Search results for: human concept learning
15132 Protecting Human Health under International Investment Law
Authors: Qiang Ren
Abstract:
In the past 20 years, under the high standard of international investment protection, there have been numerous cases of investors ignoring the host country's measures to protect human health. Examples include investment disputes triggered by the Argentine government's measures related to human health, quality, and price of drinking water under the North American Free Trade Agreement. Examples also include Philip Morris v. Australia, in which case the Australian government announced the passing of the Plain Packing of Cigarettes Act to address the threat of smoking to public health in 2010. In order to take advantage of the investment treaty protection between Hong Kong and Australia, Philip Morris Asia acquired Philip Morris Australia in February 2011 and initiated investment arbitration under the treaty before the passage of the Act in July 2011. Philip Morris claimed the Act constitutes indirect expropriation and violation of fair and equitable treatment and claimed 4.16 billion US dollars compensation. Fortunately, the case ended at the admissibility decision stage and did not enter the substantive stage. Generally, even if the host country raises a human health defense, most arbitral tribunals will rule that the host country revoke the corresponding policy and make huge compensation in accordance with the clauses in the bilateral investment treaty to protect the rights of investors. The significant imbalance in the rights and obligations of host states and investors in international investment treaties undermines the ability of host states to act in pursuit of human health and social interests beyond economic interests. This squeeze on the nation's public policy space and disregard for the human health costs of investors' activities raises the need to include human health in investment rulemaking. The current international investment law system that emphasizes investor protection fails to fully reflect the requirements of the host country for the healthy development of human beings and even often brings negative impacts to human health. At a critical moment in the reform of the international investment law system, in order to achieve mutual enhancement of investment returns and human health development, human health should play a greater role in influencing and shaping international investment rules. International investment agreements should not be limited to investment protection tools but should also be part of national development strategies to serve sustainable development and human health. In order to meet the requirements of the new sustainable development goals of the United Nations, human health should be emphasized in the formulation of international investment rules, and efforts should be made to shape a new generation of international investment rules that meet the requirements of human health and sustainable development.Keywords: human health, international investment law, Philip Morris v. Australia, investor protection
Procedia PDF Downloads 18415131 Visual Thinking Routines: A Mixed Methods Approach Applied to Student Teachers at the American University in Dubai
Authors: Alain Gholam
Abstract:
Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in Dubai. The study used mixed methods. It was guided by the following two research questions: 1). To what extent do visual thinking inspire learning in the classroom, and make time for students’ questions, contributions, and thinking? 2). How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Eight student teachers enrolled in the teaching methodology course at the American University in Dubai (Spring 2017) participated in the following study. First, they completed a survey that measured to what degree they believed visual thinking routines inspired learning in the classroom and made time for students’ questions, contributions, and thinking. In order to build on the results from the quantitative phase, the student teachers were next involved in a qualitative data collection phase, where they had to answer the question: How do visual thinking routines inspire learning in the classroom and make time for students’ questions, contributions, and thinking? Results revealed that the implementation of visual thinking routines in the classroom strongly inspire learning in the classroom and make time for students’ questions, contributions, and thinking. In addition, student teachers explained how visual thinking routines allow for organization, variety, thinking, and documentation. As with all original, new, and unique resources, visual thinking routines are not free of challenges. To make the most of this useful and valued resource, educators, need to comprehend, model and spread an awareness of the effective ways of using such routines in the classroom. It is crucial that such routines become part of the curriculum to allow for and document students’ questions, contributions, and thinking.Keywords: classroom display, student engagement, thinking classroom, visual thinking routines
Procedia PDF Downloads 23115130 Democracy and Human Rights in Nigeria's Fourth Republic: An Assessment
Authors: Kayode Julius Oni
Abstract:
Without mincing words, democracy is by far the most popular form of government in the world today. No matter how we look at it, and regardless of the variant, most leaders in the world today wish to be seen or labeled as Democrats. Perhaps, its attractions in terms of freedom of allocation, accountability, smooth successions of leadership and a lot more, account for its appeal to the ordinary people. The governance style in Nigeria since 1999 cannot be said to be different from the military. Elections are manipulated, judicial processes abused, and the ordinary people do not have access to the dividends of democracy. The paper seeks to address the existing failures experienced under democratic rule in Nigeria which have to transcend into violation of human rights in the conduct of government business. The paper employs the primary and secondary sources of data collection, and it is highly descriptive and critical.Keywords: democracy, human rights, Nigeria, politics, republic
Procedia PDF Downloads 26715129 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 12115128 Alternative Funding Strategies for Tertiary Education in Nigeria: Quest for Improved Quality of Teaching and Learning
Authors: Temitayo Olaitan
Abstract:
There is a growing concern about the quality of Nigerian tertiary education. This paper maintains that quality in tertiary education relates to the development of intellectual independence, which sharpens the minds of the individual and helps transform the society economically, socially and politically. However, the paper underscores underfunding as a critical challenge to the quality of teaching and learning in tertiary education. To this end, this paper emphasizes the role of internally generated revenue (IGR) and other alternative funding strategies (public-private partnership) as inevitable for quality tertiary education. This paper hinges on stakeholders approach as a means of ensuring quality teaching and learning in tertiary education. This paper recommends that school managers should seek professional and more efficient ways of developing their revenue generating systems. It also recommends that institutions should restructure to accommodate an alternative funding strategy such as private/corporate sponsorship to ensure that sustainable initiatives are created. The paper concludes that Nigerian government should come up with a policy on how private sectors should support in improving the quality of tertiary education through active participation in funding and physical facilities development in Nigerian higher institutions of learning.Keywords: alternative funding, budgetary allocation, quality education, tertiary education
Procedia PDF Downloads 46415127 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 22815126 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation
Authors: Shafaq Rubab
Abstract:
The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey
Procedia PDF Downloads 42715125 Employer Learning, Statistical Discrimination and University Prestige
Authors: Paola Bordon, Breno Braga
Abstract:
This paper investigates whether firms use university prestige to statistically discriminate among college graduates. The test is based on the employer learning literature which suggests that if firms use a characteristic for statistical discrimination, this variable should become less important for earnings as a worker gains labor market experience. In this framework, we use a regression discontinuity design to estimate a 19% wage premium for recent graduates of two of the most selective universities in Chile. However, we find that this premium decreases by 3 percentage points per year of labor market experience. These results suggest that employers use college selectivity as a signal of workers' quality when they leave school. However, as workers reveal their productivity throughout their careers, they become rewarded based on their true quality rather than the prestige of their college.Keywords: employer learning, statistical discrimination, college returns, college selectivity
Procedia PDF Downloads 58115124 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia
Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda
Abstract:
This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers
Procedia PDF Downloads 18115123 Weal: The Human Core of Well-Being as Attested by Social and Life Sciences
Authors: Gyorgy Folk
Abstract:
A finite set of cardinal needs define the human core of living well shaped on the evolutionary time scale as attested by social and life sciences of the last decades. Well-being is the purported state of living well. Living of humans akin any other living beings involves the exchange of vital substance with nature, maintaining a supportive symbiosis with an array of other living beings, living up to bonds to kin and exerting efforts to sustain living. A supportive natural environment, access to material resources, the nearness to fellow beings, and life sustaining activity are prerequisites of well-being. Well-living is prone to misinterpretation as an individual achievement, one lives well only and only if bonded to human relationships, related to a place, incorporated in nature. Akin all other forms of it, human life is a self-sustaining arrangement. One may say that the substance of life is life, and not materials, products, and services converted into life. The human being remains shaped on an evolutionary time scale and is enabled within the non-altering core of human being, invariant of cultural differences in earthly space and time. Present paper proposes