Search results for: dynamic friction
1769 The Dynamic of Decentralization of Education Policy in Post-Reform Indonesia: Local Perspectives
Authors: Mudiyati Rahmatunnisa
Abstract:
This study is about the implementation of decentralization of education policy in today’s Indonesia’s reform era. The policy has made education as one of the basic public services that must be performed by the local governments. After more than a decade of implementing the policy, what have been achieved? Has the implementation of educational affairs in the region been able to improve the quality of education services in the region? What obstacles or challenges faced by the region in the implementation of the educational affairs? How does region overcome obstacles or challenges? In answering those strategic questions, this study will particularly investigate the implementation of educational affairs in the city and District of Cirebon, the two district level of governments in West Java Province. The two loci of study provide interesting insight, given the range of previous studies did not specifically investigate using a local perspective (city and district level). This study employs a qualitative research method through case studies. Operationally, this study is sustained by several data collection techniques, i.e. interviews, documentary method, and systematic observation. Needless to say, there have been many factors distorting the ideal construction of decentralization of education policy.Keywords: decentralization, decentralization of education, policy implementation, public service
Procedia PDF Downloads 3791768 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach
Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi
Abstract:
In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.Keywords: green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting
Procedia PDF Downloads 3291767 Enhancing Dents through Lean Six Sigma
Authors: Prateek Guleria, Shubham Sharma, Rakesh Kumar Shukla, Harshit Sharma
Abstract:
Performance measurement of small and medium-sized businesses is the primary need for all companies to survive and thrive in a dynamic global company. A structured and systematic, integrated organization increases employee reliability, sustainability, and loyalty. This paper is a case study of a gear manufacturing industry that was facing the problem of rejection due to dents and damages in gear. The DMAIC cycle, along with different tools used in the research work includes SIPOC (Supply, Input, Process, Output, Control) Pareto analysis, Root & Cause analysis, and FMEA (Failure Mode and Effect Analysis). The six-sigma level was improved from 4.06 to 3.46, and the rejection rate was reduced from 7.44% to 1.56%. These findings highlighted the influence of a Lean Six Sigma module in the gear manufacturing unit, which has already increased operational quality and continuity to increase market success and meet customer expectations. According to the findings, applying lean six sigma tools will result in increased productivity. The results could assist businesses in deciding the quality tools that were likely to improve efficiency, competitiveness, and expense.Keywords: six sigma, DMAIC, SIPOC, failure mode, effect analysis
Procedia PDF Downloads 1141766 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations
Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch
Abstract:
An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.Keywords: boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones
Procedia PDF Downloads 2111765 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis
Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar
Abstract:
Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast
Procedia PDF Downloads 4821764 Agent Based Location Management Protocol for Mobile Adhoc Networks
Authors: Mallikarjun B. Channappagoudar, Pallapa Venkataram
Abstract:
The dynamic nature of Mobile adhoc network (MANET) due to mobility and disconnection of mobile nodes, leads to various problems in predicting the movement of nodes and their location information updation, for efficient interaction among the application specific nodes. Location management is one of the main challenges to be considered for an efficient service provision to the applications of a MANET. In this paper, we propose a location management protocol, for locating the nodes of a MANET and to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes. The protocol predicts the node movement and application resource scarcity, does the replacement with the chosen nodes nearby which have less mobility and rich in resources, with the help of both static and mobile agents, and maintains the application continuity by providing required network resources. The protocol has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. It consumes much less time (response time), gives better location accuracy, utilize less network resources, and reduce location management overhead.Keywords: mobile agent, location management, distributed applications, mobile adhoc network
Procedia PDF Downloads 3951763 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber
Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He
