Search results for: electronic intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3275

Search results for: electronic intelligence

485 Engineering the Topological Insulator Structures for Terahertz Detectors

Authors: M. Marchewka

Abstract:

The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.

Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds

Procedia PDF Downloads 119
484 Consumer Protection Law For Users Mobile Commerce as a Global Effort to Improve Business in Indonesia

Authors: Rina Arum Prastyanti

Abstract:

Information technology has changed the ways of transacting and enabling new opportunities in business transactions. Problems to be faced by consumers M Commerce, among others, the consumer will have difficulty accessing the full information about the products on offer and the forms of transactions given the small screen and limited storage capacity, the need to protect children from various forms of excess supply and usage as well as errors in access and disseminate personal data, not to mention the more complex problems as well as problems agreements, dispute resolution that can protect consumers and assurance of security of personal data. It is no less important is the risk of payment and personal information of payment dal am also an important issue that should be on the swatch solution. The purpose of this study is 1) to describe the phenomenon of the use of Mobile Commerce in Indonesia. 2) To determine the form of legal protection for the consumer use of Mobile Commerce. 3) To get the right type of law so as to provide legal protection for consumers Mobile Commerce users. This research is a descriptive qualitative research. Primary and secondary data sources. This research is a normative law. Engineering conducted engineering research library collection or library research. The analysis technique used is deductive analysis techniques. Growing mobile technology and more affordable prices as well as low rates of provider competition also affects the increasing number of mobile users, Indonesia is placed into 4 HP users in the world, the number of mobile phones in Indonesia is estimated at around 250.1 million telephones with a population of 237 556. 363. Indonesian form of legal protection in the use of mobile commerce still a part of the Law No. 11 of 2008 on Information and Electronic Transactions and until now there is no rule of law that specifically regulates mobile commerce. Legal protection model that can be applied to protect consumers of mobile commerce users ensuring that consumers get information about potential security and privacy challenges they may face in m commerce and measures that can be used to limit the risk. Encourage the development of security measures and built security features. To encourage mobile operators to implement data security policies and measures to prevent unauthorized transactions. Provide appropriate methods both time and effectiveness of redress when consumers suffer financial loss.

Keywords: mobile commerce, legal protection, consumer, effectiveness

Procedia PDF Downloads 364
483 The Impact of Artificial Intelligence on Journalism and Mass Communication

Authors: Saad Zagloul Shokri Melika

Abstract:

The London College of Communication is one of the only universities in the world to offer a lifestyle journalism master’s degree. A hybrid originally constructed largely out of a generic journalism program crossed with numerous cultural studies approaches, the degree has developed into a leading lifestyle journalism education attracting students worldwide. This research project seeks to present a framework for structuring the degree as well as to understand how students in this emerging field of study value the program. While some researchers have addressed questions about journalism and higher education, none have looked specifically at the increasingly important genre of lifestyle journalism, which Folker Hanusch defines as including notions of consumerism and critique among other identifying traits. Lifestyle journalism, itself poorly researched by scholars, can relate to topics including travel, fitness, and entertainment, and as such, arguably a lifestyle journalism degree should prepare students to engage with these topics. This research uses the existing Masters of Arts and Lifestyle Journalism at the London College of Communications as a case study to examine the school’s approach. Furthering Hanusch’s original definition, this master’s program attempts to characterizes lifestyle journalism by a specific voice or approach, as reflected in the diversity of student’s final projects. This framework echoes the ethos and ideas of the university, which focuses on creativity, design, and experimentation. By analyzing the current degree as well as student feedback, this research aims to assist future educators in pursuing the often neglected field of lifestyle journalism. Through a discovery of the unique mix of practical coursework, theoretical lessons, and broad scope of student work presented in this degree program, researchers strive to develop a framework for lifestyle journalism education, referring to Mark Deuze’s ten questions for journalism education development. While Hanusch began the discussion to legitimize the study of lifestyle journalism, this project strives to go one step further and open up a discussion about teaching of lifestyle journalism at the university level.