the introduction of weal, the missing link in the causal chain of societal performance and the goodness of life. Interpreted differently over the ages, cultures and disciplines, instead of well-being, the construct in general use, weal is proposed as the underlying foundation of well-being. Weal stands for the totality of socialised reality as framing well-being for the individual beyond the possibility of deliberate choice. The descriptive approach to weal, mapping it under the guidance of discrete scientific disciplines reveals a limited set of cardinal aspects, labeled here the cardinal needs. Cardinal expresses the fundamental reorientation weal can bring about, needs deliver the sense of sine qua non. Weal is conceived as a oneness mapped along eight cardinal needs. The needs, approached as aspects instead of analytically isolated factors do not require mutually exclusive definitions. To serve the purpose of reorientation, weal is operationalised as a domain in multidimensional space, each dimension encompassing an optimal level of availability of the fundamental satisfiers between the extremes of drastic insufficiency and harmful excess, ensured by actual human effort. Weal seeks balance among the material and social aspects of human being while allows for cultural and individual uniqueness in attaining human flourishing.Keywords: human well-being, development, economic theory, human needs
Procedia PDF Downloads 23115122 Using Differentiated Instruction Applying Cognitive Approaches and Strategies for Teaching Diverse Learners
Authors: Jolanta Jonak, Sylvia Tolczyk
Abstract:
Educational systems are tasked with preparing students for future success in academic or work environments. Schools strive to achieve this goal, but often it is challenging as conventional teaching approaches are often ineffective in increasingly diverse educational systems. In today’s ever-increasing global society, educational systems become increasingly diverse in terms of cultural and linguistic differences, learning preferences and styles, ability and disability. Through increased understanding of disabilities and improved identification processes, students having some form of disabilities tend to be identified earlier than in the past, meaning that more students with identified disabilities are being supported in our classrooms. Also, a large majority of students with disabilities are educated in general education environments. Due to cognitive makeup and life experiences, students have varying learning styles and preferences impacting how they receive and express what they are learning. Many students come from bi or multilingual households and with varying proficiencies in the English language, further impacting their learning. All these factors need to be seriously considered when developing learning opportunities for student's. Educators try to adjust their teaching practices as they discover that conventional methods are often ineffective in reaching each student’s potential. Many teachers do not have the necessary educational background or training to know how to teach students whose learning needs are more unique and may vary from the norm. This is further complicated by the fact that many classrooms lack consistent access to interventionists/coaches that are adequately trained in evidence-based approaches to meet the needs of all students, regardless of what their academic needs may be. One evidence-based way for providing successful education for all students is by incorporating cognitive approaches and strategies that tap into affective, recognition, and strategic networks in the student's brain. This can be done through Differentiated Instruction (DI). Differentiated Instruction is increasingly recognized model that is established on the basic principles of Universal Design for Learning. This form of support ensures that regardless of the students’ learning preferences and cognitive learning profiles, they have opportunities to learn through approaches that are suitable to their needs. This approach improves the educational outcomes of students with special needs and it benefits other students as it accommodates learning styles as well as the scope of unique learning needs that are evident in the typical classroom setting. Differentiated Instruction also is recognized as an evidence-based best practice in education and is highly effective when it is implemented within the tiered system of the Response to Intervention (RTI) model. Recognition of DI becomes more common; however, there is still limited understanding of the effective implementation and use of strategies that can create unique learning environments for each student within the same setting. Through employing knowledge of a variety of instructional strategies, general and special education teachers can facilitate optimal learning for all students, with and without a disability. A desired byproduct of DI is that it can eliminate inaccurate perceptions about the students’ learning abilities, unnecessary referrals for special education evaluations, and inaccurate decisions about the presence of a disability.Keywords: differentiated instruction, universal design for learning, special education, diversity
Procedia PDF Downloads 22515121 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model
Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng
Abstract:
The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation
Procedia PDF Downloads 25115120 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning
Authors: Angelina A. Tzacheva, Jaishree Ranganathan
Abstract:
Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.Keywords: actionable pattern discovery, education, emotion, data mining
Procedia PDF Downloads 10115119 The 'Human Medium' in Communicating the National Image: A Case Study of Chinese Middle-Class Tourists Visiting Japan
Authors: Abigail Qian Zhou
Abstract:
In recent years, the prosperity of mass tourism in China has accelerated the breadth and depth of direct communication between countries, and the national image has been placed in a new communication context. Outbound tourists are not only directly involved in the formation of the national image, but are also the most direct medium and the most active symbol representing the national image. This study uses Chinese middle-class tourists visiting Japan as a case study, and analyzes, through participant observation and semi-structured interviews, the communication function of the national image transmitted by 'human medium' in tourism activities. It also explores the 'human medium' in the era of mass tourism. This study hopes to build a bridge for tourism research and national image and media studies. It will provide a theoretical basis and practical guidance for promoting the national image, strengthening exchanges between tourists and local populations, and expanding the tourism market in the future.Keywords: human medium, national image, communication, Chinese middle class, outbound tourists
Procedia PDF Downloads 13515118 Generation of Knowlege with Self-Learning Methods for Ophthalmic Data
Authors: Klaus Peter Scherer, Daniel Knöll, Constantin Rieder
Abstract:
Problem and Purpose: Intelligent systems are available and helpful to support the human being decision process, especially when complex surgical eye interventions are necessary and must be performed. Normally, such a decision support system consists of a knowledge-based module, which is responsible for the real assistance power, given by an explanation and logical reasoning processes. The interview based acquisition and generation of the complex knowledge itself is very crucial, because there are different correlations between the complex parameters. So, in this project (semi)automated self-learning methods are researched and developed for an enhancement of the quality of such a decision support system. Methods: For ophthalmic data sets of real patients in a hospital, advanced data mining procedures seem to be very helpful. Especially subgroup analysis methods are developed, extended and used to analyze and find out the correlations and conditional dependencies between the structured patient data. After finding causal dependencies, a ranking must be performed for the generation of rule-based representations. For this, anonymous patient data are transformed into a special machine language format. The imported data are used as input for algorithms of conditioned probability methods to calculate the parameter distributions concerning a special given goal parameter. Results: In the field of knowledge discovery advanced methods and applications could be performed to produce operation and patient related correlations. So, new knowledge was generated by finding causal relations between the operational equipment, the medical instances and patient specific history by a dependency ranking process. After transformation in association rules logically based representations were available for the clinical experts to evaluate the new knowledge. The structured data sets take account of about 80 parameters as special characteristic features per patient. For different extended patient groups (100, 300, 500), as well one target value as well multi-target values were set for the subgroup analysis. So the newly generated hypotheses could be interpreted regarding the dependency or independency of patient number. Conclusions: The aim and the advantage of such a semi-automatically self-learning process are the extensions of the knowledge base by finding new parameter correlations. The discovered knowledge is transformed into association rules and serves as rule-based representation of the knowledge in the knowledge base. Even more, than one goal parameter of interest can be considered by the semi-automated learning process. With ranking procedures, the most strong premises and also conjunctive associated conditions can be found to conclude the interested goal parameter. So the knowledge, hidden in structured tables or lists can be extracted as rule-based representation. This is a real assistance power for the communication with the clinical experts.Keywords: an expert system, knowledge-based support, ophthalmic decision support, self-learning methods
Procedia PDF Downloads 25415117 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 2415116 The Impact of Experiential Learning on the Success of Upper Division Mechanical Engineering Students
Authors: Seyedali Seyedkavoosi, Mohammad Obadat, Seantorrion Boyle
Abstract:
The purpose of this study is to assess the effectiveness of a nontraditional experiential learning strategy in improving the success and interest of mechanical engineering students, using the Kinematics/Dynamics of Machine course as a case study. This upper-division technical course covers a wide range of topics, including mechanism and machine system analysis and synthesis, yet the complexities of ideas like acceleration, motion, and machine component relationships are hard to explain using standard teaching techniques. To solve this problem, a thorough design project was created that gave students hands-on experience developing, manufacturing, and testing their inventions. The main goals of the project were to improve students' grasp of machine design and kinematics, to develop problem-solving and presenting abilities, and to familiarize them with professional software. A questionnaire survey was done to evaluate the effect of this technique on students' performance and interest in mechanical engineering. The outcomes of the study shed light on the usefulness of nontraditional experiential learning approaches in engineering education.Keywords: experiential learning, nontraditional teaching, hands-on design project, engineering education
Procedia PDF Downloads 10315115 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 13415114 Correlation between Entrepreneur's Perception of Human Resource Function and Company's Growth
Authors: Ivan Todorović, Stefan Komazec, Jelena Anđelković-Labrović, Ondrej Jaško, Miha Marič
Abstract:
Micro, small and medium enterprises (MSME) are important factors of the economy in each country. Recent years have brought increased number and higher sophistication of scientific research related to numerous aspects of entrepreneurship. Various authors try to find the positive correlation between entrepreneur's personal characteristics, skills and knowledge on one hand, and company growth and success of small business on the other hand. Different models recognize staff as one of the key elements in every organizational system. Human resource (HR) function is present in almost all large companies, despite the geographical location or industry. Small and medium enterprises also often have separate positions or even departments for HR administration. However, in early stages of organizational life cycle human resources are usually managed by the founder, entrepreneur. In this paper we want to question whether the companies where founder, entrepreneur, recognizes the significance of human capital in the organization and understands the importance of HR management have higher growth rate and better business results. The findings of this research can be implemented in practice, but also in the academia, for improving the curricula related to the MSME and entrepreneurship.Keywords: entrepreneurship, MSME, micro small and medium enterprises, company growth, human resources, HR management
Procedia PDF Downloads 35915113 At the Crossroads of Education and Human Rights for Girls and Women in Nigeria: The Language Perspective
Authors: Crescentia Ugwuona
Abstract:
Appropriate language use has been central and critical in advancing education and human rights for women and girls in many countries the world over. Unfortunately, these lofty aims have often been violated by rural Igbo-Nigerians as they use stereotyping and dehumansing language in their cultural songs against women and girls. The psychological impact of the songs has a significant negative impact on education, human rights, quality of life, and opportunities for many rural Igbo-women and girls in Nigeria. This study, therefore, examines the forms, shades, and manifestations of derogatory and stereotypical language against women and girls the Igbo cultural songs; and how they impede education and human rights for females in Nigeria. Through Critical discourse analysis (CDA) of data collected via recording, the study identifies manifestations of women and girls’ stereotypes such as subjugations, male dominance, inequality in gender roles, suppression, and oppression, and derogatory use of the language against women and girls in the Igbo cultural songs. This study has a great promise of alerting the issues of derogatory and stereotypical language in songs, and contributes to an education aimed at gender equality, emancipator practice of appropriate language use in songs, equal education and human rights for both male and female, respect and solidarity in Nigeria and beyond.Keywords: gender stereotypes, cultural songs, women and girls, language use in Nigeria, critical discourse analysis, CDA, education
Procedia PDF Downloads 34615112 Rendering Cognition Based Learning in Coherence with Development within the Context of PostgreSQL
Authors: Manuela Nayantara Jeyaraj, Senuri Sucharitharathna, Chathurika Senarath, Yasanthy Kanagaraj, Indraka Udayakumara
Abstract:
PostgreSQL is an Object Relational Database Management System (ORDBMS) that has been in existence for a while. Despite the superior features that it wraps and packages to manage database and data, the database community has not fully realized the importance and advantages of PostgreSQL. Hence, this research tends to focus on provisioning a better environment of development for PostgreSQL in order to induce the utilization and elucidate the importance of PostgreSQL. PostgreSQL is also known to be the world’s most elementary SQL-compliant open source ORDBMS. But, users have not yet resolved to PostgreSQL due to the facts that it is still under the layers and the complexity of its persistent textual environment for an introductory user. Simply stating this, there is a dire need to explicate an easy way of making the users comprehend the procedure and standards with which