Abstract:
As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.Keywords: 3D printed, carbon fiber, fiber content, recycling
Procedia PDF Downloads 1921762 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.Keywords: outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD
Procedia PDF Downloads 4481761 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment
Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai
Abstract:
Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.Keywords: computational methods, MATLAB, seismic hazard, seismic measurements
Procedia PDF Downloads 3421760 An Integrated 5G, Geomagnetic, and Inertial Measurement Unit Fusion Approach for Indoor Positioning
Authors: Chen Zhang, Wei He, Yue Jin, Zengshan Tian, Kaikai Liu
Abstract:
With the widespread adoption of the Internet of Things and smart devices, the demand for indoor positioning technology with high accuracy and robustness continues to grow. Traditional positioning methods such as fingerprinting, channel parameter estimation techniques (TDoA, AoA), and Pedestrian Dead Reckoning (PDR) each have their limitations. Fingerprinting is highly sensitive to environmental changes, channel parameter estimation is only effective in line-of-sight conditions, and PDR is prone to sensor errors and magnetic interference. To overcome these limitations, multisensor fusion-based positioning methods have become a mainstream solution. This paper proposes a dynamic positioning system that integrates 5G TDoA, geomagnetic fingerprinting, and PDR. The system uses 5G TDoA for high-precision starting point positioning, corrects PDR heading with geomagnetic declination, and refines PDR positioning accuracy using geomagnetic fingerprints. Experimental results demonstrate that this method improves positioning accuracy and stability in complex indoor environments, overcoming the limitations of traditional methods and providing a reliable indoor positioning solution.Keywords: 5G TDoA, magnetic fields, pedestrian dead reckoning, fusion location
Procedia PDF Downloads 41759 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering
Authors: Youssef I. Hafez
Abstract:
Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming
Procedia PDF Downloads 2241758 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory
Procedia PDF Downloads 4591757 Themes in Aesthetic Perceptions of Restorative Urban Landscapes
Authors: Rachel Bechtold, Catherine Shoulders, Donald Johnson, Jennie Popp, Elena Garcia, Lisa Wood
Abstract:
Creating successfully restored urban landscapes involves both the sound design of natural resources and the incorporation of human perceptions of landscape. Moving forward with an invested interest from society is a challenge for the efficacy of reclaimed landscape design. In particular, urban areas present a dynamic environment wherein society and nature compete for resources and space. This review is meant to examine how perceptions of urban community members, the stakeholders for the plant species that share their environment, are reflected in aesthetic considerations. Findings from this literature review include themes of (1) aesthetic perceptions of stakeholders in rehabilitated landscapes and (2) the importance of organizing indicators of aesthetic perception for future design decisions. Recommendations include addressing the gap in research on aesthetic perceptions of reclaimed urban landscapes and addressing the lack of a consistent and widely accepted framework for these interdisciplinary studies. With knowledge of stakeholder perceptions, improved aesthetic and ecologic designs can more seamlessly merge into reclaimed urban landscapes.Keywords: phytoremediation, urban landscape design, aesthetic perception, landscape ecology, phytorestoration, landscape reclamation, rehabilitation
Procedia PDF Downloads 1961756 A Modular Solution for Large-Scale Critical Industrial Scheduling Problems with Coupling of Other Optimization Problems
Authors: Ajit Rai, Hamza Deroui, Blandine Vacher, Khwansiri Ninpan, Arthur Aumont, Francesco Vitillo, Robert Plana
Abstract:
Large-scale critical industrial scheduling problems are based on Resource-Constrained Project Scheduling Problems (RCPSP), that necessitate integration with other optimization problems (e.g., vehicle routing, supply chain, or unique industrial ones), thus requiring practical solutions (i.e., modular, computationally efficient with feasible solutions). To the best of our knowledge, the current industrial state of the art is not addressing this holistic problem. We propose an original modular solution that answers the issues exhibited by the delivery of complex projects. With three interlinked entities (project, task, resources) having their constraints, it uses a greedy heuristic with a dynamic cost function for each task with a situational assessment at each time step. It handles large-scale data and can be easily integrated with other optimization problems, already existing industrial tools and unique constraints as required by the use case. The solution has been tested and validated by domain experts on three use cases: outage management in Nuclear Power Plants (NPPs), planning of future NPP maintenance