Keywords: Journalism, accountability, education, television, publicdearth, investigative, journalism, Nigeria, journalismeducation, lifestyle, university

Procedia PDF Downloads 44
482 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 152
481 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering

Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala

Abstract:

Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.

Keywords: e-Tendering, e-Procurement, group decision making, tender evaluation, tender evaluation committee, UML, object-oriented methodologies, system development

Procedia PDF Downloads 261
480 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction

Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter

Abstract:

Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a real-time simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three Velmex XSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.

Keywords: surgical robot, haptic feedback, MATLAB, strain gage, simulink

Procedia PDF Downloads 532
479 Russian ‘Active Measures’: An Applicable Supporting Tool for Russia`s Foreign Policy Objectives in the 21st Century

Authors: Håkon Riiber

Abstract:

This paper explores the extent to which Russian ‘Active Measures’ play a role in contemporary Russian foreign policy and in what way the legacy of the Soviet Union is still apparent in these practices. The analysis draws on a set of case studies from the 21st century to examine these aspects, showing which ‘Active Measures’ features are old and which are new in the post-Cold War era. The paper highlights that the topic has gained significant academic and political interest in recent years, largely due to the aggressive posture of the Russian Federation on the world stage, exemplified through interventions in Estonia, Georgia, and Ukraine and interference in several democratic elections in the West. However, the paper argues that the long-term impact of these measures may have unintended implications for Russia. While Russia is unlikely to stop using Active Measures, increased awareness of the exploitation of weaknesses, institutions, or other targets may lead to greater security measures and an ability to identify and defend against these activities. The paper contends that Soviet-style ‘Active Measures’ from the Cold War era have been modernized and are now utilized to create an advantageous atmosphere for further exploitation to support contemporary Russian foreign policy. It offers three key points to support this argument: the reenergized legacy of the Cold War era, the use of ‘Active Measures’ in a number of cases in the 21st century, and the applicability of AM to the Russian approach to foreign policy. The analysis reveals that while this is not a new Russian phenomenon, it is still oversimplified and inaccurately understood by the West, which may result in a decreased ability to defend against these activities and limit the unwarranted escalation of the ongoing security situation between the West and Russia. The paper concludes that the legacy of Soviet-era Active Measures continues to influence Russian foreign policy, and modern technological advances have only made them more applicable to the current political climate. Overall, this paper sheds light on the important issue of Russian ‘Active Measures’ and the role they play in contemporary Russian foreign policy. It emphasizes the need for increased awareness, understanding, and security measures to defend against these activities and prevent further escalation of the security situation between the West and Russia.

Keywords: Russian espionage, active measures, disinformation, Russian intelligence

Procedia PDF Downloads 103
478 The Mental Workload of ICU Nurses in Performing Human-Machine Tasks: A Cross-sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit(ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance(ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload(MWL), nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 104
477 Mobile Phone Text Reminders and Voice Call Follow-ups Improve Attendance for Community Retail Pharmacy Refills; Learnings from Lango Sub-region in Northern Uganda

Authors: Jonathan Ogwal, Louis H. Kamulegeya, John M. Bwanika, Davis Musinguzi

Abstract:

Introduction: Community retail Pharmacy drug distribution points (CRPDDP) were implemented in the Lango sub-region as part of the Ministry of Health’s response to improving access and adherence to antiretroviral treatment (ART). Clients received their ART refills from nearby local pharmacies; as such, the need for continuous engagement through mobile phone appointment reminders and health messages. We share learnings from the implementation of mobile text reminders and voice call follow-ups among ART clients attending the CRPDDP program in northern Uganda. Methods: A retrospective data review of electronic medical records from four pharmacies allocated for CRPDDP in the Lira and Apac districts of the Lango sub-region in Northern Uganda was done from February to August 2022. The process involved collecting phone contacts of eligible clients from the health facility appointment register and uploading them onto a messaging platform customized by Rapid-pro, an open-source software. Client information, including code name, phone number, next appointment date, and the allocated pharmacy for ART refill, was collected and kept confidential. Contacts received appointment reminder messages and other messages on positive living as an ART client. Routine voice call follow-ups were done to ascertain the picking of ART from the refill pharmacy. Findings: In total, 1,354 clients were reached from the four allocated pharmacies found in urban centers. 972 clients received short message service (SMS) appointment reminders, and 382 were followed up through voice calls. The majority (75%) of the clients returned for refills on the appointed date, 20% returned within four days after the appointment date, and the remaining 5% needed follow-up where they reported that they were not in the district by the appointment date due to other engagements. Conclusion: The use of mobile text reminders and voice call follow-ups improves the attendance of community retail pharmacy refills.

Keywords: antiretroviral treatment, community retail drug distribution points, mobile text reminders, voice call follow-up

Procedia PDF Downloads 99
476 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 153
475 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion

Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett

Abstract:

Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. Today, cochlear implantation technology uses electrode array (EA) implanted manually into the cochlea. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to a severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small-scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit has provided tactile information from the digit-phantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have a potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.

Keywords: cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction

Procedia PDF Downloads 397
474 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
473 Advancements in Mathematical Modeling and Optimization for Control, Signal Processing, and Energy Systems

Authors: Zahid Ullah, Atlas Khan

Abstract:

This abstract focuses on the advancements in mathematical modeling and optimization techniques that play a crucial role in enhancing the efficiency, reliability, and performance of these systems. In this era of rapidly evolving technology, mathematical modeling and optimization offer powerful tools to tackle the complex challenges faced by control, signal processing, and energy systems. This abstract presents the latest research and developments in mathematical methodologies, encompassing areas such as control theory, system identification, signal processing algorithms, and energy optimization. The abstract highlights the interdisciplinary nature of mathematical modeling and optimization, showcasing their applications in a wide range of domains, including power systems, communication networks, industrial automation, and renewable energy. It explores key mathematical techniques, such as linear and nonlinear programming, convex optimization, stochastic modeling, and numerical algorithms, that enable the design, analysis, and optimization of complex control and signal processing systems. Furthermore, the abstract emphasizes the importance of addressing real-world challenges in control, signal processing, and energy systems through innovative mathematical approaches. It discusses the integration of mathematical models with data-driven approaches, machine learning, and artificial intelligence to enhance system performance, adaptability, and decision-making capabilities. The abstract also underscores the significance of bridging the gap between theoretical advancements and practical applications. It recognizes the need for practical implementation of mathematical models and optimization algorithms in real-world systems, considering factors such as scalability, computational efficiency, and robustness. In summary, this abstract showcases the advancements in mathematical modeling and optimization techniques for control, signal processing, and energy systems. It highlights the interdisciplinary nature of these techniques, their applications across various domains, and their potential to address real-world challenges. The abstract emphasizes the importance of practical implementation and integration with emerging technologies to drive innovation and improve the performance of control, signal processing, and energy.

Keywords: mathematical modeling, optimization, control systems, signal processing, energy systems, interdisciplinary applications, system identification, numerical algorithms

Procedia PDF Downloads 112
472 Evaluation of the Self-Organizing Map and the Adaptive Neuro-Fuzzy Inference System Machine Learning Techniques for the Estimation of Crop Water Stress Index of Wheat under Varying Application of Irrigation Water Levels for Efficient Irrigation Scheduling

Authors: Aschalew C. Workneh, K. S. Hari Prasad, C. S. P. Ojha

Abstract:

The crop water stress index (CWSI) is a cost-effective, non-destructive, and simple technique for tracking the start of crop water stress. This study investigated the feasibility of CWSI derived from canopy temperature to detect the water status of wheat crops. Artificial intelligence (AI) techniques have become increasingly popular in recent years for determining CWSI. In this study, the performance of two AI techniques, adaptive neuro-fuzzy inference system (ANFIS) and self-organizing maps (SOM), are compared while determining the CWSI of paddy crops. Field experiments were conducted for varying irrigation water applications during two seasons in 2022 and 2023 at the irrigation field laboratory at the Civil Engineering Department, Indian Institute of Technology Roorkee, India. The ANFIS and SOM-simulated CWSI values were compared with the experimentally calculated CWSI (EP-CWSI). Multiple regression analysis was used to determine the upper and lower CWSI baselines. The upper CWSI baseline was found to be a function of crop height and wind speed, while the lower CWSI baseline was a function of crop height, air vapor pressure deficit, and wind speed. The performance of ANFIS and SOM were compared based on mean absolute error (MAE), mean bias error (MBE), root mean squared error (RMSE), index of agreement (d), Nash-Sutcliffe efficiency (NSE), and coefficient of correlation (R²). Both models successfully estimated the CWSI of the paddy crop with higher correlation coefficients and lower statistical errors. However, the ANFIS (R²=0.81, NSE=0.73, d=0.94, RMSE=0.04, MAE= 0.00-1.76 and MBE=-2.13-1.32) outperformed the SOM model (R²=0.77, NSE=0.68, d=0.90, RMSE=0.05, MAE= 0.00-2.13 and MBE=-2.29-1.45). Overall, the results suggest that ANFIS is a reliable tool for accurately determining CWSI in wheat crops compared to SOM.

Keywords: adaptive neuro-fuzzy inference system, canopy temperature, crop water stress index, self-organizing map, wheat

Procedia PDF Downloads 55
471 Contribution of Artificial Intelligence in the Studies of Natural Compounds Against SARS-COV-2

Authors: Salah Belaidi

Abstract:

We have carried out extensive and in-depth research to search for bioactive compounds based on Algerian plants. A selection of 50 ligands from Algerian medicinal plants. Several compounds used in herbal medicine have been drawn using Marvin Sketch software. We determined the three-dimensional structures of the ligands with the MMFF94 force field in order to prepare these ligands for molecular docking. The 3D protein structure of the SARS-CoV-2 main protease was taken from the Protein Data Bank. We used AutoDockVina software to apply molecular docking. The hydrogen atoms were added during the molecular docking process, and all the twist bonds of the ligands were added using the (ligand) module in the AutoDock software. The COVID-19 main protease (Mpro) is a key enzyme that plays a vital role in viral transcription and mediating replication, so it is a very attractive drug target for SARS-CoV-2. In this work, an evaluation was carried out on the biologically active compounds present in these selected medicinal plants as effective inhibitors of the protease enzyme of COVID-19, with an in-depth computational calculation of the molecular docking using the Autodock Vina software. The top 7 ligands: Phloroglucinol, Afzelin, Myricetin-3-O- rutinosidTricin 7-neohesperidoside, Silybin, Silychristinthat and Kaempferol are selected among the 50 molecules studied which are Algerian medicinal plants, whose selection is based on the best binding energy which is relatively low compared to the reference molecule with binding affinities of -9.3, -9.3, -9, -8.9, -8 .5, 8.3 and -8.3 kcal mol-1 respectively. Then, we analyzed the ADME properties of the best7 ligands using the web server SwissADME. Two ligands (Silybin, Silychristin) were found to be potential candidates for the discovery and design of novel drug inhibitors of the protease enzyme of SARS-CoV-2. The stability of the two ligands in complexing with the Mpro protease was validated by molecular dynamics simulation; they revealed a stable trajectory in both techniques, RMSD and RMSF, by showing molecular properties with coherent interactions in molecular dynamics simulations. Finally, we conclude that the Silybin ligand forms a more stable complex with the Mpro protease compared to the Silychristin ligand.