databases are created, tables and the relationships among them, manipulating queries and their flow based on conditions in PostgreSQL to help the community resolve to PostgreSQL at an augmented rate. Hence, this research under development within the context tends to initially identify the dominant features provided by PostgreSQL over its competitors. Following the identified merits, an analysis on why the database community holds a hesitance in migrating to PostgreSQL’s environment will be carried out. These will be modulated and tailored based on the scope and the constraints discovered. The resultant of the research proposes a system that will serve as a designing platform as well as a learning tool that will provide an interactive method of learning via a visual editor mode and incorporate a textual editor for well-versed users. The study is based on conjuring viable solutions that analyze a user’s cognitive perception in comprehending human computer interfaces and the behavioural processing of design elements. By providing a visually draggable and manipulative environment to work with Postgresql databases and table queries, it is expected to highlight the elementary features displayed by Postgresql over any other existent systems in order to grasp and disseminate the importance and simplicity offered by this to a hesitant user.Keywords: cognition, database, PostgreSQL, text-editor, visual-editor
Procedia PDF Downloads 28715111 The Using of Smart Power Concepts in Military Targeting Process
Authors: Serdal AKYUZ
Abstract:
The smart power is the use of soft and hard power together in consideration of existing circumstances. Soft power can be defined as the capability of changing perception of any target mass by employing policies based on legality. The hard power, generally, uses military and economic instruments which are the concrete indicator of general power comprehension. More than providing a balance between soft and hard power, smart power creates a proactive combination by assessing existing resources. Military targeting process (MTP), as stated in smart power methodology, benefits from a wide scope of lethal and non-lethal weapons to reach intended end state. The Smart powers components can be used in military targeting process similar to using of lethal or non-lethal weapons. This paper investigates the current use of Smart power concept, MTP and presents a new approach to MTP from smart power concept point of view.Keywords: future security environment, hard power, military targeting process, soft power, smart power
Procedia PDF Downloads 48215110 Assessing Remote and Hybrid Education Amidst the COVID-19 Pandemic: Insights and Innovations from Secondary School Educators
Authors: Azzeddine Atibi, Khadija El Kababi, Salim Ahmed, Mohamed Radid
Abstract:
The principal objective of this study is to undertake a comprehensive comparative analysis of distance learning and blended learning modalities, with a particular emphasis on evaluating their effectiveness during the confinement period mandated by the COVID-19 pandemic. This investigation is rooted in the firsthand experiences of educators at the high school and secondary levels within both private and public educational institutions. To acquire the requisite data, we meticulously designed and distributed a survey to these educators, soliciting detailed narratives of their professional experiences throughout this challenging period. The survey aims to elucidate the specific difficulties encountered by teachers, as well as to highlight the innovative pedagogical strategies they devised in response to these challenges. By synthesizing the insights garnered from this survey, our goal is to foster an exchange of experiences among educators and to generate informed recommendations that will inform future educational reforms. Ultimately, this study aspires to contribute to the ongoing discourse on optimizing educational practices in the face of unprecedented disruptions.Keywords: distance learning, blended learning, covid 19, secondary/ high school, teachingperformance, evaluation
Procedia PDF Downloads 3715109 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization
Authors: Yazhou Zhou, Yong Huang, Guoqin Ge
Abstract:
In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.Keywords: ecological environment, coupling coordination degree, neural network, sustainable development
Procedia PDF Downloads 8715108 Upgrading Engineering Education in Häme University of Applied Sciences: Towards Teacher Teams, Flexible Processes and Versatile Company Collaboration
Authors: Jussi Horelli, Salla Niittymäki
Abstract:
In this acceleratingly developing world, it will be crucial for our students to not only to adapt to continuous change, but to be the driving force of it. This raises the question of how can the educational processes motivate and encourage the students to learn the perhaps most important skill there for their further work career: the ability to learn and absorb more by themselves. In engineering education, the learning contents and methods have traditionally been very substance oriented and teacher-centered. In Häme University of Applied Sciences (HAMK), the pedagogical model has been completely renewed during the past few years. Terms like phenomenon or skills-based learning and collaborative teaching are things which have not very often been related to engineering education, but are now the foundation of HAMK’s pedagogical model in all disciplines, even in engineering studies. In this paper, a new flexible way of executing engineering studies will be introduced. The paper will summarize three years’ experiences and observations of a process where traditional teacher-centric mechanical engineering teaching was converted into a model where teachers work collaboratively in teams supporting the students’ learning processes.Keywords: team teaching, collaborative learning, engineering education, new pedagogy
