Search results for: cognitive models
5681 Creation of a Realistic Railway Simulator Developed on a 3D Graphic Game Engine Using a Numerical Computing Programming Environment
Authors: Kshitij Ansingkar, Yohei Hoshino, Liangliang Yang
Abstract:
Advances in algorithms related to autonomous systems have made it possible to research on improving the accuracy of a train’s location. This has the capability of increasing the throughput of a railway network without the need for the creation of additional infrastructure. To develop such a system, the railway industry requires data to test sensor fusion theories or implement simultaneous localization and mapping (SLAM) algorithms. Though such simulation data and ground truth datasets are available for testing automation algorithms of vehicles, however, due to regulations and economic considerations, there is a dearth of such datasets in the railway industry. Thus, there is a need for the creation of a simulation environment that can generate realistic synthetic datasets. This paper proposes (1) to leverage the capabilities of open-source 3D graphic rendering software to create a visualization of the environment. (2) to utilize open-source 3D geospatial data for accurate visualization and (3) to integrate the graphic rendering software with a programming language and numerical computing platform. To develop such an integrated platform, this paper utilizes the computing platform’s advanced sensor models like LIDAR, camera, IMU or GPS and merges it with the 3D rendering of the game engine to generate high-quality synthetic data. Further, these datasets can be used to train Railway models and improve the accuracy of a train’s location.Keywords: 3D game engine, 3D geospatial data, dataset generation, railway simulator, sensor fusion, SLAM
Procedia PDF Downloads 145680 Single Pass Design of Genetic Circuits Using Absolute Binding Free Energy Measurements and Dimensionless Analysis
Authors: Iman Farasat, Howard M. Salis
Abstract:
Engineered genetic circuits reprogram cellular behavior to act as living computers with applications in detecting cancer, creating self-controlling artificial tissues, and dynamically regulating metabolic pathways. Phenemenological models are often used to simulate and design genetic circuit behavior towards a desired behavior. While such models assume that each circuit component’s function is modular and independent, even small changes in a circuit (e.g. a new promoter, a change in transcription factor expression level, or even a new media) can have significant effects on the circuit’s function. Here, we use statistical thermodynamics to account for the several factors that control transcriptional regulation in bacteria, and experimentally demonstrate the model’s accuracy across 825 measurements in several genetic contexts and hosts. We then employ our first principles model to design, experimentally construct, and characterize a family of signal amplifying genetic circuits (genetic OpAmps) that expand the dynamic range of cell sensors. To develop these models, we needed a new approach to measuring the in vivo binding free energies of transcription factors (TFs), a key ingredient of statistical thermodynamic models of gene regulation. We developed a new high-throughput assay to measure RNA polymerase and TF binding free energies, requiring the construction and characterization of only a few constructs and data analysis (Figure 1A). We experimentally verified the assay on 6 TetR-homolog repressors and a CRISPR/dCas9 guide RNA. We found that our binding free energy measurements quantitatively explains why changing TF expression levels alters circuit function. Altogether, by combining these measurements with our biophysical model of translation (the RBS Calculator) as well as other measurements (Figure 1B), our model can account for changes in TF binding sites, TF expression levels, circuit copy number, host genome size, and host growth rate (Figure 1C). Model predictions correctly accounted for how these 8 factors control a promoter’s transcription rate (Figure 1D). Using the model, we developed a design framework for engineering multi-promoter genetic circuits that greatly reduces the number of degrees of freedom (8 factors per promoter) to a single dimensionless unit. We propose the Ptashne (Pt) number to encapsulate the 8 co-dependent factors that control transcriptional regulation into a single number. Therefore, a single number controls a promoter’s output rather than these 8 co-dependent factors, and designing a genetic circuit with N promoters requires specification of only N Pt numbers. We demonstrate how to design genetic circuits in Pt number space by constructing and characterizing 15 2-repressor OpAmp circuits that act as signal amplifiers when within an optimal Pt region. We experimentally show that OpAmp circuits using different TFs and TF expression levels will only amplify the dynamic range of input signals when their corresponding Pt numbers are within the optimal region. Thus, the use of the Pt number greatly simplifies the genetic circuit design, particularly important as circuits employ more TFs to perform increasingly complex functions.Keywords: transcription factor, synthetic biology, genetic circuit, biophysical model, binding energy measurement
Procedia PDF Downloads 4755679 Time Series Analysis the Case of China and USA Trade Examining during Covid-19 Trade Enormity of Abnormal Pricing with the Exchange rate
Authors: Md. Mahadi Hasan Sany, Mumenunnessa Keya, Sharun Khushbu, Sheikh Abujar
Abstract:
Since the beginning of China's economic reform, trade between the U.S. and China has grown rapidly, and has increased since China's accession to the World Trade Organization in 2001. The US imports more than it exports from China, reducing the trade war between China and the U.S. for the 2019 trade deficit, but in 2020, the opposite happens. In international and U.S. trade, Washington launched a full-scale trade war against China in March 2016, which occurred a catastrophic epidemic. The main goal of our study is to measure and predict trade relations between China and the U.S., before and after the arrival of the COVID epidemic. The ML model uses different data as input but has no time dimension that is present in the time series models and is only able to predict the future from previously observed data. The LSTM (a well-known Recurrent Neural Network) model is applied as the best time series model for trading forecasting. We have been able to create a sustainable forecasting system in trade between China and the US by closely monitoring a dataset published by the State Website NZ Tatauranga Aotearoa from January 1, 2015, to April 30, 2021. Throughout the survey, we provided a 180-day forecast that outlined what would happen to trade between China and the US during COVID-19. In addition, we have illustrated that the LSTM model provides outstanding outcome in time series data analysis rather than RFR and SVR (e.g., both ML models). The study looks at how the current Covid outbreak affects China-US trade. As a comparative study, RMSE transmission rate is calculated for LSTM, RFR and SVR. From our time series analysis, it can be said that the LSTM model has given very favorable thoughts in terms of China-US trade on the future export situation.Keywords: RFR, China-U.S. trade war, SVR, LSTM, deep learning, Covid-19, export value, forecasting, time series analysis
Procedia PDF Downloads 1995678 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods
Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne
Abstract:
The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.
