Search results for: sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3974

Search results for: sensor networks

1154 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series

Procedia PDF Downloads 338
1153 Presenting Internals of Networks Using Bare Machine Technology

Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha

Abstract:

Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.

Keywords: bare machine computing, online research, network technology, visualizing network internals

Procedia PDF Downloads 171
1152 A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO

Authors: Seung Yoon Hyun, Hyeong Seung An, Myeong Ho Choi, Sung Hwan Bae, Yu Jong Sim

Abstract:

In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system.

Keywords: distribution, renewable, connect, DAS (Distribution Automation System)

Procedia PDF Downloads 620
1151 Agent Based Location Management Protocol for Mobile Adhoc Networks

Authors: Mallikarjun B. Channappagoudar, Pallapa Venkataram

Abstract:

The dynamic nature of Mobile adhoc network (MANET) due to mobility and disconnection of mobile nodes, leads to various problems in predicting the movement of nodes and their location information updation, for efficient interaction among the application specific nodes. Location management is one of the main challenges to be considered for an efficient service provision to the applications of a MANET. In this paper, we propose a location management protocol, for locating the nodes of a MANET and to maintain uninterrupted high-quality service for distributed applications by intelligently anticipating the change of location of its nodes. The protocol predicts the node movement and application resource scarcity, does the replacement with the chosen nodes nearby which have less mobility and rich in resources, with the help of both static and mobile agents, and maintains the application continuity by providing required network resources. The protocol has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. It consumes much less time (response time), gives better location accuracy, utilize less network resources, and reduce location management overhead.

Keywords: mobile agent, location management, distributed applications, mobile adhoc network

Procedia PDF Downloads 393
1150 Structural and Microstructural Investigation into Causes of Rail Squat Defects and Their Correlation with White Etching Layers

Authors: A. Al-Juboori, D. Wexler, H. Li, H. Zhu, C. Lu, A. McCusker, J. McLeod, S. Pannila, Z. Wang

Abstract:

Squats are a type railhead defect related to rolling contact fatigue (RCF) damage and are considered serious problem affecting a wide range of railway networks across the world. Squats can lead to partial or complete rail failure. Formation mechanics of squats on the surface of rail steel is still a matter of debate. In this work, structural and microstructural observations from ex-service damaged rail both confirms the phases present in white etching layer (WEL) regions and relationship between cracking in WEL and squat defect formation. XRD synchrotron results obtained from the top surfaces of rail regions containing both WEL and squat defects reveal that these regions contain both martensite and retained austenite. Microstructural analysis of these regions revealed the occurrence cracks extending from WEL down into the rail through the squat region. These findings obtained from field rail specimen support the view that WEL contains regions of austenite and martensitic transformation product, and that cracks in this brittle surface layer propagate deeper into the rail as squats originate and grow.

Keywords: squat, white etching layer, rolling contact fatigue, synchrotron diffraction

Procedia PDF Downloads 330
1149 Drought Detection and Water Stress Impact on Vegetation Cover Sustainability Using Radar Data

Authors: E. Farg, M. M. El-Sharkawy, M. S. Mostafa, S. M. Arafat

Abstract:

Mapping water stress provides important baseline data for sustainable agriculture. Recent developments in the new Sentinel-1 data which allow the acquisition of high resolution images and varied polarization capabilities. This study was conducted to detect and quantify vegetation water content from canopy backscatter for extracting spatial information to encourage drought mapping activities throughout new reclaimed sandy soils in western Nile delta, Egypt. The performance of radar imagery in agriculture strongly depends on the sensor polarization capability. The dual mode capabilities of Sentinel-1 improve the ability to detect water stress and the backscatter from the structure components improves the identification and separation of vegetation types with various canopy structures from other features. The fieldwork data allowed identifying of water stress zones based on land cover structure; those classes were used for producing harmonious water stress map. The used analysis techniques and results show high capability of active sensors data in water stress mapping and monitoring especially when integrated with multi-spectral medium resolution images. Also sub soil drip irrigation systems cropped areas have lower drought and water stress than center pivot sprinkler irrigation systems. That refers to high level of evaporation from soil surface in initial growth stages. Results show that high relationship between vegetation indices such as Normalized Difference Vegetation Index NDVI the observed radar backscattering. In addition to observational evidence showed that the radar backscatter is highly sensitive to vegetation water stress, and essentially potential to monitor and detect vegetative cover drought.

