Search results for: data filtering and extrapolation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25566

Search results for: data filtering and extrapolation

22716 The Role of Microfinance in Economic Development

Authors: Babak Salekmahdy

Abstract:

Microfinance is often seen as a means of repairing credit markets and unleashing the potential contribution of impoverished people who rely on self-employment. Since the 1990s, the microfinance industry has expanded rapidly, opening the path for additional kinds of social entrepreneurship and social investment. However, current data indicate relatively few average consumer effects, opposing pushback against microfinance. This research reconsiders microfinance statements, stressing the variety of data on impacts and the essential (but limited) role of reimbursements. The report finishes by explaining a shift in thinking: from microfinance as a strictly defined enterprise finance to microfinance as a more widely defined home finance. Microfinance, under this perspective, provides advantages by providing liquidity for various requirements rather than just by increasing income.

Keywords: microfinance, small business, economic development, credit markets

Procedia PDF Downloads 86
22715 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 78
22714 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging

Authors: Daofan Guo, Dong Yang

Abstract:

For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.

Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring

Procedia PDF Downloads 149
22713 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT

Procedia PDF Downloads 483
22712 The Perception of Teacher Candidates' on History in Non-Educational TV Series: The Magnificent Century

Authors: Evren Şar İşbilen

Abstract:

As it is known, the movies and tv series are occupying a large part in the daily lives of adults and children in our era. In this connection, in the present study, the most popular historical TV series of recent years in Turkey, “Muhteşem Yüzyıl” (The Magnificent Century), was selected as the sample for the data collection in order to explore the perception of history of university students’. The data collected was analyzed bothqualitatively and quantitatively. The findings discussed in relation to the possible educative effects of historical non-educational TV series and movies on students' perceptions related to history. Additionally, suggestions were made regarding to the utilization of non-educational TV series or movies in education in a positive way.

Keywords: education, history, movies, teacher candidates

Procedia PDF Downloads 336
22711 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 101
22710 Molecular Evidence for Three Species of Giraffa

Authors: Alice Petzold, Alexandre Hassanin

Abstract:

The number of giraffe species has been in focus of interest since the exploration of sub-Saharan Africa by European naturalists during the 18th and 19th centuries, as previous taxonomists, like Geoffroy Saint-Hilaire, Richard Owen or William Edward de Winton, recognized two or three species of Giraffa. For the last decades, giraffes were commonly considered as a single species subdivided into nine subspecies. In this study, we have re-examined available nuclear and mitochondrial data. Our genetic admixture analyses of seven introns support three species: G. camelopardalis (i.e., northern giraffes including reticulated giraffes), G. giraffa (southern giraffe) and G. tippelskirchi (Masai giraffe). However, the nuclear alignments show small variation and our phylogenetic analyses provide high support only for the monophyly of G. camelopardalis. Comparisons with the mitochondrial tree revealed a robust conflict for the position and monophyly of G. giraffa and G. tippelskirchi, which is explained firstly by a mitochondrial introgression from Masai giraffe to southeastern giraffe, and secondly, by gene flow mediated by male dispersal between southern populations (subspecies angolensis and giraffa). We conclude that current data gives only moderate support for three giraffe species and point out that additional nuclear data need to be studied to revise giraffe taxonomy.

Keywords: autosomal markers, Giraffidae, mitochondrial introgression, taxonomy

Procedia PDF Downloads 207
22709 Geophysical Contribution to Reveal the Subsurface Structural Setting Using Gravity, Seismic and Seismological Data in the Chott Belts, Southern Atlas of Tunisia

Authors: Nesrine Frifita, Mohamed Gharbi, Kevin Mickus

Abstract:

Physical methods based on gravity, seismic and seismological data were adopted to clarify the relationship between the distribution of seismicity and the crustal deformations under the chott belts and surrounding regions, in southern atlas of Tunisia. Gafsa and its surrounding were described as a moderate seismic zone, and the fault of Gafsa is one of most seismically active faults in Tunisia in general, and in the southern Atlas in particularly. The present work aims to prove a logical relationship between the distribution of seismicity and deformations which strongly related to thickness and density variations within the basement and sedimentary cover along the study area, through several physical methods; gravity, seismic and seismological data were interpreted to calculate physical propriety of the subsurface rocks, the depth and geometry of active faults and causatives bodies. Findings show that depths variation and mixed thin and thick skinned structural style characterizing the chott belts explain the moderate seismicity in the study area.