Procedia PDF Downloads 345677 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 675676 An Application of Quantile Regression to Large-Scale Disaster Research
Authors: Katarzyna Wyka, Dana Sylvan, JoAnn Difede
Abstract:
Background and significance: The following disaster, population-based screening programs are routinely established to assess physical and psychological consequences of exposure. These data sets are highly skewed as only a small percentage of trauma-exposed individuals develop health issues. Commonly used statistical methodology in post-disaster mental health generally involves population-averaged models. Such models aim to capture the overall response to the disaster and its aftermath; however, they may not be sensitive enough to accommodate population heterogeneity in symptomatology, such as post-traumatic stress or depressive symptoms. Methods: We use an archival longitudinal data set from Weill-Cornell 9/11 Mental Health Screening Program established following the World Trade Center (WTC) terrorist attacks in New York in 2001. Participants are rescue and recovery workers who participated in the site cleanup and restoration (n=2960). The main outcome is the post-traumatic stress symptoms (PTSD) severity score assessed via clinician interviews (CAPS). For a detailed understanding of response to the disaster and its aftermath, we are adapting quantile regression methodology with particular focus on predictors of extreme distress and resilience to trauma. Results: The response variable was defined as the quantile of the CAPS score for each individual under two different scenarios specifying the unconditional quantiles based on: 1) clinically meaningful CAPS cutoff values and 2) CAPS distribution in the population. We present graphical summaries of the differential effects. For instance, we found that the effect of the WTC exposures, namely seeing bodies and feeling that life was in danger during rescue/recovery work was associated with very high PTSD symptoms. A similar effect was apparent in individuals with prior psychiatric history. Differential effects were also present for age and education level of the individuals. Conclusion: We evaluate the utility of quantile regression in disaster research in contrast to the commonly used population-averaged models. We focused on assessing the distribution of risk factors for post-traumatic stress symptoms across quantiles. This innovative approach provides a comprehensive understanding of the relationship between dependent and independent variables and could be used for developing tailored training programs and response plans for different vulnerability groups.Keywords: disaster workers, post traumatic stress, PTSD, quantile regression
Procedia PDF Downloads 2855675 IoT and Deep Learning approach for Growth Stage Segregation and Harvest Time Prediction of Aquaponic and Vermiponic Swiss Chards
Authors: Praveen Chandramenon, Andrew Gascoyne, Fideline Tchuenbou-Magaia
Abstract:
Aquaponics offers a simple conclusive solution to the food and environmental crisis of the world. This approach combines the idea of Aquaculture (growing fish) to Hydroponics (growing vegetables and plants in a soilless method). Smart Aquaponics explores the use of smart technology including artificial intelligence and IoT, to assist farmers with better decision making and online monitoring and control of the system. Identification of different growth stages of Swiss Chard plants and predicting its harvest time is found to be important in Aquaponic yield management. This paper brings out the comparative analysis of a standard Aquaponics with a Vermiponics (Aquaponics with worms), which was grown in the controlled environment, by implementing IoT and deep learning-based growth stage segregation and harvest time prediction of Swiss Chards before and after applying an optimal freshwater replenishment. Data collection, Growth stage classification and Harvest Time prediction has been performed with and without water replenishment. The paper discusses the experimental design, IoT and sensor communication with architecture, data collection process, image segmentation, various regression and classification models and error estimation used in the project. The paper concludes with the results comparison, including best models that performs growth stage segregation and harvest time prediction of the Aquaponic and Vermiponic testbed with and without freshwater replenishment.Keywords: aquaponics, deep learning, internet of things, vermiponics
Procedia PDF Downloads 735674 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 2465673 An Experimental Investigation on Productivity and Performance of an Improved Design of Basin Type Solar Still
Authors: Mahmoud S. El-Sebaey, Asko Ellman, Ahmed Hegazy, Tarek Ghonim
Abstract:
Due to population growth, the need for drinkable healthy water is highly increased. Consequently, and since the conventional sources of water are limited, researchers devoted their efforts to oceans and seas for obtaining fresh drinkable water by thermal distillation. The current work is dedicated to the design and fabrication of modified solar still model, as well as conventional solar still for the sake of comparison. The modified still is single slope double basin solar still. The still consists of a lower basin with a dimension of 1000 mm x 1000 mm which contains the sea water, as well as the top basin that made with 4 mm acrylic, was temporarily kept on the supporting strips permanently fixed with the side walls. Equally ten spaced vertical glass strips of 50 mm height and 3 mm thickness were provided at the upper basin for the stagnancy of the water. Window glass of 3 mm was used as the transparent cover with 23° inclination at the top of the still. Furthermore, the performance evaluation and comparison of these two models in converting salty seawater into drinkable freshwater are introduced, analyzed and discussed. The experiments were performed during the period from June to July 2018 at seawater depths of 2, 3, 4 and 5 cm. Additionally, the solar still models were operated simultaneously in the same climatic conditions to analyze the influence of the modifications on the freshwater output. It can be concluded that the modified design of double basin single slope solar still shows the maximum freshwater output at all water depths tested. The results showed that the daily productivity for modified and conventional solar still was 2.9 and 1.8 dm³/m² day, indicating an increase of 60% in fresh water production.Keywords: freshwater output, solar still, solar energy, thermal desalination
