries. Here, plant height can range from a few centimeters to a few meters. Moreover, trees are often removed, leading to gaps within the plant rows. The core idea is to combine row detection algorithms with graph-based localization methods as they are used in SLAM. Nodes in the graph represent the estimated pose of the robot, and the edges embed constraints between these poses or between the robot and certain landmarks. This setup aims to improve individual plant detection and deal with exception handling, like row gaps, which are falsely detected as an end of rows. Four methods were developed for detecting row structures in the fields, all using a point cloud acquired with a 3D LiDAR as an input. Comparing the field coverage and number of damaged plants, the method that uses a local map around the robot proved to perform the best, with 68% covered rows and 25% damaged plants. This method is further used and combined with a graph-based localization algorithm, which uses the local map features to estimate the robot’s position inside the greater field. Testing the upgraded algorithm in a variety of simulated fields shows that the additional information obtained from localization provides a boost in performance over methods that rely purely on perception to navigate. The final algorithm achieved a row coverage of 80% and an accuracy of 27% damaged plants. Future work would focus on achieving a perfect score of 100% covered rows and 0% damaged plants. The main challenges that the algorithm needs to overcome are fields where the height of the plants is too small for the plants to be detected and fields where it is hard to distinguish between individual plants when they are overlapping. The method was also tested on a real robot in a small field with artificial plants. The tests were performed using a small robot platform equipped with wheel encoders, an IMU and an FX10 3D LiDAR. Over ten runs, the system achieved 100% coverage and 0% damaged plants. The framework built within the scope of this work can be further used to integrate data from additional sensors, with the goal of achieving even better results.

Keywords: 3D LiDAR, agricultural robots, graph-based localization, row detection

Procedia PDF Downloads 141
4860 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 249