Keywords: potential fields, seismicity, Southern Atlas, Tunisia

Procedia PDF Downloads 118
22708 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction

Procedia PDF Downloads 533
22707 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India

Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula

Abstract:

In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.

Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS

Procedia PDF Downloads 84
22706 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 170
22705 The Projections of Urban Climate Change Using Conformal Cubic Atmospheric Model in Bali, Indonesia

Authors: Laras Tursilowati, Bambang Siswanto

Abstract:

Urban climate change has short- and long-term implications for decision-makers in urban development. The problem for this important metropolitan regional of population and economic value is that there is very little usable information on climate change. Research about urban climate change has been carried out in Bali Indonesia by using Conformal Cubic Atmospheric Model (CCAM) that runs with Representative Concentration Pathway (RCP)4.5. The history data means average data from 1975 to 2005, climate projections with RCP4.5 scenario means average data from 2006 to 2099, and anomaly (urban climate change) is RCP4.5 minus history. The results are the history of temperature between 22.5-27.5 OC, and RCP4.5 between 25.5-29.5 OC. The temperature anomalies can be seen in most of northern Bali that increased by about 1.6 to 2.9 OC. There is a reduced humidity tendency (drier) in most parts of Bali, especially the northern part of Bali, while a small portion in the south increase moisture (wetter). The comfort index of Bali region in history is still relatively comfortable (20-26 OC), but on the condition RCP4.5 there is no comfortable area with index more than 26 OC (hot and dry). This research is expected to be useful to help the government make good urban planning.

Keywords: CCAM, comfort index, IPCC AR5, temperature, urban climate change

Procedia PDF Downloads 147
22704 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 373
22703 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 151
22702 A Case Study: Social Network Analysis of Construction Design Teams

Authors: Elif D. Oguz Erkal, David Krackhardt, Erica Cochran-Hameen

Abstract:

Even though social network analysis (SNA) is an abundantly studied concept for many organizations and industries, a clear SNA approach to the project teams has not yet been adopted by the construction industry. The main challenges for performing SNA in construction and the apparent reason for this gap is the unique and complex structure of each construction project, the comparatively high circulation of project team members/contributing parties and the variety of authentic problems for each project. Additionally, there are stakeholders from a variety of professional backgrounds collaborating in a high-stress environment fueled by time and cost constraints. Within this case study on Project RE, a design & build project performed at the Urban Design Build Studio of Carnegie Mellon University, social network analysis of the project design team will be performed with the main goal of applying social network theory to construction project environments. The research objective is to determine a correlation between the network of how individuals relate to each other on one’s perception of their own professional strengths and weaknesses and the communication patterns within the team and the group dynamics. Data is collected through a survey performed over four rounds conducted monthly, detailed follow-up interviews and constant observations to assess the natural alteration in the network with the effect of time. The data collected is processed by the means of network analytics and in the light of the qualitative data collected with observations and individual interviews. This paper presents the full ethnography of this construction design team of fourteen architecture students based on an elaborate social network data analysis over time. This study is expected to be used as an initial step to perform a refined, targeted and large-scale social network data collection in construction projects in order to deduce the impacts of social networks on project performance and suggest better collaboration structures for construction project teams henceforth.