Procedia PDF Downloads 1375672 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images
Authors: Sophia Shi
Abstract:
Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG
Procedia PDF Downloads 1345671 An Informative Marketing Platform: Methodology and Architecture
Authors: Martina Marinelli, Samanta Vellante, Francesco Pilotti, Daniele Di Valerio, Gaetanino Paolone
Abstract:
Any development in web marketing technology requires changes in information engineering to identify instruments and techniques suitable for the production of software applications for informative marketing. Moreover, for large web solutions, designing an interface that enables human interactions is a complex process that must bridge between informative marketing requirements and the developed solution. A user-friendly interface in web marketing applications is crucial for a successful business. The paper introduces mkInfo - a software platform that implements informative marketing. Informative marketing is a new interpretation of marketing which places the information at the center of every marketing action. The creative team includes software engineering researchers who have recently authored an article on automatic code generation. The authors have created the mkInfo software platform to generate informative marketing web applications. For each web application, it is possible to automatically implement an opt in page, a landing page, a sales page, and a thank you page: one only needs to insert the content. mkInfo implements an autoresponder to send mail according to a predetermined schedule. The mkInfo platform also includes e-commerce for a product or service. The stakeholder can access any opt-in page and get basic information about a product or service. If he wants to know more, he will need to provide an e-mail address to access a landing page that will generate an e-mail sequence. It will provide him with complete information about the product or the service. From this point on, the stakeholder becomes a user and is now able to purchase the product or related services through the mkInfo platform. This paper suggests a possible definition for Informative Marketing, illustrates its basic principles, and finally details the mkInfo platform that implements it. This paper also offers some Informative Marketing models, which are implemented in the mkInfo platform. Informative marketing can be applied to products or services. It is necessary to realize a web application for each product or service. The mkInfo platform enables the product or the service producer to send information concerning a specific product or service to all stakeholders. In conclusion, the technical contributions of this paper are: a different interpretation of marketing based on information; a modular architecture for web applications, particularly for one with standard features such as information storage, exchange, and delivery; multiple models to implement informative marketing; a software platform enabling the implementation of such models in a web application. Future research aims to enable stakeholders to provide information about a product or a service so that the information gathered about a product or a service includes both the producer’s and the stakeholders' point of view. The purpose is to create an all-inclusive management system of the knowledge regarding a specific product or service: a system that includes everything about the product or service and is able to address even unexpected questions.Keywords: informative marketing, opt in page, software platform, web application
Procedia PDF Downloads 1305670 Health Care using Queuing Theory
Authors: S. Vadivukkarasi, K. Karthi, M. Karthick, C. Dinesh, S. Santhosh, A. Yogaraj
Abstract:
The appointment system was designed to minimize patient’s idle time overlooking patients waiting time in hospitals. This is no longer valid in today’s consumer oriented society. Long waiting times for treatment in the outpatient department followed by short consultations has long been a complaint. Nowadays, customers use waiting time as a decisive factor in choosing a service provider. Queuing theory constitutes a very powerful tool because queuing models require relatively little data and are simple and fast to use. Because of this simplicity and speed, modelers can be used to quickly evaluate and compare various alternatives for providing service. The application of queuing models in the analysis of health care systems is increasingly accepted by health care decision makers. Timely access to care is a key component of high-quality health care. However, patient delays are prevalent throughout health care systems, resulting in dissatisfaction and adverse clinical consequences for patients as well as potentially higher costs and wasted capacity for providers. Arguably, the most critical delays for health care are the ones associated with health care emergencies. The allocation of resources can be divided into three general areas: bed management, staff management, and room facility management. Effective and efficient patient flow is indicated by high patient throughput, low patient waiting times, a short length of stay at the hospital and overtime, while simultaneously maintaining adequate staff utilization rates and low patient’s idle times.Keywords: appointment system, patient scheduling, bed management, queueing calculation, system analysis
Procedia PDF Downloads 3005669 Integrating Radar Sensors with an Autonomous Vehicle Simulator for an Enhanced Smart Parking Management System
