Search results for: supply chain optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6685

Search results for: supply chain optimization

3895 Comprehensive Analysis and Optimization of Alkaline Water Electrolysis for Green Hydrogen Production: Experimental Validation, Simulation Study, and Cost Analysis

Authors: Umair Ahmed, Muhammad Bin Irfan

Abstract:

This study focuses on designing and optimization of an alkaline water electrolyser for the production of green hydrogen. The aim is to enhance the durability and efficiency of this technology while simultaneously reducing the cost associated with the production of green hydrogen. The experimental results obtained from the alkaline water electrolyser are compared with simulated results using Aspen Plus software, allowing a comprehensive analysis and evaluation. To achieve the aforementioned goals, several design and operational parameters are investigated. The electrode material, electrolyte concentration, and operating conditions are carefully selected to maximize the efficiency and durability of the electrolyser. Additionally, cost-effective materials and manufacturing techniques are explored to decrease the overall production cost of green hydrogen. The experimental setup includes a carefully designed alkaline water electrolyser, where various performance parameters (such as hydrogen production rate, current density, and voltage) are measured. These experimental results are then compared with simulated data obtained using Aspen Plus software. The simulation model is developed based on fundamental principles and validated against the experimental data. The comparison between experimental and simulated results provides valuable insight into the performance of an alkaline water electrolyser. It helps to identify the areas where improvements can be made, both in terms of design and operation, to enhance the durability and efficiency of the system. Furthermore, the simulation results allow cost analysis providing an estimate of the overall production cost of green hydrogen. This study aims to develop a comprehensive understanding of alkaline water electrolysis technology. The findings of this research can contribute to the development of more efficient and durable electrolyser technology while reducing the cost associated with this technology. Ultimately, these advancements can pave the way for a more sustainable and economically viable hydrogen economy.

Keywords: sustainable development, green energy, green hydrogen, electrolysis technology

Procedia PDF Downloads 95
3894 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field

Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian

Abstract:

Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.

Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering

Procedia PDF Downloads 179
3893 Wealth Creation and its Externalities: Evaluating Economic Growth and Corporate Social Responsibility

Authors: Zhikang Rong

Abstract:

The 4th industrial revolution has introduced technologies like interconnectivity, machine learning, and real-time big data analytics that improve operations and business efficiency. This paper examines how these advancements have led to a concentration of wealth, specifically among the top 1%, and investigates whether this wealth provides value to society. Through analyzing impacts on employment, productivity, supply-demand dynamics, and potential externalities, it is shown that successful businesspeople, by enhancing productivity and creating jobs, contribute positively to long-term economic growth. Additionally, externalities such as environmental degradation are managed by social entrepreneurship and government policies.

Keywords: wealth creation, employment, productivity, social entrepreneurship

Procedia PDF Downloads 39
3892 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province

Authors: Yujie Zhao, Jiantao Weng

Abstract:

In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.

Keywords: air infiltration, commercial complex, heat consumption, CFD simulation

Procedia PDF Downloads 137
3891 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum

Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna

Abstract:

Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.

Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network

Procedia PDF Downloads 164
3890 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks

Authors: Christina Kirsch, Adam Hatzigiannis

Abstract:

Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.

Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis

Procedia PDF Downloads 126
3889 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 30
3888 Optimized Marketing of Bidirectional Charging Capacities for Commercial Freight Transport

Authors: Luzie Krings

Abstract:

The electrification of the transport sector is increasingly recognized as a vital strategy for decarbonization. However, integrating electric vehicles (EVs) into the energy grid poses challenges due to decentralized power units and the intermittent nature of renewable energy sources. Vehicle-to-grid (V2G) technology offers a compelling solution by enabling EVs to function as mobile storage units, providing system services, reducing grid congestion, and offering economic incentives. This potential is particularly significant in freight transport, which accounts for 38% of transport-related emissions. The aggregated use of energy storage in this sector can facilitate grid stability and renewable energy integration. Despite this, existing optimization methods for energy markets frequently overlook operational constraints, such as fixed schedules and state-of-charge requirements, while redispatch markets remain underutilized. This study introduces a risk-averse optimization model for marketing EV flexibilities across multiple energy markets in Germany. Using a linear optimization framework, the model incorporates technical, regulatory, and user constraints. EVs are modeled as energy storage units, and the integration of renewable energy sources, such as photovoltaic (PV) and wind energy, is evaluated. To benchmark performance, unidirectional charging with dynamic tariffs is used as the reference scenario. The research examines four distinct logistics depot fleets, each with varying capacities and schedules, to simulate commercial EV operations. The methodology employs a multi-market optimization model that integrates Day-Ahead, Intraday, and Redispatch energy markets, each with specific trading conditions and temporal offsets. The tool, developed using the Python-based library energy pilot by Fraunhofer IEE, also explores scenarios where proprietary renewable energy sources are incorporated to maximize benefits. By accounting for charging schedules, market requirements, and technical constraints, the study aims to enhance grid stability and improve economic outcomes and integration of renewable energies. The findings highlight the economic, environmental, and grid-related advantages of optimizing EV flexibility. Compared to the reference scenario of unidirectional charging, bidirectional strategies delivered an approximate economic benefit of 20%. Furthermore, the integration of proprietary renewable energy sources increased by 15%, demonstrating the potential for environmental gains. The study revealed that the duration of a single charging cycle has a greater impact on economic benefits than the total daily charging time spread across multiple cycles. This underscores the marketing potential of vehicles with extended idle times rather than frequent charging cycles. In conclusion, optimizing energy trading through flexible EV portfolios and efficient charging infrastructure offers substantial cost savings, particularly by increasing the number of charging stations and extending charging cycle durations. By leveraging multiple marketing options, high investment costs can be offset through enhanced revenues. Further gains could be achieved by simultaneously optimizing all trading options, though this approach introduces risks from price volatility and unreliable redispatch capacities. As electrified trucks are modeled as energy storage units, the study's findings are applicable to other forms of energy storage, offering a scalable and transferable framework for future energy systems.

Keywords: electric vehicles, energy markets, energy storage, energy grid

Procedia PDF Downloads 19
3887 Solution of Nonlinear Fractional Programming Problem with Bounded Parameters

Authors: Mrinal Jana, Geetanjali Panda

Abstract:

In this paper a methodology is developed to solve a nonlinear fractional programming problem in which the coefficients of the objective function and constraints are interval parameters. This model is transformed into a general optimization problem and relation between the original problem and the transformed problem is established. Finally the proposed methodology is illustrated through a numerical example.

Keywords: fractional programming, interval valued function, interval inequalities, partial order relation

Procedia PDF Downloads 522
3886 Innovations in the Lithium Chain Value

Authors: Fiúza A., Góis J. Leite M., Braga H., Lima A., Jorge P., Moutela P., Martins L., Futuro A.

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques are used to minimize the laboratory effort required by conventional approaches and also allow phenomenological comprehension.

Keywords: artificial intelligence, tailings free process, ferroelectric electrolyte battery, life cycle assessment

Procedia PDF Downloads 126
3885 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 101
3884 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK

Authors: G. Sarwar, C. Mateus, N. Todorovic

Abstract:

The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.

Keywords: macroeconomic determinants, Markorv Switching, size, value

Procedia PDF Downloads 487
3883 Pavement Management for a Metropolitan Area: A Case Study of Montreal

Authors: Luis Amador Jimenez, Md. Shohel Amin

Abstract:

Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.

Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization

Procedia PDF Downloads 461
3882 Screening of Ionic Liquids for Hydrogen Sulfide Removal Using COSMO-RS

Authors: Zulaika Mohd Khasiran

Abstract:

The capability of ionic liquids in various applications makes them attracted by many researchers. They have potential to be developed as “green” solvents for gas separation, especially H2S gas. In this work, it is attempted to predict the solubility of hydrogen sulfide (H2S) in ILs by COSMO-RS method. Since H2S is a toxic pollutant, it is difficult to work on it in the laboratory, therefore an appropriate model will be necessary in prior work. The COSMO-RS method is implemented to predict the Henry’s law constants and activity coefficient of H2S in 140 ILs with various combinations of cations and anions. It is found by the screening that more H2S can be absorbed in ILs with [Cl] and [Ac] anion. The solubility of H2S in ILs with different alkyl chain at the cations not much affected and with different type of cations are slightly influence H2S capture capacities. Even though the cations do not affect much in solubility of H2S, we still need to consider the effectiveness of cation in different way. The prediction results only show their physical absorption ability, but the absorption of H2S need to be consider chemically to get high capacity of absorption of H2S.

