Search results for: neural progentor cells
2138 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity
Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate
Abstract:
An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.Keywords: Curcumin, chitosan, nanoparticles, anticancer activity
Procedia PDF Downloads 1782137 Prospects of Regenerative Medicine with Human Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cell Sheets: Achievements and Future Outlook in Clinical Trials for Myopic Chorioretinal Atrophy
Authors: Norimichi Nagano, Yoshio Hirano, Tsutomu Yasukawa
Abstract:
Mesenchymal stem cells are thought to confer neuroprotection, facilitate tissue regeneration and exert their effects on retinal degenerative diseases, however, adverse events such as proliferative vitreoretinopathy and preretinal membrane disease associated with cell suspension transplantation have also been reported. We have recently developed human (allogeneic) adipose tissue-derived mesenchymal stem cell (adMSC) sheets through our proprietary sheet transformation technique, which could potentially mitigate these adverse events. To clarify the properties of our adMSC sheets named PAL-222, we performed in vitro studies such as viability testing, cytokine secretions by ELISA, immunohistochemical study, and migration assay. The viability of the cells exceeded 70%. Vascular Endothelial Growth Factor (VEGF) and Pigment Epithelium-Derived Factor (PEDF), which are quite important cytokines for the retinal area, were observed. PAL-222 expressed type I collagen, a strength marker, type IV collagen, a marker of the basement membrane, and elastin, an elasticity marker. Finally, the migration assay was performed and showed negative, which means that PAL-222 is stably kept in the topical area and does not come to pieces. Next, to evaluate the efficacy in vivo, we transplanted PAL-222 into the subretinal space of the eye of Royal College of Surgeons rats with congenital retinal degeneration and assessed it for three weeks after transplantation. We confirmed that PAL-222 suppressed the decrease in the thickness of the outer nuclear layer, which means that the photoreceptor protective effect treated with PAL-222 was significantly higher than that in the sham group. (p < 0.01). This finding demonstrates that PAL-222 showed their retinoprotective effect in a model of congenital retinal degeneration. As the study suggested the efficacy of PAL-222 in both in vitro and in vivo studies, we are presently engaged in clinical trials of PAL-222 for myopic chorioretinal atrophy, which is one of the retinal degenerative diseases, for the purpose of regenerative medicine.Keywords: cell sheet, clinical trial, mesenchymal stem cell, myopic chorioretinal atrophy
Procedia PDF Downloads 922136 Features Reduction Using Bat Algorithm for Identification and Recognition of Parkinson Disease
Authors: P. Shrivastava, A. Shukla, K. Verma, S. Rungta
Abstract:
Parkinson's disease is a chronic neurological disorder that directly affects human gait. It leads to slowness of movement, causes muscle rigidity and tremors. Gait serve as a primary outcome measure for studies aiming at early recognition of disease. Using gait techniques, this paper implements efficient binary bat algorithm for an early detection of Parkinson's disease by selecting optimal features required for classification of affected patients from others. The data of 166 people, both fit and affected is collected and optimal feature selection is done using PSO and Bat algorithm. The reduced dataset is then classified using neural network. The experiments indicate that binary bat algorithm outperforms traditional PSO and genetic algorithm and gives a fairly good recognition rate even with the reduced dataset.Keywords: parkinson, gait, feature selection, bat algorithm
Procedia PDF Downloads 5452135 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics
Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima
Abstract:
This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks
Procedia PDF Downloads 1642134 Speech Perception by Video Hosting Services Actors: Urban Planning Conflicts
Authors: M. Pilgun
Abstract:
The report presents the results of a study of the specifics of speech perception by actors of video hosting services on the material of urban planning conflicts. To analyze the content, the multimodal approach using neural network technologies is employed. Analysis of word associations and associative networks of relevant stimulus revealed the evaluative reactions of the actors. Analysis of the data identified key topics that generated negative and positive perceptions from the participants. The calculation of social stress and social well-being indices based on user-generated content made it possible to build a rating of road transport construction objects according to the degree of negative and positive perception by actors.Keywords: social media, speech perception, video hosting, networks