Authors: Mohamed Gazzeh, Bradley Null, Fethi Tlili, Hichem Besbes
Abstract:
The burgeoning global ownership of personal vehicles has posed a significant strain on urban infrastructure, notably parking facilities, leading to traffic congestion and environmental concerns. Effective parking management systems (PMS) are indispensable for optimizing urban traffic flow and reducing emissions. The most commonly deployed systems nowadays rely on computer vision technology. This paper explores the integration of radar sensors and simulation in the context of smart parking management. We concentrate on radar sensors due to their versatility and utility in automotive applications, which extends to PMS. Additionally, radar sensors play a crucial role in driver assistance systems and autonomous vehicle development. However, the resource-intensive nature of radar data collection for algorithm development and testing necessitates innovative solutions. Simulation, particularly the monoDrive simulator, an internal development tool used by NI the Test and Measurement division of Emerson, offers a practical means to overcome this challenge. The primary objectives of this study encompass simulating radar sensors to generate a substantial dataset for algorithm development, testing, and, critically, assessing the transferability of models between simulated and real radar data. We focus on occupancy detection in parking as a practical use case, categorizing each parking space as vacant or occupied. The simulation approach using monoDrive enables algorithm validation and reliability assessment for virtual radar sensors. It meticulously designed various parking scenarios, involving manual measurements of parking spot coordinates, orientations, and the utilization of TI AWR1843 radar. To create a diverse dataset, we generated 4950 scenarios, comprising a total of 455,400 parking spots. This extensive dataset encompasses radar configuration details, ground truth occupancy information, radar detections, and associated object attributes such as range, azimuth, elevation, radar cross-section, and velocity data. The paper also addresses the intricacies and challenges of real-world radar data collection, highlighting the advantages of simulation in producing radar data for parking lot applications. We developed classification models based on Support Vector Machines (SVM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), exclusively trained and evaluated on simulated data. Subsequently, we applied these models to real-world data, comparing their performance against the monoDrive dataset. The study demonstrates the feasibility of transferring models from a simulated environment to real-world applications, achieving an impressive accuracy score of 92% using only one radar sensor. This finding underscores the potential of radar sensors and simulation in the development of smart parking management systems, offering significant benefits for improving urban mobility and reducing environmental impact. The integration of radar sensors and simulation represents a promising avenue for enhancing smart parking management systems, addressing the challenges posed by the exponential growth in personal vehicle ownership. This research contributes valuable insights into the practicality of using simulated radar data in real-world applications and underscores the role of radar technology in advancing urban sustainability.Keywords: autonomous vehicle simulator, FMCW radar sensors, occupancy detection, smart parking management, transferability of models
Procedia PDF Downloads 835668 Role of Human Milk Oligosaccharides (HMOs) in Epigenetic Modulation of Bacterial Pathogen in Infant and Toddler
Authors: Aftab Yusuf Raj
Abstract:
Human milk oligosaccharides (HMOs) are complex carbohydrates. They are 3rd most abundant solid component found in breast milk, after lactose and lipids. HMO has profound beneficial health benefit effects on infants and toddlers. They have diverse roles, in immuno-modulation, development of neonatal gut, influencing the commensal microbiota of developing gut, and anti-inflammatory functions. HMOs, gut and commensal microbiota of the gut work synergistically to bring positive impact on infant and toddler health. HMO influences the gut-brain axis, maintains good mental health and cognitive function and inhibits neuronal inflammation. HMOs are now applied in infant nutrition, and supplementation of HMOs in infant formula is a promising innovation for infant nutrition.Keywords: HMO’s, gut, epigenetic modulation, bacteria
Procedia PDF Downloads 325667 Empowering Transformers for Evidence-Based Medicine
Authors: Jinan Fiaidhi, Hashmath Shaik
Abstract:
Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers
Procedia PDF Downloads 475666 Modeling and Numerical Simulation of Heat Transfer and Internal Loads at Insulating Glass Units
Authors: Nina Penkova, Kalin Krumov, Liliana Zashcova, Ivan Kassabov
Abstract:
The insulating glass units (IGU) are widely used in the advanced and renovated buildings in order to reduce the energy for heating and cooling. Rules for the choice of IGU to ensure energy efficiency and thermal comfort in the indoor space are well known. The existing of internal loads - gage or vacuum pressure in the hermetized gas space, requires additional attention at the design of the facades. The internal loads appear at variations of the altitude, meteorological pressure and gas temperature according to the same at the process of sealing. The gas temperature depends on the presence of coatings, coating position in the transparent multi-layer system, IGU geometry and space orientation, its fixing on the facades and varies with the climate conditions. An algorithm for modeling and numerical simulation of thermal fields and internal pressure in the gas cavity at insulating glass units as function of the meteorological conditions is developed. It includes models of the radiation heat transfer in solar and infrared wave length, indoor and outdoor convection heat transfer and free convection in the hermetized gas space, assuming the gas as compressible. The algorithm allows prediction of temperature and pressure stratification in the gas domain of the IGU at different fixing system. The models are validated by comparison of the numerical results with experimental data obtained by Hot-box testing. Numerical calculations and estimation of 3D temperature, fluid flow fields, thermal performances and internal loads at IGU in window system are implemented.Keywords: insulating glass units, thermal loads, internal pressure, CFD analysis
