Search results for: computer application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10264

Search results for: computer application

7414 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades

Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma

Abstract:

Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.

Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91

Procedia PDF Downloads 261
7413 Temporal Case-Based Reasoning System for Automatic Parking Complex

Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy

Abstract:

In this paper, the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.

Keywords: analogous reasoning, case-based reasoning, intelligent decision support systems, temporal reasoning

Procedia PDF Downloads 530
7412 ANAC-id - Facial Recognition to Detect Fraud

Authors: Giovanna Borges Bottino, Luis Felipe Freitas do Nascimento Alves Teixeira

Abstract:

This article aims to present a case study of the National Civil Aviation Agency (ANAC) in Brazil, ANAC-id. ANAC-id is the artificial intelligence algorithm developed for image analysis that recognizes standard images of unobstructed and uprighted face without sunglasses, allowing to identify potential inconsistencies. It combines YOLO architecture and 3 libraries in python - face recognition, face comparison, and deep face, providing robust analysis with high level of accuracy.

Keywords: artificial intelligence, deepface, face compare, face recognition, YOLO, computer vision

Procedia PDF Downloads 158
7411 Structural, Electronic and Magnetic Properties of Co and Mn Doped CDTE

Authors: A. Zitouni, S. Bentata, B. Bouadjemi, T. Lantri, W. Benstaali, A. Zoubir, S. Cherid, A. Sefir

Abstract:

The structural, electronic, and magnetic properties of transition metal Co and Mn doped zinc-blende semiconductor CdTe were calculated using the density functional theory (DFT) with both generalized gradient approximation (GGA). We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. We find that the Co and Mn doped zinc blende CdTe show half-metallic behavior with a total magnetic moment of 6.0 and 10.0 µB, respectively.The results obtained, make the Co and Mn doped CdTe a promising candidate for application in spintronics.

Keywords: first-principles, half-metallic, diluted magnetic semiconductor, magnetic moment

Procedia PDF Downloads 460
7410 Development of a Porous Porcelain Frape with Thermochromic Visualization

Authors: Jose Gois

Abstract:

The paper presents the development of a porous porcelain frappe with thermochromic visualization for port wines, having as a partner the Institute of Vinhos do Douro and Porto. This ceramic frappe is intended to promote the cooling and maintenance of the temperature of port wines through porous ceramic materials, consisting of a porcelain composite with sawdust addition, so as to contain, on the one hand, the similar cooling properties of the terracotta and, on the other, the resistance of materials such as porcelain. The application of the thermochromic element makes it possible to see if the wine is at optimal service temperatures, allowing users to drink the wine in the ideal conditions and contributing to more efficient maintenance of the service.

Keywords: design, frappe, porcelain, porous, thermochromic

Procedia PDF Downloads 137
7409 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 570
7408 Selection of Qualitative Research Strategy for Bullying and Harassment in Sport

Authors: J. Vveinhardt, V. B. Fominiene, L. Jeseviciute-Ufartiene

Abstract:

Relevance of Research: Qualitative research is still regarded as highly subjective and not sufficiently scientific in order to achieve objective research results. However, it is agreed that a qualitative study allows revealing the hidden motives of the research participants, creating new theories, and highlighting the field of problem. There is enough research done to reveal these qualitative research aspects. However, each research area has its own specificity, and sport is unique due to the image of its participants, who are understood as strong and invincible. Therefore, a sport participant might have personal issues to recognize himself as a victim in the context of bullying and harassment. Accordingly, researcher has a dilemma in general making to speak a victim in sport. Thus, ethical aspects of qualitative research become relevant. The plenty fields of sport make a problem determining the sample size of research. Thus, the corresponding problem of this research is which and why qualitative research strategies are the most suitable revealing the phenomenon of bullying and harassment in sport. Object of research is qualitative research strategy for bullying and harassment in sport. Purpose of the research is to analyze strategies of qualitative research selecting suitable one for bullying and harassment in sport. Methods of research were scientific research analyses of qualitative research application for bullying and harassment research. Research Results: Four mane strategies are applied in the qualitative research; inductive, deductive, retroductive, and abductive. Inductive and deductive strategies are commonly used researching bullying and harassment in sport. The inductive strategy is applied as quantitative research in order to reveal and describe the prevalence of bullying and harassment in sport. The deductive strategy is used through qualitative methods in order to explain the causes of bullying and harassment and to predict the actions of the participants of bullying and harassment in sport and the possible consequences of these actions. The most commonly used qualitative method for the research of bullying and harassment in sports is semi-structured interviews in speech and in written. However, these methods may restrict the openness of the participants in the study when recording on the dictator or collecting incomplete answers when the participant in the survey responds in writing because it is not possible to refine the answers. Qualitative researches are more prevalent in terms of technology-defined research data. For example, focus group research in a closed forum allows participants freely interact with each other because of the confidentiality of the selected participants in the study. The moderator can purposefully formulate and submit problem-solving questions to the participants. Hence, the application of intelligent technology through in-depth qualitative research can help discover new and specific information on bullying and harassment in sport. Acknowledgement: This research is funded by the European Social Fund according to the activity ‘Improvement of researchers’ qualification by implementing world-class R&D projects of Measure No. 09.3.3-LMT-K-712.

