Search results for: externalizing techniques
4056 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm
Authors: Dipti Patra, Guguloth Uma, Smita Pradhan
Abstract:
Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information
Procedia PDF Downloads 4134055 Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation
Authors: Bekhedda Kheira
Abstract:
Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application.Keywords: thin films, photovoltaic, rare earth, evaporation
Procedia PDF Downloads 944054 Modeling Food Popularity Dependencies Using Social Media Data
Authors: DEVASHISH KHULBE, MANU PATHAK
Abstract:
The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses
Procedia PDF Downloads 1214053 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review
Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.Keywords: mechanical properties, ECAP, titanium, biomedical applications
Procedia PDF Downloads 4574052 Student Performance and Confidence Analysis on Education Virtual Environments through Different Assessment Strategies
Authors: Rubén Manrique, Delio Balcázar, José Parrado, Sebastián Rodríguez
Abstract:
Hand in hand with the evolution of technology, education systems have moved to virtual environments to provide increased coverage and facilitate the access to education. However, measuring student performance in virtual environments presents significant challenges to ensure students are acquiring the expected skills. In this study, the confidence and performance of engineering students in virtual environments is analyzed through different evaluation strategies. The effect of the assessment strategy in student confidence is identified using educational data mining techniques. Four assessment strategies were used. First, a conventional multiple choice test; second, a multiple choice test with feedback; third, a multiple choice test with a second chance; and fourth; a multiple choice test with feedback and second chance. Our results show that applying testing with online feedback strategies can influence positively student confidence.Keywords: assessment strategies, educational data mining, student performance, student confidence
Procedia PDF Downloads 3564051 Improvement of the Aerodynamic Behaviour of a Land Rover Discovery 4 in Turbulent Flow Using Computational Fluid Dynamics (CFD)
Authors: Ahmed Al-Saadi, Ali Hassanpour, Tariq Mahmud
Abstract:
The main objective of this study is to investigate ways to reduce the aerodynamic drag coefficient and to increase the stability of the full-size Sport Utility Vehicle using three-dimensional Computational Fluid Dynamics (CFD) simulation. The baseline model in the simulation was the Land Rover Discovery 4. Many aerodynamic devices and external design modifications were used in this study. These reduction aerodynamic techniques were tested individually or in combination to get the best design. All new models have the same capacity and comfort of the baseline model. Uniform freestream velocity of the air at inlet ranging from 28 m/s to 40 m/s was used. ANSYS Fluent software (version 16.0) was used to simulate all models. The drag coefficient obtained from the ANSYS Fluent for the baseline model was validated with experimental data. It is found that the use of modern aerodynamic add-on devices and modifications has a significant effect in reducing the aerodynamic drag coefficient.Keywords: aerodynamics, RANS, sport utility vehicle, turbulent flow
Procedia PDF Downloads 3194050 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction
Authors: Sudhir Kumar Tiwari
Abstract:
The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model
Procedia PDF Downloads 3584049 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand
Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye
Abstract:
Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application
Procedia PDF Downloads 614048 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks
Authors: Amal Khalifa, Nicolas Vana Santos
Abstract:
Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.Keywords: deep learning, steganography, image, discrete wavelet transform, fusion
Procedia PDF Downloads 1004047 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images
Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav
Abstract:
Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining
Procedia PDF Downloads 1714046 Heart Attack Prediction Using Several Machine Learning Methods
Authors: Suzan Anwar, Utkarsh Goyal
Abstract:
Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest
Procedia PDF Downloads 1454045 Evaluation of Wound Healing Activity of Curcuma purpurascens BI. Rhizomes in Rats
Authors: Elham Rouhollahi, Soheil Zorofchian Moghadamtousi, Salma Baig, Mahmood Ameen Abdulla, Zahurin Mohamed
Abstract:
This study was designed to assess cutaneous wound healing potential of hexane extract of Curcuma purpurascens rhizomes (HECP). Twenty-four rats were divided into 4 groups: 1. Negative, 2. Low dose, 3. High dose and 4. Treatment, with 6 rats in each group. Full-thickness incisions with a diameter of 2 cm were made on the back of each rat. Rats were topically treated two times a day for 15 days. Group 1-4 were treated with sterile distilled water, 5% and 10% of extract and intrasite gel, respectively. Masson's trichrome and hematoxylin staining techniques are employed for histological analysis revealed strong wound healing potential closer to that of conventional drug intrasite gel. HECP significantly decreased wound area and an increase in hydroxyproline, cellular proliferation, the number of blood vessels and the level of collagen synthesis was observed. Thus, it could be concluded that HECP possesses strong wound healing potential.Keywords: Curcuma purpurascens, wound healing, histopathology, hematoxylin staining