Procedia PDF Downloads 2755665 Neuron-Based Control Mechanisms for a Robotic Arm and Hand
Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones
Abstract:
A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.Keywords: cell assembly, force sensitive resistor, robot, spiking neuron
Procedia PDF Downloads 3525664 Internet of Things as a Source of Opportunities for Entrepreneurs
Authors: Svetlana Gudkova
Abstract:
The Internet of Things experiences a rapid growth bringing inevitable changes into many spheres of human activities. As the Internet has changed the social and business landscape, IoT as its extension, can bring much more profound changes in economic value creation and competitiveness of the economies. It has been already recognized as the next industrial revolution. However, the development of IoT is in a great extent stimulated by the entrepreneurial activity. To expand and reach its full potential it requires proactive entrepreneurs, who explore the potential and create innovative ideas pushing the boundaries of IoT technologies' application further. The goal of the research is to analyze, how entrepreneurs utilize the opportunities created by IoT and how do they stimulate the development of IoT through discovering of new ways of generating economic value and creating opportunities, which attract other entrepreneurs. The qualitative research methods have been applied to prepare the case studies. Entrepreneurs are recognized as an engine of economic growth. They introduce innovative products and services into the market through the creation of a new combination of the existing resources and utilizing new knowledge. Entrepreneurs not only create economic value but what is more important, they challenge the existing business models and invent new ways of value creation. Through identification and exploitation of entrepreneurial opportunities, they create new opportunities for other entrepreneurs. It makes the industry more attractive to other profit/innovation-driven start-ups. IoT creates numerous opportunities for entrepreneurs in the different industries. Smart cities, healthcare, manufacturing, retail, agriculture, smart vehicles and smart buildings benefit a lot from IoT-based breakthrough innovations introduced by entrepreneurs. They reinvented successfully the business models and created new entrepreneurial opportunities for other start-ups to introduce next innovations.Keywords: entrepreneurship, internet of things, breakthrough innovations, start-ups
Procedia PDF Downloads 2025663 Highly Realistic Facial Expressions of Anthropomorphic Social Agent as a Factor in Solving the 'Uncanny Valley' Problem
Authors: Daniia Nigmatullina, Vlada Kugurakova, Maxim Talanov
Abstract:
We present a methodology and our plans of anthropomorphic social agent visualization. That includes creation of three-dimensional model of the virtual companion's head and its facial expressions. Talking Head is a cross-disciplinary project of developing of the human-machine interface with cognitive functions. During the creation of a realistic humanoid robot or a character, there might be the ‘uncanny valley’ problem. We think about this phenomenon and its possible causes. We are going to overcome the ‘uncanny valley’ by increasing of realism. This article discusses issues that should be considered when creating highly realistic characters (particularly the head), their facial expressions and speech visualization.Keywords: anthropomorphic social agent, facial animation, uncanny valley, visualization, 3D modeling
Procedia PDF Downloads 2925662 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1135661 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs
Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo
Abstract:
In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.Keywords: auction, aggregation, fair, group buying, social buying
Procedia PDF Downloads 2955660 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid
Authors: Houda Jalali, Hassan Abbassi
Abstract:
In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.Keywords: entropy generation, heat transfer, nanofluid, natural convection
Procedia PDF Downloads 2795659 Research the Causes of Defects and Injuries of Reinforced Concrete and Stone Construction
Authors: Akaki Qatamidze
Abstract:
Implementation of the project will be a step forward in terms of reliability in Georgia and the improvement of the construction and the development of construction. Completion of the project is expected to result in a complete knowledge, which is expressed in concrete and stone structures of assessing the technical condition of the processing. This method is based on a detailed examination of the structure, in order to establish the injuries and the elimination of the possibility of changing the structural scheme of the new requirements and architectural preservationists. Reinforced concrete and stone structures research project carried out in a systematic analysis of the important approach is to optimize the process of research and development of new knowledge in the neighboring areas. In addition, the problem of physical and mathematical models of rational consent, the main pillar of the physical (in-situ) data and mathematical calculation models and physical experiments are used only for the calculation model specification and verification. Reinforced concrete and stone construction defects and failures the causes of the proposed research to enhance the effectiveness of their maximum automation capabilities and expenditure of resources to reduce the recommended system analysis of the methodological concept-based approach, as modern science and technology major particularity of one, it will allow all family structures to be identified for the same work stages and procedures, which makes it possible to exclude subjectivity and addresses the problem of the optimal direction. It discussed the methodology of the project and to establish a major step forward in the construction trades and practical assistance to engineers, supervisors, and technical experts in the construction of the settlement of the problem.Keywords: building, reinforced concrete, expertise, stone structures