Keywords: bullying, focus group, harassment, narrative, sport, qualitative research

Procedia PDF Downloads 183
7407 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 204
7406 ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks

Authors: Jamaludin Sallim, Rozlina Mohamed, Roslina Abdul Hamid

Abstract:

In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns.

Keywords: ant colony optimization algorithm, searching algorithm, protein functional module, protein interaction network

Procedia PDF Downloads 613
7405 Implementation of Building Information Modelling to Monitor, Assess, and Control the Indoor Environmental Quality of Higher Education Buildings

Authors: Mukhtar Maigari

Abstract:

The landscape of Higher Education (HE) institutions, especially following the CVID-19 pandemic, necessitates advanced approaches to manage Indoor Environmental Quality (IEQ) which is crucial for the comfort, health, and productivity of students and staff. This study investigates the application of Building Information Modelling (BIM) as a multifaceted tool for monitoring, assessing, and controlling IEQ in HE buildings aiming to bridge the gap between traditional management practices and the innovative capabilities of BIM. Central to the study is a comprehensive literature review, which lays the foundation by examining current knowledge and technological advancements in both IEQ and BIM. This review sets the stage for a deeper investigation into the practical application of BIM in IEQ management. The methodology consists of Post-Occupancy Evaluation (POE) which encompasses physical monitoring, questionnaire surveys, and interviews under the umbrella of case studies. The physical data collection focuses on vital IEQ parameters such as temperature, humidity, CO2 levels etc, conducted by using different equipment including dataloggers to ensure accurate data. Complementing this, questionnaire surveys gather perceptions and satisfaction levels from students, providing valuable insights into the subjective aspects of IEQ. The interview component, targeting facilities management teams, offers an in-depth perspective on IEQ management challenges and strategies. The research delves deeper into the development of a conceptual BIM-based framework, informed by the insight findings from case studies and empirical data. This framework is designed to demonstrate the critical functions necessary for effective IEQ monitoring, assessment, control and automation with real time data handling capabilities. This BIM-based framework leads to the developing and testing a BIM-based prototype tool. This prototype leverages on software such as Autodesk Revit with its visual programming tool i.e., Dynamo and an Arduino-based sensor network thereby allowing for real-time flow of IEQ data for monitoring, control and even automation. By harnessing the capabilities of BIM technology, the study presents a forward-thinking approach that aligns with current sustainability and wellness goals, particularly vital in the post-COVID-19 era. The integration of BIM in IEQ management promises not only to enhance the health, comfort, and energy efficiency of educational environments but also to transform them into more conducive spaces for teaching and learning. Furthermore, this research could influence the future of HE buildings by prompting universities and government bodies to revaluate and improve teaching and learning environments. It demonstrates how the synergy between IEQ and BIM can empower stakeholders to monitor IEQ conditions more effectively and make informed decisions in real-time. Moreover, the developed framework has broader applications as well; it can serve as a tool for other sustainability assessments, like energy analysis in HE buildings, leveraging measured data synchronized with the BIM model. In conclusion, this study bridges the gap between theoretical research and real-world application by practicalizing how advanced technologies like BIM can be effectively integrated to enhance environmental quality in educational institutions. It portrays the potential of integrating advanced technologies like BIM in the pursuit of improved environmental conditions in educational institutions.