Keywords: construction design teams, construction project management, social network analysis, team collaboration, network analytics

Procedia PDF Downloads 203
22701 Computational Fluid Dynamics Simulations and Analysis of Air Bubble Rising in a Column of Liquid

Authors: Baha-Aldeen S. Algmati, Ahmed R. Ballil

Abstract:

Multiphase flows occur widely in many engineering and industrial processes as well as in the environment we live in. In particular, bubbly flows are considered to be crucial phenomena in fluid flow applications and can be studied and analyzed experimentally, analytically, and computationally. In the present paper, the dynamic motion of an air bubble rising within a column of liquid is numerically simulated using an open-source CFD modeling tool 'OpenFOAM'. An interface tracking numerical algorithm called MULES algorithm, which is built-in OpenFOAM, is chosen to solve an appropriate mathematical model based on the volume of fluid (VOF) numerical method. The bubbles initially have a spherical shape and starting from rest in the stagnant column of liquid. The algorithm is initially verified against numerical results and is also validated against available experimental data. The comparison revealed that this algorithm provides results that are in a very good agreement with the 2D numerical data of other CFD codes. Also, the results of the bubble shape and terminal velocity obtained from the 3D numerical simulation showed a very good qualitative and quantitative agreement with the experimental data. The simulated rising bubbles yield a very small percentage of error in the bubble terminal velocity compared with the experimental data. The obtained results prove the capability of OpenFOAM as a powerful tool to predict the behavior of rising characteristics of the spherical bubbles in the stagnant column of liquid. This will pave the way for a deeper understanding of the phenomenon of the rise of bubbles in liquids.

Keywords: CFD simulations, multiphase flows, OpenFOAM, rise of bubble, volume of fluid method, VOF

Procedia PDF Downloads 127
22700 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 91
22699 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 339
22698 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 159
22697 The Extended Skew Gaussian Process for Regression

Authors: M. T. Alodat

Abstract:

In this paper, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression(ESGPr) model. The ESGPR model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGPR model at a new input. Also we apply the ESGPR model to FOREX data and we find that it fits the Forex data better than the GPR model.

Keywords: extended skew normal distribution, Gaussian process for regression, predictive distribution, ESGPr model

Procedia PDF Downloads 559
22696 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot

Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin

Abstract:

The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a user

Keywords: AI, empathetic, chatbot, AI models

Procedia PDF Downloads 96
22695 Anemia Among Pregnant Women in Kuwait: Findings from Kuwait Birth Cohort Study

Authors: Majeda Hammoud

Abstract:

Background: Anemia during pregnancy increases the risk of delivery by cesarean section, low birth weight, preterm birth, perinatal mortality, stillbirth, and maternal mortality. In this study, we aimed to assess the prevalence of anemia in pregnant women and its associated factors in the Kuwait birth cohort study. Methods: The Kuwait birth cohort (N=1108) was a prospective cohort study in which pregnant women were recruited in the third trimester. Data were collected through personal interviews with mothers who attend antenatal care visits, including data on socio-economic status and lifestyle factors. Blood samples were taken after the recruitment to measure multiple laboratory indicators. Clinical data were extracted from the medical records by a clinician including data on comorbidities. Anemia was defined as having Hemoglobin (Hb) <110 g/L with further classification as mild (100-109 g/L), moderate (70-99 g/L), or severe (<70 g/L). Predictors of anemia were classified as underlying or direct factors, and logistic regression was used to investigate their association with anemia. Results: The mean Hb level in the study group was 115.21 g/L (95%CI: 114.56- 115.87 g/L), with significant differences between age groups (p=0.034). The prevalence of anemia was 28.16% (95%CI: 25.53-30.91%), with no significant difference by age group (p=0.164). Of all 1108 pregnant women, 8.75% had moderate anemia, and 19.40% had mild anemia, but no pregnant women had severe anemia. In multivariable analysis, getting pregnant while using contraception, adjusted odds ratio (AOR) 1.73(95%CI:1.01-2.96); p=0.046 and current use of supplements, AOR 0.50 (95%CI: 0.26-0.95); p=0.035 were significantly associated with anemia (underlying factors). From the direct factors group, only iron and ferritin levels were significantly associated with anemia (P<0.001). Conclusion: Although the severe form of anemia is low among pregnant women in Kuwait, mild and moderate anemia remains a significant health problem despite free access to antenatal care.