Keywords: canopy backscatter, drought, polarization, NDVI

Procedia PDF Downloads 142
1148 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 302
1147 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models

Authors: Abdulrahman R. Alenezi

Abstract:

This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.

Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation

Procedia PDF Downloads 24
1146 The Role of KontraS as Track-6 on Multi Track Diplomacy for Conflict Resolution: Case Study Human Rights Crisis in Myanmar in 2015

Authors: Hardi Alunaza, Mauidhotu Rofiq

Abstract:

This research is attempted to describe the role of KontraS as track-6 on multi track diplomacy for conflict resolution in Myanmar in 2015. The researcher took the specific interest on multi track diplomacy and transnational advocacy concepts to analyze the phenomena. Furthermore, this essay is using the descriptive method with a qualitative approach. The data collection technique is literature study consisting of books, journals, and including data from the reliable website in supporting the explanation of this research. The result of this research is divided into two important points in explaining the role of KontraS in cases of human rights crisis in Myanmar. First, KontraS as human rights NGO in Indonesia was able to advocate against human rights violence that occurred in other countries by encouraging Indonesian Government to take part in the resolution of human rights issues affecting the Rohingya people in Burma. Also, KontraS take advantages of transnational advocacy networks as a form of politics and accountabilities responsibility of Non-Governmental Organization against human rights crisis in other countries.

Keywords: conflict resolution, human rights crisis, multi track diplomacy, transnational advocacy

Procedia PDF Downloads 323
1145 Improving Forecasting Demand for Maintenance Spare Parts: Case Study

Authors: Abdulaziz Afandi

Abstract:

Minimizing the inventory cost, optimizing the inventory quantities, and increasing system operational availability are the main motivations to enhance forecasting demand of spare parts in a major power utility company in Medina. This paper reports in an effort made to optimize the orders quantities of spare parts by improving the method of forecasting the demand. The study focuses on equipment that has frequent spare parts purchase orders with uncertain demand. The pattern of the demand considers a lumpy pattern which makes conventional forecasting methods less effective. A comparison was made by benchmarking various methods of forecasting based on experts’ criteria to select the most suitable method for the case study. Three actual data sets were used to make the forecast in this case study. Two neural networks (NN) approaches were utilized and compared, namely long short-term memory (LSTM) and multilayer perceptron (MLP). The results as expected, showed that the NN models gave better results than traditional forecasting method (judgmental method). In addition, the LSTM model had a higher predictive accuracy than the MLP model.

Keywords: neural network, LSTM, MLP, forecasting demand, inventory management

Procedia PDF Downloads 126
1144 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development

Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam

Abstract:

The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.

Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae

Procedia PDF Downloads 115
1143 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty

Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus

Abstract:

Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.

Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming

Procedia PDF Downloads 178
1142 Packet Fragmentation Caused by Encryption and Using It as a Security Method

Authors: Said Rabah Azzam, Andrew Graham

Abstract:

Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch.

Keywords: fragmentation, encryption, security, switch

Procedia PDF Downloads 332
1141 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 62
1140 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 185
1139 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 10
1138 Other-Generated Disclosure: A Challenge to Privacy on Social Network Sites

Authors: Tharntip Tawnie Chutikulrungsee, Oliver Kisalay Burmeister, Maumita Bhattacharya, Dragana Calic

Abstract:

Sharing on social network sites (SNSs) has rapidly emerged as a new social norm and has become a global phenomenon. Billions of users reveal not only their own information (self disclosure) but also information about others (other-generated disclosure), resulting in a risk and a serious threat to either personal or informational privacy. Self-disclosure (SD) has been extensively researched in the literature, particularly regarding control of individual and existing privacy management. However, far too little attention has been paid to other-generated disclosure (OGD), especially by insiders. OGD has a strong influence on self-presentation, self-image, and electronic word of mouth (eWOM). Moreover, OGD is more credible and less likely manipulated than SD, but lacks privacy control and legal protection to some extent. This article examines OGD in depth, ranging from motivation to both online and offline impacts, based upon lived experiences from both ‘the disclosed’ and ‘the discloser’. Using purposive sampling, this phenomenological study involves an online survey and in-depth interviews. The findings report the influence of peer disclosure as well as users’ strategies to mitigate privacy issues. This article also calls attention to the challenge of OGD privacy and inadequacies in the law related to privacy protection in the digital domain.

Keywords: facebook, online privacy, other-generated disclosure, social networks sites (SNSs)

Procedia PDF Downloads 250
1137 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 297
1136 Artificial Intelligence Methods for Returns Expectations in Financial Markets

Authors: Yosra Mefteh Rekik, Younes Boujelbene

Abstract:

We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.

Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation

Procedia PDF Downloads 444
1135 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 143
1134 Addressing the Issue of Out-of-School Children in Nigeria: Challenges and Policy Recommendations

Authors: Nasir Haruna Soba

Abstract:

In addition to sustaining poverty and inequality, the issue of out-of-school children impedes efforts to accomplish the sustainable development goals (SDGs), especially Goal 4, which is to guarantee inclusive, egalitarian, and high-quality education for everyone. However, a number of social, cultural, and infrastructure barriers mean that millions of children in Nigeria are denied this privilege. This paper presents the findings of a case study conducted in Nigeria. The findings of this study revealed that out of school children in Nigeria are the most common causes of poverty; inadequate school facilities, long distances to schools, and poor road networks make it difficult for children, especially in rural areas, to access education. Social Disparities: Social inequality is sustained by differences in education, especially when it comes to financing, governance, and coordination amongst stakeholders. These differences are especially pronounced along gender and socioeconomic lines. The study recommended that policymakers and stakeholders should consider addressing the root causes, enhancing existing interventions, and implementing targeted policy measures. Nigeria can make significant strides towards ensuring inclusive and quality education for all children, thereby fostering sustainable development and reducing poverty.

Keywords: poverty, inequality, funding, education, development

Procedia PDF Downloads 29
1133 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control

Procedia PDF Downloads 135
1132 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages

Authors: Adithya Jaikumar, Sudarsan Jayasingh

Abstract:

The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.

Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media

Procedia PDF Downloads 322
1131 Autonomous Exploration, Navigation and Mapping Payload Integrated on a Quadruped Robot

Authors: Julian Y. Raheema, Michael R. Hess, Raymond C. Provost, Mark Bilinski

Abstract:

The world is rapidly moving towards advancing and utilizing artificial intelligence and autonomous robotics. The ground-breaking Boston Dynamics quadruped robot, SPOT, was designed for industrial and commercial tasks requiring limited autonomous navigation. Out of the box, SPOT has route memorization and playback – it can repeat a path that it has been manually piloted through, but it cannot autonomously navigate an area that has not been previously explored. The presented SPOT payload package is built on ROS framework to support autonomous navigation and mapping of an unexplored environment. The package is fully integrated with SPOT to take advantage of motor controls and collision avoidance that comes natively with the robot. The payload runs all computations onboard, takes advantage of visual odometry SLAM and uses an Intel RealSense depth camera and Velodyne LiDAR sensor to generate 2D and 3D maps while in autonomous navigation mode. These maps are fused into the navigation stack to generate a costmap to enable the robot to safely navigate the environment without causing damage to the surroundings or the robot. The operator defines the operational zone and start location and then sends the explore command to have SPOT explore, generate 2D and 3D maps of the environment and return to the start location to await the operator's next command. The benefit of the presented package is that it is much lighter weight and less expensive than previous approaches and, importantly, operates in GPS-denied scenarios, which is ideal for indoor mapping. There are numerous applications that are hazardous to humans for SPOT enhanced with the autonomy payload, including disaster response, nuclear inspection, mine inspection, and so on. Other less extreme uses cases include autonomous 3D and 2D scanning of facilities for inspection, engineering and construction purposes.

Keywords: autonomous, SLAM, quadruped, mapping, exploring, ROS, robotics, navigation

Procedia PDF Downloads 88
1130 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 131
1129 Comparative Spatial Analysis of a Re-Arranged Hospital Building

Authors: Burak Köken, Hatice D. Arslan, Bilgehan Y. Çakmak

Abstract:

Analyzing the relation networks between the hospital buildings which have complex structure and distinctive spatial relationships is quite difficult. The hospital buildings which require specialty in spatial relationship solutions during design and self-innovation through the developing technology should survive and keep giving service even after the disasters such as earthquakes. In this study, a hospital building where the load-bearing system was strengthened because of the insufficient earthquake performance and the construction of an additional building was required to meet the increasing need for space was discussed and a comparative spatial evaluation of the hospital building was made with regard to its status before the change and after the change. For this reason, spatial organizations of the building before change and after the change were analyzed by means of Space Syntax method and the effects of the change on space organization parameters were searched by applying an analytical procedure. Using Depthmap UCL software, connectivity, visual mean depth, beta and visual integration analyses were conducted. Based on the data obtained after the analyses, it was seen that the relationships between spaces of the building increased after the change and the building has become more explicit and understandable for the occupants. Furthermore, it was determined according to findings of the analysis that the increase in depth causes difficulty in perceiving the spaces and the changes considering this problem generally ease spatial use.