Procedia PDF Downloads 22415107 Annotation Ontology for Semantic Web Development
Authors: Hadeel Al Obaidy, Amani Al Heela
Abstract:
The main purpose of this paper is to examine the concept of semantic web and the role that ontology and semantic annotation plays in the development of semantic web services. The paper focuses on semantic web infrastructure illustrating how ontology and annotation work to provide the learning capabilities for building content semantically. To improve productivity and quality of software, the paper applies approaches, notations and techniques offered by software engineering. It proposes a conceptual model to develop semantic web services for the infrastructure of web information retrieval system of digital libraries. The developed system uses ontology and annotation to build a knowledge based system to define and link the meaning of a web content to retrieve information for users’ queries. The results are more relevant through keywords and ontology rule expansion that will be more accurate to satisfy the requested information. The level of results accuracy would be enhanced since the query semantically analyzed work with the conceptual architecture of the proposed system.Keywords: semantic web services, software engineering, semantic library, knowledge representation, ontology
Procedia PDF Downloads 17715106 Age-Based Interface Design for Children’s CAPT Systems
Authors: Saratu Yusuf Ilu, Mumtaz B. Mustafa, Siti Salwah Salim, Mehdi Malekzadeh
Abstract:
Children today use computer based application in various activities especially for learning and education. Many of these tools and application such as the Computer Aided Pronunciation Training (CAPT) system enable children to explore and experience them with little supervision from the adults. In order for these tools and application to have maximum effect on the children’s learning and education, it must be attractive to the children to use them. This could be achieved with the proper user interface (UI) design. As children grow, so do their ability, taste and preferences. They interact differently with these applications as they grow older. This study reviews several articles on how age factor influences the UI design. The review focuses on age related abilities such as cognitive, literacy, concentration and feedback requirement. We have also evaluated few of existing CAPT systems and determine the influence of age-based factors on the interface design.Keywords: children, age-based interaction, learning application, age-based capability
Procedia PDF Downloads 42815105 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 4115104 Human Activities Recognition Based on Expert System
Authors: Malika Yaici, Soraya Aloui, Sara Semchaoui
Abstract:
Recognition of human activities from sensor data is an active research area, and the main objective is to obtain a high recognition rate. In this work, we propose a recognition system based on expert systems. The proposed system makes the recognition based on the objects, object states, and gestures, taking into account the context (the location of the objects and of the person performing the activity, the duration of the elementary actions, and the activity). This work focuses on complex activities which are decomposed into simple easy to recognize activities. The proposed method can be applied to any type of activity. The simulation results show the robustness of our system and its speed of decision.Keywords: human activity recognition, ubiquitous computing, context-awareness, expert system
Procedia PDF Downloads 14515103 The Effectiveness of Adaptive Difficulty Adjustment in Touch Tablet App on Young Children's Spatial Problem Solving Development
Authors: Chenchen Liu, Jacques Audran
Abstract:
Using tablet apps with a certain educational purpose to promote young children’s cognitive development, is quite common now. Developing an educational app on an Ipad like tablet, especially for a young child (age 3-5) requires an optimal level of challenge to continuously attract children’s attention and obtain an educational effect. Adaptive difficulty adjustment, which could dynamically set the difficulty in the challenge according to children’s performance, seems to be a good solution. Since space concept plays an important role in young children’s cognitive development, we made an experimental comparison in a French kindergarten between one group of 23 children using an educational app ‘Debout Ludo’ with adaptive difficulty settings and another group of 20 children using the previous version of ‘Debout Ludo’ with a classic incremental difficulty adjustment. The experiment results of spatial problem solving indicated that a significantly higher learning outcome was acquired by the young children who used the adaptive version of the app.Keywords: adaptive difficulty, spatial problem solving, tactile tablet, young children
Procedia PDF Downloads 448