Procedia PDF Downloads 1472133 Fractal-Wavelet Based Techniques for Improving the Artificial Neural Network Models
Authors: Reza Bazargan lari, Mohammad H. Fattahi
Abstract:
Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for pre-processing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based pre-processing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.Keywords: wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN
Procedia PDF Downloads 3682132 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 4352131 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline that ensures that data mirrors real-world settings by incorporating Gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification, and explainability in a single pipeline called DeClEx.Keywords: machine learning, healthcare, classification, explainability
Procedia PDF Downloads 552130 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 602129 The Usefulness of Premature Chromosome Condensation Scoring Module in Cell Response to Ionizing Radiation
Authors: K. Rawojć, J. Miszczyk, A. Możdżeń, A. Panek, J. Swakoń, M. Rydygier
Abstract:
Due to the mitotic delay, poor mitotic index and disappearance of lymphocytes from peripheral blood circulation, assessing the DNA damage after high dose exposure is less effective. Conventional chromosome aberration analysis or cytokinesis-blocked micronucleus assay do not provide an accurate dose estimation or radiosensitivity prediction in doses higher than 6.0 Gy. For this reason, there is a need to establish reliable methods allowing analysis of biological effects after exposure in high dose range i.e., during particle radiotherapy. Lately, Premature Chromosome Condensation (PCC) has become an important method in high dose biodosimetry and a promising treatment modality to cancer patients. The aim of the study was to evaluate the usefulness of drug-induced PCC scoring procedure in an experimental mode, where 100 G2/M cells were analyzed in different dose ranges. To test the consistency of obtained results, scoring was performed by 3 independent persons in the same mode and following identical scoring criteria. Whole-body exposure was simulated in an in vitro experiment by irradiating whole blood collected from healthy donors with 60 MeV protons and 250 keV X-rays, in the range of 4.0 – 20.0 Gy. Drug-induced PCC assay was performed on human peripheral blood lymphocytes (HPBL) isolated after in vitro exposure. Cells were cultured for 48 hours with PHA. Then to achieve premature condensation, calyculin A was added. After Giemsa staining, chromosome spreads were photographed and manually analyzed by scorers. The dose-effect curves were derived by counting the excess chromosome fragments. The results indicated adequate dose estimates for the whole-body exposure scenario in the high dose range for both studied types of radiation. Moreover, compared results revealed no significant differences between scores, which has an important meaning in reducing the analysis time. These investigations were conducted as a part of an extended examination of 60 MeV protons from AIC-144 isochronous cyclotron, at the Institute of Nuclear Physics in Kraków, Poland (IFJ PAN) by cytogenetic and molecular methods and were partially supported by grant DEC-2013/09/D/NZ7/00324 from the National Science Centre, Poland.Keywords: cell response to radiation exposure, drug induced premature chromosome condensation, premature chromosome condensation procedure, proton therapy
Procedia PDF Downloads 3522128 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1462127 Implications of Human Cytomegalovirus as a Protective Factor in the Pathogenesis of Breast Cancer
Authors: Marissa Dallara, Amalia Ardeljan, Lexi Frankel, Nadia Obaed, Naureen Rashid, Omar Rashid
Abstract:
Human Cytomegalovirus (HCMV) is a ubiquitous virus that remains latent in approximately 60% of individuals in developed countries. Viral load is kept at a minimum due to a robust immune response that is produced in most individuals who remain asymptomatic. HCMV has been recently implicated in cancer research because it may impose oncomodulatory effects on tumor cells of which it infects, which could have an impact on the progression of cancer. HCMV has been implicated in increased pathogenicity of certain cancers such as gliomas, but in contrast, it can also exhibit anti-tumor activity. HCMV seropositivity has been recorded in tumor cells, but this may also have implications in decreased pathogenesis of certain forms of cancer such as leukemia as well as increased pathogenesis in others. This study aimed to investigate the correlation between cytomegalovirus and the incidence of breast cancer. Methods The data used in this project was extracted from a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to analyze the patients