Keywords: H2S, hydrogen sulfide, ionic liquids, COSMO-RS

Procedia PDF Downloads 145
3881 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model

Authors: Zina Benouaret, Djamil Aissani

Abstract:

In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.

Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis

Procedia PDF Downloads 252
3880 Exploring Closed-Loop Business Systems Which Eliminates Solid Waste in the Textile and Fashion Industry: A Systematic Literature Review Covering the Developments Occurred in the Last Decade

Authors: Bukra Kalayci, Geraldine Brennan

Abstract:

Introduction: Over the last decade, a proliferation of literature related to textile and fashion business in the context of sustainable production and consumption has emerged. However, the economic and environmental benefits of solid waste recovery have not been comprehensively searched. Therefore at the end-of-life or end-of-use textile waste management remains a gap. Solid textile waste reuse and recycling principles of the circular economy need to be developed to close the disposal stage of the textile supply chain. The environmental problems associated with the over-production and –consumption of textile products arise. Together with growing population and fast fashion culture the share of solid textile waste in municipal waste is increasing. Focusing on post-consumer textile waste literature, this research explores the opportunities, obstacles and enablers or success factors associated with closed-loop textile business systems. Methodology: A systematic literature review was conducted in order to identify best practices and gaps from the existing body of knowledge related to closed-loop post-consumer textile waste initiatives over the last decade. Selected keywords namely: ‘cradle-to-cradle ‘, ‘circular* economy* ‘, ‘closed-loop* ‘, ‘end-of-life* ‘, ‘reverse* logistic* ‘, ‘take-back* ‘, ‘remanufacture* ‘, ‘upcycle* ‘ with the combination of (and) ‘fashion* ‘, ‘garment* ‘, ‘textile* ‘, ‘apparel* ‘, clothing* ‘ were used and the time frame of the review was set between 2005 to 2017. In order to obtain a broad coverage, Web of Knowledge and Science Direct databases were used, and peer-reviewed journal articles were chosen. The keyword search identified 299 number of papers which was further refined into 54 relevant papers that form the basis of the in-depth thematic analysis. Preliminary findings: A key finding was that the existing literature is predominantly conceptual rather than applied or empirical work. Moreover, the enablers or success factors, obstacles and opportunities to implement closed-loop systems in the textile industry were not clearly articulated and the following considerations were also largely overlooked in the literature. While the circular economy suggests multiple cycles of discarded products, components or materials, most research has to date tended to focus on a single cycle. Thus the calculations of environmental and economic benefits of closed-loop systems are limited to one cycle which does not adequately explore the feasibility or potential benefits of multiple cycles. Additionally, the time period textile products spend between point of sale, and end-of-use/end-of-life return is a crucial factor. Despite past efforts to study closed-loop textile systems a clear gap in the literature is the lack of a clear evaluation framework which enables manufacturers to clarify the reusability potential of textile products through consideration of indicators related too: quality, design, lifetime, length of time between manufacture and product return, volume of collected disposed products, material properties, and brand segment considerations (e.g. fast fashion versus luxury brands).

Keywords: circular fashion, closed loop business, product service systems, solid textile waste elimination

Procedia PDF Downloads 208
3879 Design for Sustainability

Authors: Qiuying Li, Fan Chen

Abstract:

It is a shared opinion that sustainable development requires continuously updated, meaning that apparent changes in the way we usually produce our buildings are strongly needed. In China’s construction field, the associated environmental, health problems are quite prominent.Especially low sustainable performance (as opposed to Green creation) flooding the real estate boom and high-speed urban and rural urbanization. Currently, we urgently need to improve the existing design basis,objectives,scope and procedures,optimization design portfolio.More new evaluation system designed to facilitate the building to enhance the overall level.