Procedia PDF Downloads 3375658 Numerical Simulation of Waves Interaction with a Free Floating Body by MPS Method
Authors: Guoyu Wang, Meilian Zhang, Chunhui LI, Bing Ren
Abstract:
In recent decades, a variety of floating structures have played a crucial role in ocean and marine engineering, such as ships, offshore platforms, floating breakwaters, fish farms, floating airports, etc. It is common for floating structures to suffer from loadings under waves, and the responses of the structures mounted in marine environments have a significant relation to the wave impacts. The interaction between surface waves and floating structures is one of the important issues in ship or marine structure design to increase performance and efficiency. With the progress of computational fluid dynamics, a number of numerical models based on the NS equations in the time domain have been developed to explore the above problem, such as the finite difference method or the finite volume method. Those traditional numerical simulation techniques for moving bodies are grid-based, which may encounter some difficulties when treating a large free surface deformation and a moving boundary. In these models, the moving structures in a Lagrangian formulation need to be appropriately described in grids, and the special treatment of the moving boundary is inevitable. Nevertheless, in the mesh-based models, the movement of the grid near the structure or the communication between the moving Lagrangian structure and Eulerian meshes will increase the algorithm complexity. Fortunately, these challenges can be avoided by the meshless particle methods. In the present study, a moving particle semi-implicit model is explored for the numerical simulation of fluid–structure interaction with surface flows, especially for coupling of fluid and moving rigid body. The equivalent momentum transfer method is proposed and derived for the coupling of fluid and rigid moving body. The structure is discretized into a group of solid particles, which are assumed as fluid particles involved in solving the NS equation altogether with the surrounding fluid particles. The momentum conservation is ensured by the transfer from those fluid particles to the corresponding solid particles. Then, the position of the solid particles is updated to keep the initial shape of the structure. Using the proposed method, the motions of a free-floating body in regular waves are numerically studied. The wave surface evaluation and the dynamic response of the floating body are presented. There is good agreement when the numerical results, such as the sway, heave, and roll of the floating body, are compared with the experimental and other numerical data. It is demonstrated that the presented MPS model is effective for the numerical simulation of fluid-structure interaction.Keywords: floating body, fluid structure interaction, MPS, particle method, waves
Procedia PDF Downloads 765657 Chronic Hypertension, Aquaporin and Hydraulic Conductivity: A Perspective on Pathological Connections
Authors: Chirag Raval, Jimmy Toussaint, Tieuvi Nguyen, Hadi Fadaifard, George Wolberg, Steven Quarfordt, Kung-ming Jan, David S. Rumschitzki
Abstract:
Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis. Numerous studies examine aquaporins’ role in osmotic water transport in various systems but virtually none focus on aquaporins’ role in hydrostatically-driven water transport involving mammalian cells save for our laboratory’s recent study of aortic endothelial cells. Here we investigate aquaporin-1 expression and function in the aortic endothelium in two high-renin rat models of hypertension, the spontaneously hypertensive genomically altered Wystar-Kyoto rat variant and Sprague-Dawley rats made hypertensive by two kidney, one clip Goldblatt surgery. We measured aquaporin-1 expression in aortic endothelial cells from whole rat aortas by quantitative immunohistochemistry, and function by measuring the pressure driven hydraulic conductivities of excised rat aortas with both intact and denuded endothelia on the same vessel. We use them to calculate the effective intimal hydraulic conductivity, which is a combination of endothelial and subendothelial components. We observed well-correlated enhancements in aquaporin-1 expression and function in both hypertensive rat models as well as in aortas from normotensive rats whose expression was upregulated by 2h forskolin treatment. Upregulated aquaporin-1 expression and function may be a response to hypertension that critically determines conduit artery vessel wall viability and long-term susceptibility to atherosclerosis.Keywords: acute hypertension, aquaporin-1, hydraulic conductivity, hydrostatic pressure, aortic endothelial cells, transcellular flow
Procedia PDF Downloads 2325656 Modeling Standpipe Pressure Using Multivariable Regression Analysis by Combining Drilling Parameters and a Herschel-Bulkley Model
Authors: Seydou Sinde
Abstract:
The aims of this paper are to formulate mathematical expressions that can be used to estimate the standpipe pressure (SPP). The developed formulas take into account the main factors that, directly or indirectly, affect the behavior of SPP values. Fluid rheology and well hydraulics are some of these essential factors. Mud Plastic viscosity, yield point, flow power, consistency index, flow rate, drillstring, and annular geometries are represented by the frictional pressure (Pf), which is one of the input independent parameters and is calculated, in this paper, using Herschel-Bulkley rheological model. Other input independent parameters include the rate of penetration (ROP), applied load or weight on the bit (WOB), bit revolutions per minute (RPM), bit torque (TRQ), and hole inclination and direction coupled in the hole curvature or dogleg (DL). The technique of repeating parameters and Buckingham PI theorem are used to reduce the number of the input independent parameters into the dimensionless revolutions per minute (RPMd), the dimensionless torque (TRQd), and the dogleg, which is already in the dimensionless form of radians. Multivariable linear and polynomial regression technique using PTC Mathcad Prime 4.0 is used to analyze and determine the exact relationships between the dependent parameter, which is SPP, and the remaining three dimensionless groups. Three models proved sufficiently satisfactory to estimate the standpipe pressure: multivariable linear regression model 1 containing three regression coefficients for vertical wells; multivariable linear regression model 2 containing four regression coefficients for deviated wells; and multivariable polynomial quadratic regression model containing six regression coefficients for both vertical and deviated wells. Although that the linear regression model 2 (with four coefficients) is relatively more complex and contains an additional term over the linear regression model 1 (with three coefficients), the former did not really add significant improvements to the later except for some minor values. Thus, the effect of the hole curvature or dogleg is insignificant and can be omitted from the input independent parameters without significant losses of accuracy. The polynomial quadratic regression model is considered the most accurate model due to its relatively higher accuracy for most of the cases. Data of nine wells from the Middle East were used to run the developed models with satisfactory results provided by all of them, even if the multivariable polynomial quadratic regression model gave the best and most accurate results. Development of these models is useful not only to monitor and predict, with accuracy, the values of SPP but also to early control and check for the integrity of the well hydraulics as well as to take the corrective actions should any unexpected problems appear, such as pipe washouts, jet plugging, excessive mud losses, fluid gains, kicks, etc.Keywords: standpipe, pressure, hydraulics, nondimensionalization, parameters, regression
Procedia PDF Downloads 855655 In-Silico Fusion of Bacillus Licheniformis Chitin Deacetylase with Chitin Binding Domains from Chitinases
Authors: Keyur Raval, Steffen Krohn, Bruno Moerschbacher
Abstract:
Chitin, the biopolymer of the N-acetylglucosamine, is the most abundant biopolymer on the planet after cellulose. Industrially, chitin is isolated and purified from the shell residues of shrimps. A deacetylated derivative of chitin i.e. chitosan has more market value and applications owing to it solubility and overall cationic charge compared to the parent polymer. This deacetylation on an industrial scale is performed chemically using alkalis like sodium hydroxide. This reaction not only is hazardous to the environment owing to negative impact on the marine ecosystem. A greener option to this process is the enzymatic process. In nature, the naïve chitin is converted to chitosan by chitin deacetylase (CDA). This enzymatic conversion on the industrial scale is however hampered by the crystallinity of chitin. Thus, this enzymatic action requires the substrate i.e. chitin to be soluble which is technically difficult and an energy consuming process. We in this project wanted to address this shortcoming of CDA. In lieu of this, we have modeled a fusion protein with CDA and an auxiliary protein. The main interest being to increase the accessibility of the enzyme towards crystalline chitin. A similar fusion work with chitinases had improved the catalytic ability towards insoluble chitin. In the first step, suitable partners were searched through the protein data bank (PDB) wherein the domain architecture were sought. The next step was to create the models of the fused product using various in silico techniques. The models were created by MODELLER and evaluated for properties such as the energy or the impairment of the binding sites. A fusion PCR has been designed based on the linker sequences generated by MODELLER and would be tested for its activity towards insoluble chitin.Keywords: chitin deacetylase, modeling, chitin binding domain, chitinases
Procedia PDF Downloads 2425654 The Effectiveness of the Sensory-Motor and Spatial Perception Rehabilitation Program Based on Parent-Child Interaction and Its Effectiveness on Kinesio phobia in Children with Visually Impairment
Authors: Saheb Yousefi, Kim T. Zebehazy, Parviz Sharifi Daramadi, Tahereh Najafi Fard, Kevin Murfitt
Abstract:
Context: Children with visual impairments often face challenges in their cognitive, motor, and social development. Sensory-motor and spatial perception therapies can be beneficial for these children, but many existing programs only focus on a limited set of therapies. This study aims to investigate the effectiveness of a rehabilitation program for sensory- motor and spatial perception in reducing the fear of mobility in visually impaired children. Research Aim: The aim of this study is to determine if a rehabilitation program based on parent-child interaction can reduce the fear of mobility in visually impaired children. Methodology: This study uses a semi-experimental approach with an uneven control group design. Visually impaired children aged 10 to 14 and their parents from the Board of the Blind and Visually Impaired in Tehran Province were included in the study. The sample was divided into experimental and control groups, with a total of 30 participants. The