infected versus patients not infection with cytomegalovirus using ICD-10, ICD-9 codes. Permission to utilize the database was given by Holy Cross Health, Fort Lauderdale, for the purpose of academic research. Data analysis was conducted using standard statistical methods. Results The query was analyzed for dates ranging from January 2010 to December 2019, which resulted in 14,309 patients in both the infected and control groups, respectively. The two groups were matched by age range and CCI score. The incidence of breast cancer was 1.642% and 235 patients in the cytomegalovirus group compared to 4.752% and 680 patients in the control group. The difference was statistically significant by a p-value of less than 2.2x 10^-16 with an odds ratio of 0.43 (0.4 to 0.48) with a 95% confidence interval. Investigation into the effects of HCMV treatment modalities, including Valganciclovir, Cidofovir, and Foscarnet, on breast cancer in both groups was conducted, but the numbers were insufficient to yield any statistically significant correlations. Conclusion This study demonstrates a statistically significant correlation between cytomegalovirus and a reduced incidence of breast cancer. If HCMV can exert anti-tumor effects on breast cancer and inhibit growth, it could potentially be used to formulate immunotherapy that targets various types of breast cancer. Further evaluation is warranted to assess the implications of cytomegalovirus in reducing the incidence of breast cancer.Keywords: human cytomegalovirus, breast cancer, immunotherapy, anti-tumor
Procedia PDF Downloads 2082126 Dual-Network Memory Model for Temporal Sequences
Authors: Motonobu Hattori
Abstract:
In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal
Procedia PDF Downloads 2702125 Evaluation of the Influence of Graphene Oxide on Spheroid and Monolayer Culture under Flow Conditions
Authors: A. Zuchowska, A. Buta, M. Mazurkiewicz-Pawlicka, A. Malolepszy, L. Stobinski, Z. Brzozka
Abstract:
In recent years, graphene-based materials are finding more and more applications in biological science. As a thin, tough, transparent and chemically resistant materials, they appear to be a very good material for the production of implants and biosensors. Interest in graphene derivatives also resulted at the beginning of research about the possibility of their application in cancer therapy. Currently, the analysis of their potential use in photothermal therapy and as a drug carrier is mostly performed. Moreover, the direct anticancer properties of graphene-based materials are also tested. Nowadays, cytotoxic studies are conducted on in vitro cell culture in standard culture vessels (macroscale). However, in this type of cell culture, the cells grow on the synthetic surface in static conditions. For this reason, cell culture in macroscale does not reflect in vivo environment. The microfluidic systems, called Lab-on-a-chip, are proposed as a solution for improvement of cytotoxicity analysis of new compounds. Here, we present the evaluation of cytotoxic properties of graphene oxide (GO) on breast, liver and colon cancer cell line in a microfluidic system in two spatial models (2D and 3D). Before cell introduction, the microchambers surface was modified by the fibronectin (2D, monolayer) and poly(vinyl alcohol) (3D, spheroids) covering. After spheroid creation (3D) and cell attachment (2D, monolayer) the selected concentration of GO was introduced into microsystems. Then monolayer and spheroids viability/proliferation using alamarBlue® assay and standard microplate reader was checked for three days. Moreover, in every day of the culture, the morphological changes of cells were determined using microscopic analysis. Additionally, on the last day of the culture differential staining using Calcein AM and Propidium iodide were performed. We were able to note that the GO has an influence on all tested cell line viability in both monolayer and spheroid arrangement. We showed that GO caused higher viability/proliferation decrease for spheroids than a monolayer (this was observed for all tested cell lines). Higher cytotoxicity of GO on spheroid culture can be caused by different geometry of the microchambers for 2D and 3D cell cultures. Probably, GO was removed from the flat microchambers for 2D culture. Those results were also confirmed by differential staining. Comparing our results with the studies conducted in the macroscale, we also proved that the cytotoxic properties of GO are changed depending on the cell culture conditions (static/ flow).Keywords: cytotoxicity, graphene oxide, monolayer, spheroid
Procedia PDF Downloads 1252124 Nanoliposomes in Photothermal Therapy: Advancements and Applications
Authors: Mehrnaz Mostafavi
Abstract:
Nanoliposomes, minute lipid-based vesicles at the nano-scale, show promise in the realm of photothermal therapy (PTT). This study presents an extensive overview of nanoliposomes in PTT, exploring their distinct attributes and the significant progress in this therapeutic methodology. The research delves into the fundamental traits of nanoliposomes, emphasizing their adaptability, compatibility with biological systems, and their capacity to encapsulate diverse therapeutic substances. Specifically, it examines the integration of light-absorbing materials, like gold nanoparticles or organic dyes, into nanoliposomal formulations, enabling their efficacy as proficient agents for photothermal treatment Additionally, this paper elucidates the mechanisms involved in nanoliposome-mediated PTT, highlighting their capability to convert light energy into localized heat, facilitating the precise targeting of diseased cells or tissues. This precise regulation of light absorption and heat generation by nanoliposomes presents a non-invasive and precisely focused therapeutic approach, particularly in conditions like cancer. The study explores advancements in nanoliposomal formulations aimed at optimizing PTT outcomes. These advancements include strategies for improved stability, enhanced drug loading, and the targeted delivery of therapeutic agents to specific cells or tissues. Furthermore, the paper discusses multifunctional nanoliposomal systems, integrating imaging components or targeting elements for real-time monitoring and improved accuracy in PTT. Moreover, the review highlights recent preclinical and clinical trials showcasing the effectiveness and safety of nanoliposome-based PTT across various disease models. It also addresses challenges in clinical implementation, such as scalability, regulatory considerations, and long-term safety assessments. In conclusion, this paper underscores the substantial potential of nanoliposomes in advancing PTT as a promising therapeutic approach. Their distinctive characteristics, combined with their precise ability to convert light into heat, offer a tailored and efficient method for treating targeted diseases. The encouraging outcomes from preclinical studies pave the way for further exploration and potential clinical applications of nanoliposome-based PTT.Keywords: nanoliposomes, photothermal therapy, light absorption, heat conversion, therapeutic agents, targeted delivery, cancer therapy
Procedia PDF Downloads 1122123 Neural Synchronization - The Brain’s Transfer of Sensory Data
Authors: David Edgar
Abstract:
To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)
Procedia PDF Downloads 1262122 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2532121 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches
Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg
Abstract:
In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence
Procedia PDF Downloads 2132120 Predicting Blockchain Technology Installation Cost in Supply Chain System through Supervised Learning
Authors: Hossein Havaeji, Tony Wong, Thien-My Dao
Abstract:
1. Research Problems and Research Objectives: Blockchain Technology-enabled Supply Chain System (BT-enabled SCS) is the system using BT to drive SCS transparency, security, durability, and process integrity as SCS data is not always visible, available, or trusted. The costs of operating BT in the SCS are a common problem in several organizations. The costs must be estimated as they can impact existing cost control strategies. To account for system and deployment costs, it is necessary to overcome the following hurdle. The problem is that the costs of developing and running a BT in SCS are not yet clear in most cases. Many industries aiming to use BT have special attention to the importance of BT installation cost which has a direct impact on the total costs of SCS. Predicting BT installation cost in SCS may help managers decide whether BT is to be an economic advantage. The purpose of the research is to identify some main BT installation cost components in SCS needed for deeper cost analysis. We then identify and categorize the main groups of cost components in more detail to utilize them in the prediction process. The second objective is to determine the suitable Supervised Learning technique in order to predict the costs of developing and running BT in SCS in a particular case study. The last aim is to investigate how the running BT cost can be involved in the total cost of SCS. 2. Work Performed: Applied successfully in various fields, Supervised Learning is a method to set the data frame, treat the data, and train/practice the method sort. It is a learning model directed to make predictions of an outcome measurement based on a set of unforeseen input data. The following steps must be conducted to search for the objectives of our subject. The first step is to make a literature review to identify the different cost components of BT installation in SCS. Based on the literature review, we should choose some Supervised Learning methods which are suitable