operation, and application in the defense industry on supply chain and factory relocation. In the first use case, the solution, in addition to the resources’ availability and tasks’ logical relationships, also integrates several project-specific constraints for outage management, like, handling of resource incompatibility, updating of tasks priorities, pausing tasks in a specific circumstance, and adjusting dynamic unit of resources. With more than 20,000 tasks and multiple constraints, the solution provides a feasible schedule within 10-15 minutes on a standard computer device. This time-effective simulation corresponds with the nature of the problem and requirements of several scenarios (30-40 simulations) before finalizing the schedules. The second use case is a factory relocation project where production lines must be moved to a new site while ensuring the continuity of their production. This generates the challenge of merging job shop scheduling and the RCPSP with location constraints. Our solution allows the automation of the production tasks while considering the rate expectation. The simulation algorithm manages the use and movement of resources and products to respect a given relocation scenario. The last use case establishes a future maintenance operation in an NPP. The project contains complex and hard constraints, like on Finish-Start precedence relationship (i.e., successor tasks have to start immediately after predecessors while respecting all constraints), shareable coactivity for managing workspaces, and requirements of a specific state of "cyclic" resources (they can have multiple states possible with only one at a time) to perform tasks (can require unique combinations of several cyclic resources). Our solution satisfies the requirement of minimization of the state changes of cyclic resources coupled with the makespan minimization. It offers a solution of 80 cyclic resources with 50 incompatibilities between levels in less than a minute. Conclusively, we propose a fast and feasible modular approach to various industrial scheduling problems that were validated by domain experts and compatible with existing industrial tools. This approach can be further enhanced by the use of machine learning techniques on historically repeated tasks to gain further insights for delay risk mitigation measures.Keywords: deterministic scheduling, optimization coupling, modular scheduling, RCPSP
Procedia PDF Downloads 2011755 Review of Urban Vitality in China: Exploring the Theoretical Framework, Characteristics, and Assessment Systems
Abstract:
As China's urban construction enters a new phase of 'stock optimization,' the key point of urban development has shifted to the development and reuse of existing public space. However, cities still face a series of challenges, such as the shortage of space quantity and insufficient space quality, which indirectly affect urban vitality. A review of the vitality of urban public space will significantly contribute to optimizing the quality of the urban built environment. It firstly analyses the research hotspots of urban vitality at home and abroad, based on a semi-systematic literature review. Then this paper summarizes the theoretical definitions of the vitality of urban public space and sorts out the influencing factors from the perspectives of society, environment, and users. Lastly, the paper concludes with the mainstream quantitative and evaluation methods, such as linear evaluation and integrated evaluation. This paper renders a multi-theoretical perspective to understand the characteristics and evaluation system of the vitality of public space, which helps to acknowledge the dynamic relationship between users, urban environment, and vitality. It also looks forward to providing optimal design strategies for constructing a vigorous public space in future cities.Keywords: public space, quantification of vitality, spatial vitality, urban vitality
Procedia PDF Downloads 1111754 Attribute Index and Classification Method of Earthquake Damage Photographs of Engineering Structure
Authors: Ming Lu, Xiaojun Li, Bodi Lu, Juehui Xing
Abstract:
Earthquake damage phenomenon of each large earthquake gives comprehensive and profound real test to the dynamic performance and failure mechanism of different engineering structures. Cognitive engineering structure characteristics through seismic damage phenomenon are often far superior to expensive shaking table experiments. After the earthquake, people will record a variety of different types of engineering damage photos. However, a large number of earthquake damage photographs lack sufficient information and reduce their using value. To improve the research value and the use efficiency of engineering seismic damage photographs, this paper objects to explore and show seismic damage background information, which includes the earthquake magnitude, earthquake intensity, and the damaged structure characteristics. From the research requirement in earthquake engineering field, the authors use the 2008 China Wenchuan M8.0 earthquake photographs, and provide four kinds of attribute indexes and classification, which are seismic information, structure types, earthquake damage parts and disaster causation factors. The final object is to set up an engineering structural seismic damage database based on these four attribute indicators and classification, and eventually build a website providing seismic damage photographs.Keywords: attribute index, classification method, earthquake damage picture, engineering structure