experimental group participated in a rehabilitation program for sensory-motor and spatial perception based on parent-child interaction, while the control group did not receive this intervention. Data was collected using questionnaires on transportation issues and analyzed using multivariate and univariate mixed analysis of variance tests. Findings: The analysis of the data showed that the fear of movement was significantly improved in the experimental group compared to the control group after the intervention. Theoretical Importance: This study highlights the effectiveness of a rehabilitation program for sensory- motor and spatial perception based on parent-child interaction in reducing the fear of mobility in visually impaired children. It contributes to the existing knowledge by demonstrating the positive impact of this type of intervention on the cognitive, motor, and social development of these children. Data Collection and Analysis Procedures: Data was collected through the use of questionnaires administered to the children before and after the intervention. The data was analyzed using multivariate and univariate mixed analysis of variance tests to examine the effects of the rehabilitation program. Questions Addressed: This study addresses the question of whether a rehabilitation program based on parent-child interaction can reduce the fear of mobility in visually impaired children. Conclusion: The findings of this study support the effectiveness of the sensory-motor and spatial perception rehabilitation program based on parent-child interaction in reducing the fear of movement in visually impaired children. This intervention can be considered as a suitable method to enhance the fear of mobility in these children.Keywords: vision impairment, sensory-motor rehabilitation, space perception, parent-child interaction, fear of movement.
Procedia PDF Downloads 655653 Full-Face Hyaluronic Acid Implants Assisted by Artificial Intelligence-Generated Post-treatment 3D Models
Authors: Ciro Cursio, Pio Luigi Cursio, Giulia Cursio, Isabella Chiardi, Luigi Cursio
Abstract:
Introduction: Full-face aesthetic treatments often present a difficult task: since different patients possess different anatomical and tissue characteristics, there is no guarantee that the same treatment will have the same effect on multiple patients; additionally, full-face rejuvenation and beautification treatments require not only a high degree of technical skill but also the ability to choose the right product for each area and a keen artistic eye. Method: We present an artificial intelligence-based algorithm that can generate realistic post-treatment 3D models based on the patient’s requests together with the doctor’s input. These 3-dimensional predictions can be used by the practitioner for two purposes: firstly, they help ensure that the patient and the doctor are completely aligned on the expectations of the treatment; secondly, the doctor can use them as a visual guide, obtaining a natural result that would normally stem from the practitioner's artistic skills. To this end, the algorithm is able to predict injection zones, the type and quantity of hyaluronic acid, the injection depth, and the technique to use. Results: Our innovation consists in providing an objective visual representation of the patient that is helpful in the patient-doctor dialogue. The patient, based on this information, can express her desire to undergo a specific treatment or make changes to the therapeutic plan. In short, the patient becomes an active agent in the choices made before the treatment. Conclusion: We believe that this algorithm will reveal itself as a useful tool in the pre-treatment decision-making process to prevent both the patient and the doctor from making a leap into the dark.Keywords: hyaluronic acid, fillers, full face, artificial intelligence, 3D
Procedia PDF Downloads 905652 Online Information Seeking: A Review of the Literature in the Health Domain
Authors: Sharifah Sumayyah Engku Alwi, Masrah Azrifah Azmi Murad
Abstract:
The development of the information technology and Internet has been transforming the healthcare industry. The internet is continuously accessed to seek for health information and there are variety of sources, including search engines, health websites, and social networking sites. Providing more and better information on health may empower individuals, however, ensuring a high quality and trusted health information could pose a challenge. Moreover, there is an ever-increasing amount of information available, but they are not necessarily accurate and up to date. Thus, this paper aims to provide an insight of the models and frameworks related to online health information seeking of consumers. It begins by exploring the definition of information behavior and information seeking to provide a better understanding of the concept of information seeking. In this study, critical factors such as performance expectancy, effort expectancy, and social influence will be studied in relation to the value of seeking health information. It also aims to analyze the effect of age, gender, and health status as the moderator on the factors that influence online health information seeking, i.e. trust and information quality. A preliminary survey will be carried out among the health professionals to clarify the research problems which exist in the real world, at the same time producing a conceptual framework. A final survey will be distributed to five states of Malaysia, to solicit the feedback on the framework. Data will be analyzed using SPSS and SmartPLS 3.0 analysis tools. It is hoped that at the end of this study, a novel framework that can improve online health information seeking is developed. Finally, this paper concludes with some suggestions on the models and frameworks that could improve online health information seeking.Keywords: information behavior, information seeking, online health information, technology acceptance model, the theory of planned behavior, UTAUT
Procedia PDF Downloads 276