Keywords: anemia, pregnancy, hemoglobin, ferritin

Procedia PDF Downloads 56
22694 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 235
22693 Academic Goal Setting Practices of University Students in Lagos State, Nigeria: Implications for Counselling

Authors: Asikhia Olubusayo Aduke

Abstract:

Students’ inability to set data-based (specific, measurable, attainable, reliable, and time-bound) personal improvement goals threatens their academic success. Hence, the study aimed to investigate year-one students’ academic goal-setting practices at Lagos State University of Education, Nigeria. Descriptive survey research was used in carrying out this study. The study population consisted of 3,101 year-one students of the University. A sample size of five hundred (501) participants was selected through a proportional and simple random sampling technique. The Formative Goal Setting Questionnaire (FGSQ) developed by Research Collaboration (2015) was adapted and used as an instrument for the study. Two main research questions were answered, while two null hypotheses were formulated and tested for the study. The study revealed higher data-based goals for all students than personal improvement goals. Nevertheless, data-based and personal improvement goal-setting for female students was higher than for male students. One sample test statistic and Anova used to analyse data for the two hypotheses also revealed that the mean difference between male and female year one students’ data-based and personal improvement goal-setting formation was statistically significant (p < 0.05). This means year one students’ data-based and personal improvement goals showed significant gender differences. Based on the findings of this study, it was recommended, among others, that therapeutic techniques that can help to change students’ faulty thinking and challenge their lack of desire for personal improvement should be sought to treat students who have problems with setting high personal improvement goals. Counsellors also need to advocate continued research into how to increase the goal-setting ability of male students and should focus more on counselling male students’ goal-setting ability. The main contributions of the study are higher institutions must prioritize early intervention in first-year students' academic goal setting. Researching gender differences in this practice reveals a crucial insight: male students often lag behind in setting meaningful goals, impacting their motivation and performance. Focusing on this demographic with data-driven personal improvement goals can be transformative. By promoting goal setting that is specific, measurable, and focused on self-growth (rather than competition), male students can unlock their full potential. Researchers and counselors play a vital role in detecting and supporting students with lower goal-setting tendencies. By prioritizing this intervention, we can empower all students to set ambitious, personalized goals that ignite their passion for learning and pave the way for academic success.

Keywords: academic goal setting, counselling, practice, university, year one students

Procedia PDF Downloads 66
22692 Estimating X-Ray Spectra for Digital Mammography by Using the Expectation Maximization Algorithm: A Monte Carlo Simulation Study

Authors: Chieh-Chun Chang, Cheng-Ting Shih, Yan-Lin Liu, Shu-Jun Chang, Jay Wu

Abstract:

With the widespread use of digital mammography (DM), radiation dose evaluation of breasts has become important. X-ray spectra are one of the key factors that influence the absorbed dose of glandular tissue. In this study, we estimated the X-ray spectrum of DM using the expectation maximization (EM) algorithm with the transmission measurement data. The interpolating polynomial model proposed by Boone was applied to generate the initial guess of the DM spectrum with the target/filter combination of Mo/Mo and the tube voltage of 26 kVp. The Monte Carlo N-particle code (MCNP5) was used to tally the transmission data through aluminum sheets of 0.2 to 3 mm. The X-ray spectrum was reconstructed by using the EM algorithm iteratively. The influence of the initial guess for EM reconstruction was evaluated. The percentage error of the average energy between the reference spectrum inputted for Monte Carlo simulation and the spectrum estimated by the EM algorithm was -0.14%. The normalized root mean square error (NRMSE) and the normalized root max square error (NRMaSE) between both spectra were 0.6% and 2.3%, respectively. We conclude that the EM algorithm with transmission measurement data is a convenient and useful tool for estimating x-ray spectra for DM in clinical practice.

Keywords: digital mammography, expectation maximization algorithm, X-Ray spectrum, X-Ray

Procedia PDF Downloads 735
22691 Single Imputation for Audiograms

Authors: Sarah Beaver, Renee Bryce

Abstract:

Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.