for BT installation cost prediction in SCS. According to the literature review, some Supervised Learning algorithms which provide us with a powerful tool to classify BT installation components and predict BT installation cost are the Support Vector Regression (SVR) algorithm, Back Propagation (BP) neural network, and Artificial Neural Network (ANN). Choosing a case study to feed data into the models comes into the third step. Finally, we will propose the best predictive performance to find the minimum BT installation costs in SCS. 3. Expected Results and Conclusion: This study tends to propose a cost prediction of BT installation in SCS with the help of Supervised Learning algorithms. At first attempt, we will select a case study in the field of BT-enabled SCS, and then use some Supervised Learning algorithms to predict BT installation cost in SCS. We continue to find the best predictive performance for developing and running BT in SCS. Finally, the paper will be presented at the conference.Keywords: blockchain technology, blockchain technology-enabled supply chain system, installation cost, supervised learning
Procedia PDF Downloads 1222119 Wired Network Services in Mobile Phones
Authors: Subhash Reddy
Abstract:
Mobile communication in today’s world means a lot to the human kind, through this many deals are made and others are broken, within seconds. That is because of our sophisticated methods of transporting the data at very high speeds and to very long distances, within no time. That is also because we kept on changing the method of serving the connections as the no of connections kept on increasing, that has led to many methods like TDMA, CDMA, and FDMA, etc. in wireless communications. And also the areas, where the connections are provided are also divided into CELLS, which are the basic blocks for cellular communications. Along with the wireless network, providing a wired network in mobile phones would serve as a very good alternative and would divert the extra traffic of a cell, so that a CELL which is providing wireless network can operate more efficiently.Keywords: CDMA, FDMA, TDMA, CELL
Procedia PDF Downloads 4862118 Electronic Raman Scattering Calibration for Quantitative Surface-Enhanced Raman Spectroscopy and Improved Biostatistical Analysis
Authors: Wonil Nam, Xiang Ren, Inyoung Kim, Masoud Agah, Wei Zhou
Abstract:
Despite its ultrasensitive detection capability, surface-enhanced Raman spectroscopy (SERS) faces challenges as a quantitative biochemical analysis tool due to the significant dependence of local field intensity in hotspots on nanoscale geometric variations of plasmonic nanostructures. Therefore, despite enormous progress in plasmonic nanoengineering of high-performance SERS devices, it is still challenging to quantitatively correlate the measured SERS signals with the actual molecule concentrations at hotspots. A significant effort has been devoted to developing SERS calibration methods by introducing internal standards. It has been achieved by placing Raman tags at plasmonic hotspots. Raman tags undergo similar SERS enhancement at the same hotspots, and ratiometric SERS signals for analytes of interest can be generated with reduced dependence on geometrical variations. However, using Raman tags still faces challenges for real-world applications, including spatial competition between the analyte and tags in hotspots, spectral interference, laser-induced degradation/desorption due to plasmon-enhanced photochemical/photothermal effects. We show that electronic Raman scattering (ERS) signals from metallic nanostructures at hotspots can serve as the internal calibration standard to enable quantitative SERS analysis and improve biostatistical analysis. We perform SERS with Au-SiO₂ multilayered metal-insulator-metal nano laminated plasmonic nanostructures. Since the ERS signal is proportional to the volume density of electron-hole occupation in hotspots, the ERS signals exponentially increase when the wavenumber is approaching the zero value. By a long-pass filter, generally used in backscattered SERS configurations, to chop the ERS background continuum, we can observe an ERS pseudo-peak, IERS. Both ERS and SERS processes experience the |E|⁴ local enhancements during the excitation and inelastic scattering transitions. We calibrated IMRS of 10 μM Rhodamine 6G in solution by IERS. The results show that ERS calibration generates a new analytical value, ISERS/IERS, insensitive to variations from different hotspots and thus can quantitatively reflect the molecular concentration information. Given the calibration capability of ERS signals, we performed label-free SERS analysis of living biological systems using four different breast normal and cancer cell lines cultured on nano-laminated SERS devices. 