Keywords: BIM, POE, IEQ, HE-buildings

Procedia PDF Downloads 51
7404 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 417
7403 A webGIS Methodology to Support Sediments Management in Wallonia

Authors: Nathalie Stephenne, Mathieu Veschkens, Stéphane Palm, Christophe Charlemagne, Jacques Defoux

Abstract:

According to Europe’s first River basin Management Plans (RBMPs), 56% of European rivers failed to achieve the good status targets of the Water Framework Directive WFD. In Central European countries such as Belgium, even more than 80% of rivers failed to achieve the WFD quality targets. Although the RBMP’s should reduce the stressors and improve water body status, their potential to address multiple stress situations is limited due to insufficient knowledge on combined effects, multi-stress, prioritization of measures, impact on ecology and implementation effects. This paper describes a webGis prototype developed for the Walloon administration to improve the communication and the management of sediment dredging actions carried out in rivers and lakes in the frame of RBMPs. A large number of stakeholders are involved in the management of rivers and lakes in Wallonia. They are in charge of technical aspects (client and dredging operators, organizations involved in the treatment of waste…), management (managers involved in WFD implementation at communal, provincial or regional level) or policy making (people responsible for policy compliance or legislation revision). These different kinds of stakeholders need different information and data to cover their duties but have to interact closely at different levels. Moreover, information has to be shared between them to improve the management quality of dredging operations within the ecological system. In the Walloon legislation, leveling dredged sediments on banks requires an official authorization from the administration. This request refers to spatial information such as the official land use map, the cadastral map, the distance to potential pollution sources. The production of a collective geodatabase can facilitate the management of these authorizations from both sides. The proposed internet system integrates documents, data input, integration of data from disparate sources, map representation, database queries, analysis of monitoring data, presentation of results and cartographic visualization. A prototype of web application using the API geoviewer chosen by the Geomatic department of the SPW has been developed and discussed with some potential users to facilitate the communication, the management and the quality of the data. The structure of the paper states the why, what, who and how of this communication tool.

Keywords: sediments, web application, GIS, rivers management

Procedia PDF Downloads 406
7402 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 235
7401 Identification and Selection of a Supply Chain Target Process for Re-Design

Authors: Jaime A. Palma-Mendoza

Abstract:

A supply chain consists of different processes and when conducting supply chain re-design is necessary to identify the relevant processes and select a target for re-design. A solution was developed which consists to identify first the relevant processes using the Supply Chain Operations Reference (SCOR) model, then to use Analytical Hierarchy Process (AHP) for target process selection. An application was conducted in an Airline MRO supply chain re-design project which shows this combination can clearly aid the identification of relevant supply chain processes and the selection of a target process for re-design.

Keywords: decision support systems, multiple criteria analysis, supply chain management

Procedia PDF Downloads 492
7400 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 109
7399 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection

Authors: S. Delgado, C. Cerrada, R. S. Gómez

Abstract:

This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.

Keywords: voxelization, GPU acceleration, computer graphics, compute shaders

Procedia PDF Downloads 75
7398 Harmony Search-Based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), harmony search algorithms, K-Coverage, Mobile WSN

Procedia PDF Downloads 528
7397 Applied Linguistics: Language, Corpora, and Technology

Authors: M. Imran

Abstract:

This research explores the intersections of applied linguistics, corpus linguistics, translation, and technology, aiming to present innovative cross-disciplinary tools and frameworks. It highlights significant contributions to language, corpora, and technology within applied linguistics, which deepen our understanding of these domains and provide practical resources for scholars, educators, and translators. By showcasing these advancements, the study seeks to enhance collaboration and application in language-related fields. The significance of applied linguistics is emphasized by some of the research that has been emphasized, which presents pedagogical perspectives that could enhance instruction and the learning results of student’s at all academic levels as well as translation trainees. Researchers provided useful data from language studies with classroom applications from an instructional standpoint.

Keywords: linguistics, language, corpora, technology

Procedia PDF Downloads 21
7396 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal

Authors: Hakimeh Sharififard, Mansooreh Soleimani

Abstract:

In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.

Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich

Procedia PDF Downloads 466
7395 A Design for Application of Mobile Agent Technology to MicroService Architecture

Authors: Masayuki Higashino, Toshiya Kawato, Takao Kawamura

Abstract:

A monolithic service is based on the N-tier architecture in many cases. In order to divide a monolithic service into microservices, it is necessary to redefine a model as a new microservice by extracting and merging existing models across layers. Refactoring a monolithic service into microservices requires advanced technical capabilities, and it is a difficult way. This paper proposes a design and concept to ease the migration of a monolithic service to microservices using the mobile agent technology. Our proposed approach, mobile agents-based design and concept, enables to ease dividing and merging services.

Keywords: mobile agent, microservice, web service, distributed system

Procedia PDF Downloads 167
7394 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 374
7393 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 aircraft, linear matrix inequalities, pole placement, robust control

Procedia PDF Downloads 308
7392 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 594
7391 Transformation of Periodic Fuzzy Membership Function to Discrete Polygon on Circular Polar Coordinates

Authors: Takashi Mitsuishi

Abstract:

Fuzzy logic has gained acceptance in the recent years in the fields of social sciences and humanities such as psychology and linguistics because it can manage the fuzziness of words and human subjectivity in a logical manner. However, the major field of application of the fuzzy logic is control engineering as it is a part of the set theory and mathematical logic. Mamdani method, which is the most popular technique for approximate reasoning in the field of fuzzy control, is one of the ways to numerically represent the control afforded by human language and sensitivity and has been applied in various practical control plants. Fuzzy logic has been gradually developing as an artificial intelligence in different applications such as neural networks, expert systems, and operations research. The objects of inference vary for different application fields. Some of these include time, angle, color, symptom and medical condition whose fuzzy membership function is a periodic function. In the defuzzification stage, the domain of the membership function should be unique to obtain uniqueness its defuzzified value. However, if the domain of the periodic membership function is determined as unique, an unintuitive defuzzified value may be obtained as the inference result using the center of gravity method. Therefore, the authors propose a method of circular-polar-coordinates transformation and defuzzification of the periodic membership functions in this study. The transformation to circular polar coordinates simplifies the domain of the periodic membership function. Defuzzified value in circular polar coordinates is an argument. Furthermore, it is required that the argument is calculated from a closed plane figure which is a periodic membership function on the circular polar coordinates. If the closed plane figure is continuous with the continuity of the membership function, a significant amount of computation is required. Therefore, to simplify the practice example and significantly reduce the computational complexity, we have discretized the continuous interval and the membership function in this study. In this study, the following three methods are proposed to decide the argument from the discrete polygon which the continuous plane figure is transformed into. The first method provides an argument of a straight line passing through the origin and through the coordinate of the arithmetic mean of each coordinate of the polygon (physical center of gravity). The second one provides an argument of a straight line passing through the origin and the coordinate of the geometric center of gravity of the polygon. The third one provides an argument of a straight line passing through the origin bisecting the perimeter of the polygon (or the closed continuous plane figure).

Keywords: defuzzification, fuzzy membership function, periodic function, polar coordinates transformation

Procedia PDF Downloads 366
7390 The Effective Use of the Network in the Distributed Storage

Authors: Mamouni Mohammed Dhiya Eddine

Abstract:

This work aims at studying the exploitation of high-speed networks of clusters for distributed storage. Parallel applications running on clusters require both high-performance communications between nodes and efficient access to the storage system. Many studies on network technologies led to the design of dedicated architectures for clusters with very fast communications between computing nodes. Efficient distributed storage in clusters has been essentially developed by adding parallelization mechanisms so that the server(s) may sustain an increased workload. In this work, we propose to improve the performance of distributed storage systems in clusters by efficiently using the underlying high-performance network to access distant storage systems. The main question we are addressing is: do high-speed networks of clusters fit the requirements of a transparent, efficient and high-performance access to remote storage? We show that storage requirements are very different from those of parallel computation. High-speed networks of clusters were designed to optimize communications between different nodes of a parallel application. We study their utilization in a very different context, storage in clusters, where client-server models are generally used to access remote storage (for instance NFS, PVFS or LUSTRE). Our experimental study based on the usage of the GM programming interface of MYRINET high-speed networks for distributed storage raised several interesting problems. Firstly, the specific memory utilization in the storage access system layers does not easily fit the traditional memory model of high-speed networks. Secondly, client-server models that are used for distributed storage have specific requirements on message control and event processing, which are not handled by existing interfaces. We propose different solutions to solve communication control problems at the filesystem level. We show that a modification of the network programming interface is required. Data transfer issues need an adaptation of the operating system. We detail several propositions for network programming interfaces which make their utilization easier in the context of distributed storage. The integration of a flexible processing of data transfer in the new programming interface MYRINET/MX is finally presented. Performance evaluations show that its usage in the context of both storage and other types of applications is easy and efficient.