Keywords: machine learning, audiograms, data imputations, single imputations

Procedia PDF Downloads 86
22690 Role of Imaging in Alzheimer's Disease Trials: Impact on Trial Planning, Patient Recruitment and Retention

Authors: Kohkan Shamsi

Abstract:

Background: MRI and PET are now extensively utilized in Alzheimer's disease (AD) trials for patient eligibility, efficacy assessment, and safety evaluations but including imaging in AD trials impacts site selection process, patient recruitment, and patient retention. Methods: PET/MRI are performed at baseline and at multiple follow-up timepoints. This requires prospective site imaging qualification, evaluation of phantom data, training and continuous monitoring of machines for acquisition of standardized and consistent data. This also requires prospective patient/caregiver training as patients must go to multiple facilities for imaging examinations. We will share our experience form one of the largest AD programs. Lesson learned: Many neurological diseases have a similar presentation as AD or could confound the assessment of drug therapy. The inclusion of wrong patients has ethical and legal issues, and data could be excluded from the analysis. Centralized eligibility evaluation read process will be discussed. Amyloid related imaging abnormalities (ARIA) were observed in amyloid-β trials. FDA recommended regular monitoring of ARIA. Our experience in ARIA evaluations in large phase III study at > 350 sites will be presented. Efficacy evaluation: MRI is utilized to evaluate various volumes of the brain. FDG PET or amyloid PET agents has been used in AD trials. We will share our experience about site and central independent reads. Imaging logistic issues that need to be handled in the planning phase will also be discussed as it can impact patient compliance thereby increasing missing data and affecting study results. Conclusion: imaging must be prospectively planned to include standardizing imaging methodologies, site selection process and selecting assessment criteria. Training should be transparently conducted and documented. Prospective patient/caregiver awareness of imaging requirement is essential for patient compliance and reduction in missing imaging data.

Keywords: Alzheimer's disease, ARIA, MRI, PET, patient recruitment, retention

Procedia PDF Downloads 123
22689 The Thoughts and Feelings of 60-72 Month Old Children about School and Teacher

Authors: Ayse Ozturk Samur, Gozde Inal Kiziltepe

Abstract:

No matter what level of education it is, starting a school is an exciting process as it includes new experiences. In this process, child steps into a different environment and institution except from the family institution which he was born into and feels secure. That new environment is different from home; it is a social environment which has its own rules, and involves duties and responsibilities that should be fulfilled and new vital experiences. The children who have a positive attitude towards school and like school are more enthusiastic and eager to participate in classroom activities. Moreover, a close relationship with the teacher enables the child to have positive emotions and ideas about the teacher and school and helps children adapt to school easily. In this study, it is aimed to identify children’s perceptions of academic competence, attitudes towards school and ideas about their teachers. In accordance with the aim a mixed method that includes both qualitative and quantitative data collection methods are used. The study is supported with qualitative data after collecting quantitative data. The study group of the research consists of randomly chosen 250 children who are 60-72 month old and attending a preschool institution in a city center located West Anatolian region of Turkey. Quantitative data was collected using Feelings about School scale. The scale consists of 12 items and 4 dimensions; school, teacher, mathematic, and literacy. Reliability and validity study for the scale used in the study was conducted by the researchers with 318 children who were 60-72 months old. For content validity experts’ ideas were asked, for construct validity confirmatory factor analysis was utilized. Reliability of the scale was examined by calculating internal consistency coefficient (Cronbach alpha). At the end of the analyses it was found that FAS is a valid and reliable instrument to identify 60-72 month old children’ perception of their academic competency, attitude toward school and ideas about their teachers. For the qualitative dimension of the study, semi-structured interviews were done with 30 children aged 60-72 month. At the end of the study, it was identified that children’s’ perceptions of their academic competencies and attitudes towards school was medium-level and their ideas about their teachers were high. Based on the semi structured interviews done with children, it is identified that they have a positive perception of school and teacher. That means quantitatively gathered data is supported by qualitatively collected data.

Keywords: feelings, preschool education, school, teacher, thoughts

Procedia PDF Downloads 230
22688 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis

Authors: Veena Chaudhary, Rakesh P. Gakkhar

Abstract:

In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.

Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics

Procedia PDF Downloads 334
22687 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 66