Procedia PDF Downloads 7651753 A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain
Authors: Benga Ebouele, Thomas Tengen
Abstract:
Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings.Keywords: dynamic modelling, energy used, hybrid inventory, supply chain
Procedia PDF Downloads 2681752 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid
Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi
Abstract:
Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer
Procedia PDF Downloads 1421751 Genetic Association of SIX6 Gene with Pathogenesis of Glaucoma
Authors: Riffat Iqbal, Sidra Ihsan, Andleeb Batool, Maryam Mukhtar
Abstract:
Glaucoma is a gathering of optic neuropathies described by dynamic degeneration of retinal ganglionic cells. It is clinically and innately heterogenous illness containing a couple of particular forms each with various causes and severities. Primary open-angle glaucoma (POAG) is the most generally perceived kind of glaucoma. This study investigated the genetic association of single nucleotide polymorphisms (SNPs; rs10483727 and rs33912345) at the SIX1/SIX6 locus with primary open-angle glaucoma (POAG) in the Pakistani population. The SIX6 gene plays an important role in ocular development and has been associated with morphology of the optic nerve. A total of 100 patients clinically diagnosed with glaucoma and 100 control individuals of age over 40 were enrolled in the study. Genomic DNA was extracted by organic extraction method. The SNP genotyping was done by (i) PCR based restriction fragment length polymorphism (RFLP) and sequencing method. Significant genetic associations were observed for rs10483727 (risk allele T) and rs33912345 (risk allele C) with POAG. Hence, it was concluded that Six6 gene is genetically associated with pathogenesis of Glaucoma in Pakistan.Keywords: genotyping, Pakistani population, primary open-angle glaucoma, SIX6 gene
Procedia PDF Downloads 1871750 Mathematical Modelling of Human Cardiovascular-Respiratory System Response to Exercise in Rwanda
Authors: Jean Marie Ntaganda, Froduald Minani, Wellars Banzi, Lydie Mpinganzima, Japhet Niyobuhungiro, Jean Bosco Gahutu, Vincent Dusabejambo, Immaculate Kambutse
Abstract:
In this paper, we present a nonlinear dynamic model for the interactive mechanism of the cardiovascular and respiratory system. The model is designed and analyzed for human during physical exercises. In order to verify the adequacy of the designed model, data collected in Rwanda are used for validation. We have simulated the impact of heart rate and alveolar ventilation as controls of cardiovascular and respiratory system respectively to steady state response of the main cardiovascular hemodynamic quantities i.e., systemic arterial and venous blood pressures, arterial oxygen partial pressure and arterial carbon dioxide partial pressure, to the stabilised values of controls. We used data collected in Rwanda for both male and female during physical activities. We obtained a good agreement with physiological data in the literature. The model may represent an important tool to improve the understanding of exercise physiology.Keywords: exercise, cardiovascular/respiratory, hemodynamic quantities, numerical simulation, physical activity, sportsmen in Rwanda, system
Procedia PDF Downloads 2441749 A Study on the Influence of Planet Pin Parallelism Error to Load Sharing Factor
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Yong Yang, Gang Shen
Abstract:
In this paper, planet pin parallelism error, which is one of manufacturing error of planet carrier, is employed as a main variable to influence planet load sharing factor. This error is categorize two group: (i) pin parallelism error with rotation on the axis perpendicular to the tangent of base circle of gear(x axis rotation in this paper) (ii) pin parallelism error with rotation on the tangent axis of base circle of gear(y axis rotation in this paper). For this study, the planetary gear system in 1.5MW wind turbine is applied and pure torsional rigid body model of this planetary gear is built using Solidworks and MSC.ADAMS. Based on quantified parallelism error and simulation model, dynamics simulation of planetary gear is carried out to obtain dynamic mesh load results with each type of error and load sharing factor is calculated with mesh load results. Load sharing factor formula and the suggestion for planetary reliability design is proposed with the conclusion of this study.Keywords: planetary gears, planet load sharing, MSC. ADAMS, parallelism error
Procedia PDF Downloads 4001748 Modeling of a Pendulum Test Including Skin and Muscles under Compression
Authors: M. J. Kang, Y. N. Jo, H. H. Yoo
Abstract:
Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex
Procedia PDF Downloads 4471747 Machine Learning Assisted Performance Optimization in Memory Tiering
Authors: Derssie Mebratu