Keywords: architecture, hospital building, space syntax, strengthening

Procedia PDF Downloads 521
1128 The Relations between Spatial Structure and Land Price

Authors: Jung-Hun Cho, Tae-Heon Moon, Jin-Hak Lee

Abstract:

Land price contains the comprehensive characteristics of urban space, representing the social and economic features of the city. Accordingly, land price can be utilized as an indicator, which can identify the changes of spatial structure and socioeconomic variations caused by urban development. This study attempted to explore the changes in land price by a new road construction. Methodologically, it adopted Space Syntax, which can interpret urban spatial structure comprehensively, to identify the relationship between the forms of road networks and land price. The result of the regression analysis showed the ‘integration index’ of Space Syntax is statistically significant and has a strong correlation with land price. If the integration value is high, land price increases proportionally. Subsequently, using regression equation, it tried to predict the land price changes of each of the lots surrounding the roads that are newly opened. The research methods or study results have the advantage of predicting the changes in land price in an easy way. In addition, it will contribute to planners and project managers to establish relevant polices and smoothing urban regeneration projects through enhancing residents’ understanding by providing possible results and advantages in their land price before the execution of urban regeneration and development projects.

Keywords: space syntax, urban regeneration, spatial structure, official land price

Procedia PDF Downloads 327
1127 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 152
1126 Efficient Energy Extraction Circuit for Impact Harvesting from High Impedance Sources

Authors: Sherif Keddis, Mohamed Azzam, Norbert Schwesinger

Abstract:

Harvesting mechanical energy from footsteps or other impacts is a possibility to enable wireless autonomous sensor nodes. These can be used for a highly efficient control of connected devices such as lights, security systems, air conditioning systems or other smart home applications. They can also be used for accurate location or occupancy monitoring. Converting the mechanical energy into useful electrical energy can be achieved using the piezoelectric effect offering simple harvesting setups and low deflections. The challenge facing piezoelectric transducers is the achievable amount of energy per impact in the lower mJ range and the management of such low energies. Simple setups for energy extraction such as a full wave bridge connected directly to a capacitor are problematic due to the mismatch between high impedance sources and low impedance storage elements. Efficient energy circuits for piezoelectric harvesters are commonly designed for vibration harvesters and require periodic input energies with predictable frequencies. Due to the sporadic nature of impact harvesters, such circuits are not well suited. This paper presents a self-powered circuit that avoids the impedance mismatch during energy extraction by disconnecting the load until the source reaches its charge peak. The switch is implemented with passive components and works independent from the input frequency. Therefore, this circuit is suited for impact harvesting and sporadic inputs. For the same input energy, this circuit stores 150% of the energy in comparison to a directly connected capacitor to a bridge rectifier. The total efficiency, defined as the ratio of stored energy on a capacitor to available energy measured across a matched resistive load, is 63%. Although the resulting energy is already sufficient to power certain autonomous applications, further optimization of the circuit are still under investigation in order to improve the overall efficiency.

Keywords: autonomous sensors, circuit design, energy harvesting, energy management, impact harvester, piezoelectricity

Procedia PDF Downloads 152
1125 Propagation of the Effects of Certain Types of Military Psychological Operations in a Networked Population

Authors: Colette Faucher

Abstract:

In modern asymmetric conflicts, the Armed Forces generally have to intervene in countries where the internal peace is in danger. They must make the local population an ally in order to be able to deploy the necessary military actions with its support. For this purpose, psychological operations (PSYOPs) are used to shape people’s behaviors and emotions by the modification of their attitudes in acting on their perceptions. PSYOPs aim at elaborating and spreading a message that must be read, listened to and/or looked at, then understood by the info-targets in order to get from them the desired behavior. A message can generate in the info-targets, reasoned thoughts, spontaneous emotions or reflex behaviors, this effect partly depending on the means of conveyance used to spread this message. In this paper, we focus on psychological operations that generate emotions. We present a method based on the Intergroup Emotion Theory, that determines, from the characteristics of the conveyed message and of the people from the population directly reached by the means of conveyance (direct info-targets), the emotion likely to be triggered in them and we simulate the propagation of the effects of such a message on indirect info-targets that are connected to them through the social networks that structure the population.

Keywords: military psychological operations, social identity, social network, emotion propagation

Procedia PDF Downloads 409