Keywords: COVID-19, medicinal plants, molecular docking, ADME properties, molecular dynamics

Procedia PDF Downloads 34
470 Understanding the Strategies Underpinning the Marketing of E-Cigarettes: A Content Analysis of Video Advertisements

Authors: Laura Struik, Sarah Dow-Fleisner, Robert Janke

Abstract:

Introduction: The use of e-cigarettes, also known as vaping, has risen exponentially among North American youth and young adults (YYA) in recent years and has become a critical public health concern. The marketing strategies used by e-cigarette companies have been associated with the uptick in use among YYA, with video advertisements on TV and other electronic platforms being the most pervasive strategy. It is unknown if or how these advertisements capitalize on the recently documented multi-faceted influences that contribute to the initiation of vaping among this demographic (e.g., stress, anxiety, gender, peers, etc.), which is examined in this study. Methods: This content analysis is phase one of a two-phased research project that aims to inform meaningful approaches to anti-vaping messaging and campaigns. As part of this first phase, a scoping review has been conducted to identify various influences (environmental, cognitive, contextual, social, and emotional) on e-cigarette uptake among YYA. The results of this scoping review will inform the development of a coding framework to analyze the multiple influences present in vaping advertisements, as seen on two popular television channels (Discovery and AMC). In addition, advertisement characteristics will be incorporated into the coding framework (e.g., the number of people present, demographic details, context, and setting, etc.), and analyzed. Findings: Findings will reveal the types of influences being leveraged in vaping advertisements, and identify the underlying messages that may be particularly attractive to YYA. This will contribute to a more nuanced understanding of how e-cigarette companies market their products and to whom. The results will also inform the next phase of this research project, which will encompass an analysis of anti-vaping advertisements and how the underpinning strategies align with those of the pro-vaping advertisements. Conclusions: Findings of this will study bring forward important implications for developing effective anti-vaping messages, and assist public health professionals in providing more comprehensive prevention and cessation support as it relates to e-cigarette use. Understanding which marketing strategies e-cigarette companies use is vital to our understanding of how to combat them. Findings will inform recommendations for public health efforts aimed at curbing e-cigarette use among YYA, and ultimately contribute to the health and well-being of YYA.

Keywords: e-cigarettes, youth and young adults, advertisements, public health

Procedia PDF Downloads 121
469 Nanotechnology for Flame Retardancy of Thermoset Resins

Authors: Ewa Kicko Walczak, Grazyna Rymarz

Abstract:

In recent years, nanotechnology has been successfully applied for flame retardancy of polymers, in particular for construction materials. The consumption of thermoset resins as a construction polymers materials is approximately over one million tone word wide. Excellent mechanical, relatively high heat and thermal stability of their type of polymers are proven for variety applications, e.g. transportation, electrical, electronic, building part industry. Above applications in addition to the strength and thermal properties also requires -referring to the legal regulation or recommendation - an adequate level of flammability of the materials. This publication present the evaluation was made of effectiveness of flame retardancy of halogen-free hybrid flame retardants(FR) as compounds nitric/phosphorus modifiers that act with nanofillers (nano carbons, organ modified montmorillonite, nano silica, microsphere) in relation to unsaturated polyester/epoxy resins and glass-reinforced on base this resins laminates(GRP) as a final products. The analysis of the fire properties provided proof of effective flame retardancy of the tested composites by defining oxygen indices values (LOI), with the use of thermogravimetric methods (TGA) and combustion head (CH). An analysis of the combustion process with Cone Calorimeter (CC) method included in the first place N/P units and nanofillers with the observed phenomenon of synergic action of compounds. The fine-plates, phase morphology and rheology of composites were assessed by SEM/ TEM analysis. Polymer-matrix glass reinforced laminates with modified resins meet LOI over 30%, reduced in a decrease by 70% HRR (according to CC analysis), positive description of the curves TGA and values CH; no adverse negative impact on mechanical properties. The main objective of our current project is to contribute to the general understanding of the flame retardants mechanism and to investigate the corresponding structure/properties relationships. We confirm that nanotechnology systems are successfully concept for commercialized forms for non-flammable GRP pipe, concrete composites, and flame retardant tunnels constructions.