Keywords: distributed storage, remote file access, cluster, high-speed network, MYRINET, zero-copy, memory registration, communication control, event notification, application programming interface

Procedia PDF Downloads 222
7389 Application of De Novo Programming Approach for Optimizing the Business Process

Authors: Z. Babic, I. Veza, A. Balic, M. Crnjac

Abstract:

The linear programming model is sometimes difficult to apply in real business situations due to its assumption of proportionality. This paper shows an example of how to use De Novo programming approach instead of linear programming. In the De Novo programming, resources are not fixed like in linear programming but resource quantities depend only on available budget. Budget is a new, important element of the De Novo approach. Two different production situations are presented: increasing costs and quantity discounts of raw materials. The focus of this paper is on advantages of the De Novo approach in the optimization of production plan for production company which produces souvenirs made from famous stone from the island of Brac, one of the greatest islands from Croatia.

Keywords: business process, De Novo programming, optimizing, production

Procedia PDF Downloads 223
7388 The Application of Animal Welfare Certification System for Farm Animal in South Korea

Authors: Ahlyum Mun, Ji-Young Moon, Moon-Seok Yoon, Dong-Jin Baek, Doo-Seok Seo, Oun-Kyong Moon

Abstract:

There is a growing public concern over the standards of farm animal welfare, with higher standards of food safety. In addition, the recent low incidence of Avian Influenza in laying hens among certificated farms is receiving attention. In this study, we introduce animal welfare systems covering the rearing, transport and slaughter of farm animals in South Korea. The concepts of animal welfare farm certification are based on ensuring the five freedoms of animal. The animal welfare is also achieved by observing the condition of environment including shelter and resting area, feeding and water and the care for the animal health. The certification of farm animal welfare is handled by the Animal Protection & Welfare Division of Animal and Plant Quarantine Agency (APQA). Following the full amendment of Animal Protection Law in 2011, animal welfare farm certification program has been implemented since 2012. The certification system has expanded to cover laying hen, swine, broiler, beef cattle and dairy cow, goat and duck farms. Livestock farmers who want to be certified must apply for certification at the APQA. Upon receipt of the application, the APQA notifies the applicant of the detailed schedule of the on-site examination after reviewing the document and conducts the on-site inspection according to the evaluation criteria of the welfare standard. If the on-site audit results meet the certification criteria, APQA issues a certificate. The production process of certified farms is inspected at least once a year for follow-up management. As of 2017, a total of 145 farms have been certified (95 laying hen farms, 12 swine farms, 30 broiler farms and 8 dairy cow farms). In addition, animal welfare transportation vehicles and slaughterhouses have been designated since 2013 and currently 6 slaughterhouses have been certified. Animal Protection Law has been amended so that animal welfare certification marks can be affixed only to livestock products produced by animal welfare farms, transported through animal welfare vehicles and slaughtered at animal welfare slaughterhouses. The whole process including rearing–transportation- slaughtering completes the farm animal welfare system. APQA established its second 5-year animal welfare plan (2014-2019) that includes setting a minimum standard of animal welfare applicable to all livestock farms, transportation vehicles and slaughterhouses. In accordance with this plan, we will promote the farm animal welfare policy in order to truly advance the Korean livestock industry.

Keywords: animal welfare, farm animal, certification system, South Korea

Procedia PDF Downloads 401
7387 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 85
7386 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu

Abstract:

The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository

Procedia PDF Downloads 293
7385 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 114