Procedia PDF Downloads 4424044 A Machine Learning-Based Approach to Capture Extreme Rainfall Events
Authors: Willy Mbenza, Sho Kenjiro
Abstract:
Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.Keywords: machine learning (ML), predictions, rainfall events, regional variables
Procedia PDF Downloads 984043 Effects of Analogy Method on Children's Learning: Practice of Rainbow Experiments
Authors: Hediye Saglam
Abstract:
This research has been carried out to bring in the 6 acquisitions in the 2014 Preschool Teaching Programme of the Turkish Ministry of Education through the method of analogy. This research is practiced based on the experimental pattern with pre-test and final test controlling groups. The working group of the study covers the group between 5-6 ages. The study takes 5 weeks including the 2 weeks spent for pre-test and the final test. It is conducted with the preschool teacher who gives the lesson along with the researcher in the in-class and out-of-class rainbow experiments of the students for 5 weeks. 'One Sample T Test' is used for the evaluation of the pre-test and final test. SPSS 17 programme is applied for the analysis of the data. Results: As an outcome of the study it is observed that analogy method affects children’s learning of the rainbow. For this very reason teachers should receive inservice training for different methods and techniques like analogy. This method should be included in preschool education programme and should be applied by teachers more often.Keywords: acquisitions of preschool education programme, analogy method, pre-test/final test, rainbow experiments
Procedia PDF Downloads 5134042 Talent Sourcing Practices in Sri Lankan Software Industry
Authors: Malmi Amadoru, Chandana Gamage
Abstract:
Sri Lanka is emerging as a global IT-BPO hub topping up among the 20 global outsourcing destinations. When setting up a new venture in Sri Lanka, talent sourcing plays one of the key functions due to the rapid growth of workforce. Getting competent people with right skills for right positions leads organizations achieving its vision, mission and objectives. It also drives in earning competitive advantage over industry competitors. Thus it is crucial to scan and recruit the best employees to an organization. However there is no published information available on recruitment methods utilized in Sri Lankan software industry, as a study of this nature had not being conducted previously in Sri Lanka. The main objective of this study was to explore various talent sourcing practices exploited in Sri Lankan software industry. Also this study analyses the extent which Sri Lanka has adopted different recruitment strategies utilized in worldwide and its deviations. The research outcome is beneficial for HR professionals to identify the current trends in recruitment practices. Moreover investors who are interested in IT-BPO engagements can gain a thorough knowledge about talent sourcing techniques in Sri Lankan software industry. Finally, this research clues trending areas which can be further investigated in future.Keywords: IT-BPO, recruitment, Sri Lanka, software industry, talent
Procedia PDF Downloads 4924041 Software Quality Assurance in Component Based Software Development – a Survey Analysis
Authors: Abeer Toheed Quadri, Maria Abubakar, Mehreen Sirshar
Abstract:
Component Based Software Development (CBSD) is a new trend in software development. Selection of quality components is not enough to ensure software quality in Component Based Software System (CBSS). A software product is considered to be a quality product if it satisfies its customer’s needs and has minimum defects. Authors’ survey different research papers and analyzes various techniques which ensure software quality in component based software development. This paper includes an investigation about how to improve the quality of a component based software system without effecting quality attributes. The reported information is identified from literature survey. The developments of component based systems are rising as they reduce the development time, effort and cost by means of reuse. After analysis, it has been explored that in order to achieve the quality in a CBSS we need to have the components that are certified through software measure because the predictability of software quality attributes of system depend on the quality attributes of the constituent components, integration process and the framework used.Keywords: CBSD (component based software development), CBSS (component based software system), quality components, SQA (software quality assurance)
Procedia PDF Downloads 4194040 Vibration Measurements of Single-Lap Cantilevered SPR Beams
Authors: Xiaocong He
Abstract:
Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions
Procedia PDF Downloads 4344039 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques
Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari
Abstract:
Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.Keywords: data mining, counter terrorism, machine learning, SVM
Procedia PDF Downloads 4104038 Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate
Authors: Sakura Ganegama Bogodage, Andrew Yee Tat Leung
Abstract:
This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling.Keywords: cyclone performance, inlet velocity, pressure drop, solid loading rate
Procedia PDF Downloads 2404037 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye
Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu
Abstract:
DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.Keywords: campanula, DNA barcoding, endemic, türkiye, artvin