2D Raman mapping over 100 μm × 100 μm, containing several cells, was conducted. The SERS spectra were subsequently analyzed by multivariate analysis using partial least square discriminant analysis. Remarkably, after ERS calibration, MCF-10A and MCF-7 cells are further separated while the two triple-negative breast cancer cells (MDA-MB-231 and HCC-1806) are more overlapped, in good agreement with the well-known cancer categorization regarding the degree of malignancy. To assess the strength of ERS calibration, we further carried out a drug efficacy study using MDA-MB-231 and different concentrations of anti-cancer drug paclitaxel (PTX). After ERS calibration, we can more clearly segregate the control/low-dosage groups (0 and 1.5 nM), the middle-dosage group (5 nM), and the group treated with half-maximal inhibitory concentration (IC50, 15 nM). Therefore, we envision that ERS calibrated SERS can find crucial opportunities in label-free molecular profiling of complicated biological systems.Keywords: cancer cell drug efficacy, plasmonics, surface-enhanced Raman spectroscopy (SERS), SERS calibration
Procedia PDF Downloads 1382117 An Easy Approach for Fabrication of Macroporous Apatite-Based Bone Cement Used As Potential Trabecular Bone Substitute
Authors: Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese
Abstract:
The apatite-based, i.e., calcium-deficient hydroxyapatite (CDHAp) bone cement is well-known potential bone graft/substitute in orthopaedics due to its similar chemical composition with natural bone minerals. Therefore, an easy approach was attempted to fabricate the apatite-based (CDHAp) bone cement with improved injectability, bioresorbability, and macroporosity. In this study, the desired bone cement was developed by mixing the solid phase (consisting of wet chemically synthesized nanocrystalline hydroxyapatite and commercially available (synthetic) tricalcium phosphate) and the liquid phase (consisting of cement binding accelerator with few biopolymers in a dilute acidic solution) along with a liquid porogen as polysorbate or a solid porogen as mannitol (for comparison) in an optimized liquid-to-powder ratio. The fabricated cement sets within clinically preferred setting time (≤20 minutes) are better injectable (>70%) and also stable at ~7.3-7.4 (physiological pH). The CDHAp phased bone cement was resulted by immersing the fabricated after-set cement in phosphate buffer solution and other similar artificial body fluids and incubated at physiological conditions for seven days, confirmed through the X-ray diffraction and Fourier transform-infrared spectroscopy analyses. The so-formed synthetic apatite-based bone cement holds the acceptable compressive strength (within the range of trabecular bone) with average interconnected pores size falls in a macropores range (~50-200μm) inside the cement, verified by scanning electron microscopy (SEM), mercury intrusion porosimetry and micro-CT analysis techniques. Also, it is biodegradable (degrades ~19-22% within 10-12 weeks) when incubated in artificial body fluids under physiological conditions. The biocompatibility study of the bone cement, when incubated with MG63 cells, shows a significant increase in the cell viability after 3rd day of incubation compared with the control, and the cells were well-attached and spread completely on the surface of the bone cement, confirmed through SEM and fluorescence microscopy analyses. With this all, we can conclude that the developed synthetic macroporous apatite-based bone cement may have the potential to become promising material used as a trabecular bone substitute.Keywords: calcium deficient hydroxyapatite, synthetic apatite-based bone cement, injectability, macroporosity, trabecular bone substitute
Procedia PDF Downloads 882116 A Review on Silicon Based Induced Resistance in Plants against Insect Pests
Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra
Abstract:
Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.Keywords: defensive, phytoliths, resistance, stresses
Procedia PDF Downloads 1882115 Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling
Authors: Diana Islam, Juan Fang, Vito Fanelli, Bing Han, Julie Khang, Jianfeng Wu, Arthur S. Slutsky, Haibo Zhang
Abstract:
Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS.Keywords: acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC), hydrochloric acid (HCl), mechanical ventilation (MV)
Procedia PDF Downloads 6702114 Improving the Dissolution Rate of Folic Acid via the Antisolvent Vapour Precipitation
Authors: J. Y. Tan, L. C. Lum, M. G. Lee, S. Mansouri, K. Hapgood, X. D. Chen, M. W. Woo
Abstract:
Folic acid (FA) is known to be an important supplement to prevent neural tube defect (NTD) in pregnant women. Similar to some commercial formulations, sodium bicarbonate solution is used as a solvent for FA. This work uses the antisolvent vapor precipitation (AVP), incorporating ethanol vapor as the convective drying medium in place of air to produce branch-like micro-structure FA particles. Interestingly, the dissolution rate of the resultant particle is 2-3 times better than the particle produce from conventional air drying due to the higher surface area of particles produced. The higher dissolution rate could possibly improve the delivery and absorption of FA in human body. This application could potentially be extended to other commercial products, particularly in less soluble drugs to improve its solubility.Keywords: absorption, antisolvent vapor precipitation, dissolution rate, folic acid
Procedia PDF Downloads 4452113 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1412112 Redirecting Photosynthetic Electron Flux in the Engineered Cyanobacterium synechocystis Sp. Pcc 6803 by the Deletion of Flavodiiron Protein Flv3
Authors: K. Thiel, P. Patrikainen, C. Nagy, D. Fitzpatrick, E.-M. Aro, P. Kallio
Abstract:
Photosynthetic cyanobacteria have been recognized as potential future biotechnological hosts for the direct conversion of CO₂ into chemicals of interest using sunlight as the solar energy source. However, in order to develop commercially viable systems, the flux of electrons from the photosynthetic light reactions towards specified target chemicals must be significantly improved. The objective of the study was to investigate whether the autotrophic production efficiency of specified end-metabolites can be improved in engineered cyanobacterial cells by rescuing excited electrons that are normally lost to molecular oxygen due to the cyanobacterial flavodiiron protein Flv1/3. Natively Flv1/3 dissipates excess electrons in the photosynthetic electron transfer chain by directing them to molecular oxygen in Mehler-like reaction to protect photosystem I. To evaluate the effect of flavodiiron inactivation on autotrophic production efficiency in the cyanobacterial host Synechocystis sp. PCC 6803 (Synechocystis), sucrose was selected as the quantitative reporter and a representative of a potential end-product of interest. The concept is based on the native property of Synechocystis to produce sucrose as an intracellular osmoprotectant when exposed to high external ion concentrations, in combination with the introduction of a heterologous sucrose permease (CscB from Escherichia coli), which transports the sucrose out from the cell. In addition, cell growth, photosynthetic gas fluxes using membrane inlet mass spectrometry and endogenous storage compounds were analysed to illustrate the consequent effects of flv deletion on pathway flux distributions. The results indicate that a significant proportion of the electrons can be lost to molecular oxygen via Flv1/3 even when the cells are grown under high CO₂ and that the inactivation of flavodiiron activity can enhance the photosynthetic electron flux towards optionally available sinks. The flux distribution is dependent on the light conditions and the genetic context of the Δflv mutants, and favors the production of either sucrose or one of the two storage compounds, glycogen or polyhydroxybutyrate. As a conclusion, elimination of the native Flv1/3 reaction and concomitant introduction of an engineered product pathway as an alternative sink for excited electrons could enhance the photosynthetic electron flux towards the target endproduct without compromising the fitness of the host.Keywords: cyanobacterial engineering, flavodiiron proteins, redirecting electron flux, sucrose
Procedia PDF Downloads 1252111 Spatial Variability of Phyotoplankton Assemblages during the Intermonsoon in Baler Bay, Outer and Inner Casiguran Sound, Aurora, Fronting Philipine Rise
Authors: Aime P. Lampad-Dela Pena, Rhodora V. Azanza, Cesar L. Villanoy, Ephrime B. Metillo, Aletta T. Yniguez
Abstract:
Phytoplankton community changes in relation to environmental parameters were compared between and within, the three interconnected basins. Phytoplankton samples were collected from thirteen stations of Baler Bay and Casiguran Sound, Aurora last May 2013 by filtering 10 L buckets of surface water and 5 L Niskin samples at 20 meters and at 30 to 40 meters depths through a 20um sieve. Duplicate samples per station were preserved, counted, and identified up to genus level, in order to determine the horizontal and vertical spatial variation of different phytoplankton functional groups during the summer ebb and flood flow. Baler Bay, Outer and Inner Casiguran Sound had a total of 89 genera from four phytoplankton groups: Diatom (62), Dinoflagellate (25), Silicoflagellate (1) and Cyanobacteria (1). Non-toxic diatom Chaetoceros spp. bloom (averaged 2.0 x 105 to 2.73 x 106 cells L⁻¹) co-existed with Bacteriastrum spp. at surface waters in Inner and Outer Casiguran. Pseudonitzschia spp. (1.73 x 106 cells L⁻¹) bloomed at bottom waters of the innermost embayment near Casiguran mangrove estuary. Cyanobacteria Trichodesmium spp. significantly increased during ebb tide at the mid-water layers (20 meters depth) in