Keywords: design for sustainability, design and materials, ecomaterials, sustainable architecture and urban design

Procedia PDF Downloads 526
3878 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 139
3877 Prevalence and Molecular Characterization of Vibrio parahaemolyticus in Estuarine Fish from Dhaka City Markets

Authors: Fahmida Khalique Nitu

Abstract:

Little is known on the biosafety level of Vibrio parahaemolyticus in estuarine fish in Bangladesh. The purpose of this study was to investigate the prevalence and concentration of V. parahaemolyticus in estuarine fishes using the Polymerase Chain Reaction( PCR) method . The study was conducted on 37 fishes of different species from different types of estuarine fish commonly sold at city markets. Sampling was done on the intestinal tract and gills of each fish. The prevalence of V. parahaemolyticus was found to be 29.72% with higher percentages detected in samples from the gills (89.28%) followed by the intestinal tract (10.71%). The density of Vibrio spp. in the gill of estuarine fishes with an average was 4.4 x103CFU/g and in the intestine samples was 1.5x103 CFU/g. The outcome of the biosafety assessment V. parahaemolyticus in estuarine fish indicates another potential source of food safety issues to consumers.

Keywords: biosafety, estuarine, prevalence, Vibrios

Procedia PDF Downloads 282
3876 The Negative Impact of Mindfulness on Creativity: An Experimental Test

Authors: Marine Agogue, Beatrice Parguel, Emilie Canet

Abstract:

Defined as receptive attention to and awareness of present events and experience, mindfulness has grown in popularity over the past 30 years to become a trendy buzzword in business media, which regularly reports on its organizational benefits. Mindfulness would enhance or impede creative thinking depending on the type of meditation. Specifically, focused-attention meditation (focusing attention on one object instead of being open to perceive and observe any sensation or thought) would not be or negatively correlated to creativity. This research explores whether mood, in its two dimensions (i.e., hedonic tone, activation level), could mediate this potentially negative effect. The rationale is that focused-attention meditation is likely to improve hedonic tone but, in the meantime, damage activation level, resulting in opposite effects on creativity through the mediation effect of creative self-efficacy, i.e., the belief that one can perform successfully in an ideation setting. To test this conceptual model, a survey was administered to 97 subjects (53% women, mean age: 25 years), randomly assigned to three conditions (a 10-minute focused-attention meditation session vs. a 10-minute psychometric tests session vs. a control condition) and asked to participate in the egg creative task. Creativity was measured in terms of fluency, expansivity, and originality, the other variables using existing scales: hedonic tone (e.g., joyful, happy), activation level (e.g., passive, sluggish), creative self-efficacy (e.g., ‘I felt confident in my ability to do the task effectively’) and self-perceived creativity (e.g., ‘I have lots of original ideas’). The chains of mediation were tested using PROCESS macro (model 6) and controlled for subjects’ gender, age, and self-perceived creativity. Comparing the mindfulness and the control conditions, no difference appeared in terms of creativity, nor any mediation chain by hedonic tone. However, subjects who participated in the meditation session felt less active than those in the control condition, which decreased their creative self-efficacy, and creativity (whatever the indicator considered). Comparing the mindfulness and the psychometric tests conditions, analyses showed that creativity was higher in the psychometric tests condition. As previously, no mediation chain appeared by hedonic tone. However, subjects who participated in the meditation session felt less active than those in the psychometric tests condition, which decreased their creative self-efficacy, and creativity. These findings confirm that focused-attention meditation does not enhance creativity. They demonstrate an emotional underlying mechanism based on activation level and suggest that both positive and active mood states have the potential to enhance creativity through creative self-efficacy. In the end, they should discourage organizations from trying to nudge creativity using mindfulness ad hoc devices.

Keywords: creativity, mindfulness, creative self-efficacy, experiment

Procedia PDF Downloads 137
3875 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 352
3874 Detection of Change Points in Earthquakes Data: A Bayesian Approach

Authors: F. A. Al-Awadhi, D. Al-Hulail

Abstract:

In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.

Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode

Procedia PDF Downloads 460
3873 Synthesis and Characterization of New Polyesters Based on Diarylidene-1-Methyl-4-Piperidone

Authors: Tareg M. Elsunaki, Suleiman A. Arafa, Mohamed A. Abd-Alla

Abstract:

New interesting thermal stable polyesters containing 1-methyl-4-piperidone moiety in the main chain have been synthesized. These polyesters were synthesized by interfacial polycondensation technique of 3,5-bis(4-hydroxybenzylidene)-1-methyl-4-piperidone (I) and 3,5-bis(4-hydroxy-3-methoxy benzyli-dene)-1-methyl-4-piperidone (II) with terphthaloyl, isophthaloyl, 4,4'-diphenic, adipoyl and sebacoyl dichlorides. The yield and the values of the reduced viscosity of the produced polyesters were found to be affected by the type of an organic phase. In order to characterize these polymers, the necessary model compounds (A), (B) were prepared from (I), (II) respectively and benzoyl chloride. The structure of monomers (I), (II), model compounds and resulting polyesters were confirmed by IR, elemental analysis and 1HNMR spectroscopy. The various characteristic of the resulting polymers including solubility, thermal properties, viscosity and X-ray analysis were also studied.

Keywords: synthesis, characterization, new polyesters, chemistry

Procedia PDF Downloads 463
3872 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 151
3871 Development of an Information System Based Airport Evaluation Method

Authors: Eniko Nagy, Csaba Csiszar

Abstract:

Satisfaction of air transportation passengers is significantly affected by the perceived quality of airport information services. The development potential of ICT is considerable. The traditional and new functions of ‘smart’ airports are realized by complex services aiding seamless, comfortable and less time-consuming travel. Based on the elements of the transportation chain the information management functions, their relationships and the technical solutions have been identified. The functions have been categorized by their development level and evaluation scores have been assigned to each category. Correction factors influencing the usefulness of the technology or the service have been introduced. A method for the calculation of ‘smart’ index in order to compare the airports in objective way has been developed; thus facilitating further developments. The method has been applied for the case study of Budapest.

Keywords: air transportation informatics, evaluation, information service, smart airport

Procedia PDF Downloads 216
3870 Genetic Characterization of Barley Genotypes via Inter-Simple Sequence Repeat

Authors: Mustafa Yorgancılar, Emine Atalay, Necdet Akgün, Ali Topal

Abstract:

In this study, polymerase chain reaction based Inter-simple sequence repeat (ISSR) from DNA fingerprinting techniques were used to investigate the genetic relationships among barley crossbreed genotypes in Turkey. It is important that selection based on the genetic base in breeding programs via ISSR, in terms of breeding time. 14 ISSR primers generated a total of 97 bands, of which 81 (83.35%) were polymorphic. The highest total resolution power (RP) value was obtained from the F2 (0.53) and M16 (0.51) primers. According to the ISSR result, the genetic similarity index changed between 0.64–095; Lane 3 with Line 6 genotypes were the closest, while Line 36 were the most distant ones. The ISSR markers were found to be promising for assessing genetic diversity in barley crossbreed genotypes.

Keywords: barley, crossbreed, genetic similarity, ISSR

Procedia PDF Downloads 352
3869 Tram Track Deterioration Modeling

Authors: Mohammad Yousefikia, Sara Moridpour, Ehsan Mazloumi

Abstract:

Perceiving track geometry deterioration decisively influences the optimization of track maintenance operations. The effective management of this deterioration and increasingly utilized system with limited financial resources is a significant challenge. This paper provides a review of degradation models relevant for railroad tracks. Furthermore, due to the lack of long term information on the condition development of tram infrastructures, presents the methodology which will be used to derive degradation models from the data of Melbourne tram network.

Keywords: deterioration modeling, asset management, railway, tram

Procedia PDF Downloads 384
3868 The Effect of Culture and Managerial Practices on Organizational Leadership Towards Performance

Authors: Anyia Nduka, Aslan Bin Amad Senin, Ayu Azrin Bte Abdul Aziz

Abstract:

A management practice characterised by a value chain as its relatively flexible culture is replacing the old bureaucratic model of organisational practice that was built on dominance. Using a management practice fruition paradigm, the study delves into the implications of organisational culture and leadership. Developing a theory of leadership called the “cultural model” of organisational leadership by explaining how the shift from bureaucracy to management practises altered the roles and interactions of leaders. This model is well-grounded in leadership theory, considering the concept's adaptability to different leadership ideologies. In organisations where operational procedures and borders are not clearly defined, hierarchies are flattened, and work collaborations are sometimes based on contracts rather than employment. This cultural model of organizational leadership is intended to be a useful tool for predicting how effectively a leader will perform.

Keywords: leadership, organizational culture, management practices, efficiency

Procedia PDF Downloads 92
3867 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 84
3866 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 64