Keywords: fire retardants, FR, halogen-free FR nanofillers, non-flammable pipe/concrete, thermoset resins

Procedia PDF Downloads 284
468 Experiments to Study the Vapor Bubble Dynamics in Nucleate Pool Boiling

Authors: Parul Goel, Jyeshtharaj B. Joshi, Arun K. Nayak

Abstract:

Nucleate boiling is characterized by the nucleation, growth and departure of the tiny individual vapor bubbles that originate in the cavities or imperfections present in the heating surface. It finds a wide range of applications, e.g. in heat exchangers or steam generators, core cooling in power reactors or rockets, cooling of electronic circuits, owing to its highly efficient transfer of large amount of heat flux over small temperature differences. Hence, it is important to be able to predict the rate of heat transfer and the safety limit heat flux (critical heat flux, heat flux higher than this can lead to damage of the heating surface) applicable for any given system. A large number of experimental and analytical works exist in the literature, and are based on the idea that the knowledge of the bubble dynamics on the microscopic scale can lead to the understanding of the full picture of the boiling heat transfer. However, the existing data in the literature are scattered over various sets of conditions and often in disagreement with each other. The correlations obtained from such data are also limited to the range of conditions they were established for and no single correlation is applicable over a wide range of parameters. More recently, a number of researchers have been trying to remove empiricism in the heat transfer models to arrive at more phenomenological models using extensive numerical simulations; these models require state-of-the-art experimental data for a wide range of conditions, first for input and later, for their validation. With this idea in mind, experiments with sub-cooled and saturated demineralized water have been carried out under atmospheric pressure to study the bubble dynamics- growth rate, departure size and frequencies for nucleate pool boiling. A number of heating elements have been used to study the dependence of vapor bubble dynamics on the heater surface finish and heater geometry along with the experimental conditions like the degree of sub-cooling, super heat and the heat flux. An attempt has been made to compare the data obtained with the existing data and the correlations in the literature to generate an exhaustive database for the pool boiling conditions.

Keywords: experiment, boiling, bubbles, bubble dynamics, pool boiling

Procedia PDF Downloads 302
467 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 32
466 Pervasive Computing: Model to Increase Arable Crop Yield through Detection Intrusion System (IDS)

Authors: Idowu Olugbenga Adewumi, Foluke Iyabo Oluwatoyinbo

Abstract:

Presently, there are several discussions on the food security with increase in yield of arable crop throughout the world. This article, briefly present research efforts to create digital interfaces to nature, in particular to area of crop production in agriculture with increase in yield with interest on pervasive computing. The approach goes beyond the use of sensor networks for environmental monitoring but also by emphasizing the development of a system architecture that detect intruder (Intrusion Process) which reduce the yield of the farmer at the end of the planting/harvesting period. The objective of the work is to set a model for setting up the hand held or portable device for increasing the quality and quantity of arable crop. This process incorporates the use of infrared motion image sensor with security alarm system which can send a noise signal to intruder on the farm. This model of the portable image sensing device in monitoring or scaring human, rodent, birds and even pests activities will reduce post harvest loss which will increase the yield on farm. The nano intelligence technology was proposed to combat and minimize intrusion process that usually leads to low quality and quantity of produce from farm. Intranet system will be in place with wireless radio (WLAN), router, server, and client computer system or hand held device e.g PDAs or mobile phone. This approach enables the development of hybrid systems which will be effective as a security measure on farm. Since, precision agriculture has developed with the computerization of agricultural production systems and the networking of computerized control systems. In the intelligent plant production system of controlled greenhouses, information on plant responses, measured by sensors, is used to optimize the system. Further work must be carry out on modeling using pervasive computing environment to solve problems of agriculture, as the use of electronics in agriculture will attracts more youth involvement in the industry.