the three basins (ranged from 6, 900 to 15, 125 filaments L⁻¹), forming another bloom. Gonyaulax spp. - dominated dinoflagellate did not significantly change with depth across the three basins. Overall, diatoms and dinoflagellates community assemblages significantly changed between sites (p < 0.001) while diatoms and cyanobacteria varied within Casiguran outer and inner sites (p < 0.001) only. Tidal fluctuations significantly affected dinoflagellates and diatom groups (p < 0.001) in inner and baler sites. Chlorophyll significantly varied between (KW, p < 0.001) and within each basins (KW, p < 0.05), no tidal influence, with the highest value at inner Casiguran and at deeper waters indicating deep chlorophyll maxima. Aurora’s distinct shelf morphology favoring counterclockwise circulation pattern, advective transport, and continuous stratification of the water column could basically affect the phytoplankton assemblages and water quality of Baler Bay and Casiguran inner and outer basins. Observed spatial phytoplankton community changes with multi-species diatom and cyanobacteria bloom at different water layers of the three inter-connected embayments would be vital for any environmental management initiatives in Aurora.Keywords: aurora fronting Philippines Rise, intermonsoon, multi-species diatom bloom, spatial variability
Procedia PDF Downloads 1472110 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG
Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat
Abstract:
Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy
Procedia PDF Downloads 5202109 Critical Conditions for the Initiation of Dynamic Recrystallization Prediction: Analytical and Finite Element Modeling
Authors: Pierre Tize Mha, Mohammad Jahazi, Amèvi Togne, Olivier Pantalé
Abstract:
Large-size forged blocks made of medium carbon high-strength steels are extensively used in the automotive industry as dies for the production of bumpers and dashboards through the plastic injection process. The manufacturing process of the large blocks starts with ingot casting, followed by open die forging and a quench and temper heat treatment process to achieve the desired mechanical properties and numerical simulation is widely used nowadays to predict these properties before the experiment. But the temperature gradient inside the specimen remains challenging in the sense that the temperature before loading inside the material is not the same, but during the simulation, constant temperature is used to simulate the experiment because it is assumed that temperature is homogenized after some holding time. Therefore to be close to the experiment, real distribution of the temperature through the specimen is needed before the mechanical loading. Thus, We present here a robust algorithm that allows the calculation of the temperature gradient within the specimen, thus representing a real temperature distribution within the specimen before deformation. Indeed, most numerical simulations consider a uniform temperature gradient which is not really the case because the surface and core temperatures of the specimen are not identical. Another feature that influences the mechanical properties of the specimen is recrystallization which strongly depends on the deformation conditions and the type of deformation like Upsetting, Cogging...etc. Indeed, Upsetting and Cogging are the stages where the greatest deformations are observed, and a lot of microstructural phenomena can be observed, like recrystallization, which requires in-depth characterization. Complete dynamic recrystallization plays an important role in the final grain size during the process and therefore helps to increase the mechanical properties of the final product. Thus, the identification of the conditions for the initiation of dynamic recrystallization is still relevant. Also, the temperature distribution within the sample and strain rate influence the recrystallization initiation. So the development of a technique allowing to predict the initiation of this recrystallization remains challenging. In this perspective, we propose here, in addition to the algorithm allowing to get the temperature distribution before the loading stage, an analytical model leading to determine the initiation of this recrystallization. These two techniques are implemented into the Abaqus finite element software via the UAMP and VUHARD subroutines for comparison with a simulation where an isothermal temperature is imposed. The Artificial Neural Network (ANN) model to describe the plastic behavior of the material is also implemented via the VUHARD subroutine. From the simulation, the temperature distribution inside the material and recrystallization initiation is properly predicted and compared to the literature models.Keywords: dynamic recrystallization, finite element modeling, artificial neural network, numerical implementation
Procedia PDF Downloads 80