Procedia PDF Downloads 744036 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 2644035 Synthesis, Characterization and Coating of the Zinc Oxide Nanoparticles on Cotton Fabric by Mechanical Thermo-Fixation Techniques to Impart Antimicrobial Activity
Authors: Imana Shahrin Tania, Mohammad Ali
Abstract:
The present study reports the synthesis, characterization and application of nano-sized zinc-oxide (ZnO) particles on a cotton fabric surface. The aim of the investigations is to impart the antimicrobial activity on textile cloth. Nanoparticle is synthesized by wet chemical method from zinc sulphate and sodium hydroxide. SEM (scanning electron micrograph) images are taken to demonstrate the surface morphology of nanoparticles. XRD analysis is done to determine the crystal size of the nanoparticle. With the conformation of nanoformation, the cotton woven fabric is treated with ZnO nanoparticle by mechanical thermo-fixation (pad-dry-cure) technique. To increase the wash durability of nano treated fabric, an acrylic binder is used as a fixing agent. The treated fabric shows up to 90% bacterial reduction for S. aureus (Staphylococcus aureus) and 87% for E. coli (Escherichia coli) which is appreciable for bacteria protective clothing.Keywords: nanoparticle, zinc oxide, cotton fabric, antibacterial activity, binder
Procedia PDF Downloads 1384034 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru
Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza
Abstract:
Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem
Procedia PDF Downloads 1404033 Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh
Authors: Vivek Ganesh
Abstract:
Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement.Keywords: inundation map, NDVI map, storm tide map, track map
Procedia PDF Downloads 2714032 Challenges and Prospects of Small and Medium Scale Enterprises in Somolu Local Government Area
Authors: A. A. Akharayi, B. E. Anjola
Abstract:
The economic development of a country depends greatly on internally built revenue. Small and Medium-scale Enterprise (SMEs) contributes to the economic buoyancy as it provides employment for the teeming population, encourages job creation by youths who believes in themselves and also by others who have gathered finance enough to invest in growable investment. SMEs is faced with several challenges. The study investigates the role and challenges of SMEs Somolu Local Government Area. Simple random sampling techniques were used to select entrepreneurs (SMEs owners and managers). One hundred and fifty (150) registered SMEs were selected across the LGA data collection with the use of well-structured questionnaire. The data collected were analysed using Statistical Package for Social Science (SPSS) version 21. The result of the analysis indicated that marketing, finance, social facilities and indiscriminate taxes among other high level of fund available significantly (p <0 .05) increase firm capacity while marketing showed a significant (p < 0.05) relationship with profit level.Keywords: challenge, development, economic, small and medium scale enterprise
Procedia PDF Downloads 2464031 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms
Authors: Volkan Kaya, Ersin Elbasi
Abstract:
Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.Keywords: watermarking, medical image, frequency domain, least significant bits, security
Procedia PDF Downloads 2894030 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels
Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano
Abstract:
It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.Keywords: dust detection, photovoltaic, artificial vision, soiling
Procedia PDF Downloads 544029 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.Keywords: artificial intelligence, natural Language processing, knowledge graph, intelligent agents, QA system
Procedia PDF Downloads 1914028 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 1844027 Building 1-Well-Covered Graphs by Corona, Join, and Rooted Product of Graphs
Authors: Vadim E. Levit, Eugen Mandrescu
Abstract:
A graph is well-covered if all its maximal independent sets are of the same size. A well-covered graph is 1-well-covered if deletion of every vertex of the graph leaves it well-covered. It is known that a graph without isolated vertices is 1-well-covered if and only if every two disjoint independent sets are included in two disjoint maximum independent sets. Well-covered graphs are related to combinatorial commutative algebra (e.g., every Cohen-Macaulay graph is well-covered, while each Gorenstein graph without isolated vertices is 1-well-covered). Our intent is to construct several infinite families of 1-well-covered graphs using the following known graph operations: corona, join, and rooted product of graphs. Adopting some known techniques used to advantage for well-covered graphs, one can prove that: if the graph G has no isolated vertices, then the corona of G and H is 1-well-covered if and only if H is a complete graph of order two at least; the join of the graphs G and H is 1-well-covered if and only if G and H have the same independence number and both are 1-well-covered; if H satisfies the property that every three pairwise disjoint independent sets are included in three pairwise disjoint maximum independent sets, then the rooted product of G and H is 1-well-covered, for every graph G. These findings show not only how to generate some more families of 1-well-covered graphs, but also that, to this aim, sometimes, one may use graphs that are not necessarily 1-well-covered.Keywords: maximum independent set, corona, concatenation, join, well-covered graph
Procedia PDF Downloads 214