Abstract:
As a large variety of micro services, web services, social graphic applications, and media applications are continuously developed, it is substantially vital to design and build a reliable, efficient, and faster memory tiering system. Despite limited design, implementation, and deployment in the last few years, several techniques are currently developed to improve a memory tiering system in a cloud. Some of these techniques are to develop an optimal scanning frequency; improve and track pages movement; identify pages that recently accessed; store pages across each tiering, and then identify pages as a hot, warm, and cold so that hot pages can store in the first tiering Dynamic Random Access Memory (DRAM) and warm pages store in the second tiering Compute Express Link(CXL) and cold pages store in the third tiering Non-Volatile Memory (NVM). Apart from the current proposal and implementation, we also develop a new technique based on a machine learning algorithm in that the throughput produced 25% improved performance compared to the performance produced by the baseline as well as the latency produced 95% improved performance compared to the performance produced by the baseline.Keywords: machine learning, bayesian optimization, memory tiering, CXL, DRAM
Procedia PDF Downloads 961746 Behavior of an Elevated Liquid Storage Tank under Near-Fault Earthquakes
Authors: Koushik Roy, Sourav Gur, Sudib K. Mishra
Abstract:
Evidence of pulse type features in near-fault ground motions has raised serious concern to the structural engineering community, in view of their possible implications on the behavior of structures located on the fault regions. Studies in the recent past explore the effects of pulse type ground motion on the special structures, such as transmission towers in view of their high flexibility. Identically, long period sloshing of liquid in the storage tanks under dynamic loading might increase their failure vulnerability under near-fault pulses. Therefore, the behavior of the elevated liquid storage tank is taken up in this study. Simple lumped mass model is considered, with the bilinear force-deformation hysteresis behavior. Set of near-fault seismic ground acceleration time histories are adopted for this purpose, along with the far-field records for comparison. It has been demonstrated that pulse type motions lead to significant increase of the responses; in particular, sloshing of the fluid mass could be as high as 5 times, then the far field counterpart. For identical storage capacity, slender tanks are found to be more vulnerable than the broad ones.Keywords: far-field motion, hysteresis, liquid storage tank, near fault earthquake, sloshing
Procedia PDF Downloads 4031745 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis
Procedia PDF Downloads 4361744 Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate
Authors: Yahya Lavafpour, Steve Sharples
Abstract:
This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations.Keywords: climate change, tilt façade, thermal comfort, passivhaus, overheating
Procedia PDF Downloads 7641743 Seismic Performance of Reinforced Concrete Frames Infilled by Masonry Walls with Different Heights
Authors: Ji-Wook Mauk, Yu-Suk Kim, Hyung-Joon Kim
Abstract:
This study carried out comparative seismic performance of reinforced concrete frames infilled by masonry walls with different heights. Partial and fully infilled RC frames were modeled for the research objectives and the analysis model for a bare reinforced concrete frame was established for comparison. Non-linear static analyses for the studied frames were performed to investigate their structural behavior under extreme loading conditions and to find out their collapse mechanism. It was observed from analysis results that the strengths of the partial infilled RC frames are increased and their ductility is reduced, as infilled masonry walls are higher. Especially, Reinforced concrete frames with a higher partial infilled masonry wall would experience shear failures. Non-linear dynamic analyses using 10 earthquake records show that the bare and fully infilled reinforced concrete frames present stable collapse mechanism while the reinforced concrete frames with a partially infilled masonry wall collapse in more brittle manner due to short-column effects.Keywords: fully infilled RC frame, partially infilled RC frame, masonry wall, short-column effect
Procedia PDF Downloads 4221742 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan
Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen
Abstract:
In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.Keywords: automation, integration, value, communication
Procedia PDF Downloads 1471741 Acoustic Induced Vibration Response Analysis of Honeycomb Panel
Authors: Po-Yuan Tung, Jen-Chueh Kuo, Chia-Ray Chen, Chien-Hsing Li, Kuo-Liang Pan
Abstract:
The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum.Keywords: vibration, acoustic, modal, honeycomb panel
Procedia PDF Downloads 5561740 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim
Abstract:
This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: aftershock, composite material, GFRP, infill panel
Procedia PDF Downloads 335