Keywords: pervasive computing, intrusion detection, precision agriculture, security, arable crop

Procedia PDF Downloads 403
465 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 69
464 Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture

Authors: Johanna Perdomo, Riki Lamont, Edmund Pickering, Naomi C. Paxton, Maria A. Woodruff

Abstract:

Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture.

Keywords: soft robot, tissue engineering, mechanical stimulation, dynamic cell culture, bioreactor

Procedia PDF Downloads 96
463 Classroom Curriculum That Includes Wisdom Skills

Authors: Brian Fleischli, Shani Robins

Abstract:

In recent years, the implementation of wisdom skills, including emotional intelligence, mindfulness, empathy, compassion, gratitude, realism (Cognitive-Behavioral Therapy), and humility, within K-12 educational settings has demonstrated significant benefits in reducing stress, anxiety, anger, and conflict among students. This study summarizes the findings of research conducted over several years, showcasing the positive outcomes associated with teaching these skills to elementary and high school students. Additionally, this overview includes an updated synthesis of current literature concerning the application and effectiveness of training these skill sets in K-12 schools. The research outcomes highlight substantial improvements in student well-being and behavior. Demonstrated with treatment group students exhibiting notable reductions in anger, anxiety, depression, and disruptive behaviors compared to control groups. For instance, fourth-grade students showed enhanced empathy, responsibility, and attention, particularly benefiting those with lower initial scores on these measures. Specific interaction effects suggest that older students and males particularly benefit from these interventions, showcasing the nuanced impact of wisdom skill training across different demographics. Furthermore, this presentation emphasizes the critical role of Social and Emotional Learning (SEL) programs in addressing the multifaceted challenges faced by children and adolescents, including mental health issues, academic performance, and social behaviors. The integration of wisdom skills into school curricula not only fosters individual growth and emotional regulation but also enhances overall school climate and academic achievement. In conclusion, the findings contribute to the growing body of empirical evidence supporting the efficacy of teaching wisdom skills in educational settings. The success of these interventions underscores the potential for widespread implementation of evidence-based programs to promote emotional well-being and academic success among students nationwide.

Keywords: wisdom skills, CBT, cognitive behavioral training, mindfulness, empathy, anxiety

Procedia PDF Downloads 44
462 Postoperative Wound Infections Following Caesarean Section in Obese Patients

Authors: S. Yeo, M. Mathur

Abstract:

Introduction: Obesity, defined as a Body Mass Index (BMI) of more than or equal to 30kg/m, is associated with an increased risk of complications during pregnancy and delivery. During labour, obese mothers often require greater intervention and have higher rates of caesarean section. Despite a low overall rate of serious complications following caesarean section, a high BMI predisposes to a higher risk of postoperative complications. Our study, therefore, aimed to investigate the impact of antenatal obesity on adverse outcomes following caesarean section, particularly wound-related infections. Materials and Methods: A retrospective cohort study of all caesarean deliveries during the first quarter of a chosen year was undertaken in our hospital, which is a tertiary referral centre with > 12,000 deliveries per year. Patients’ health records and data from our hospital’s electronic labour and delivery database were reviewed. Data analysis was performed using the Statistical Package for the Social Sciences (SPSS), and odds ratios plus adjusted odd ratios were calculated with 95% confidence intervals (CI). Results: A total of 1829 deliveries were reviewed during our study period. Of these, 180 (9.8%) patients were obese. The rate of caesarean delivery was 48.9% in obese patients versus 28.1% in non-obese patients. Post-operatively, 17% of obese patients experienced wound infection versus 0.2% of non-obese patients. Obese patients were also more likely to experience major postpartum haemorrhage (4.6% vs. 0.2%) and postpartum pyrexia (18.2% vs. 5.0%) in comparison to non-obese patients. Conclusions: Obesity is a significant risk factor in the development of postoperative complications following caesarean section. Wound infection remains a major concern for obese patients undergoing major surgery and results in extensive morbidity during the postnatal period. Postpartum infection can prolong recovery and affect maternal mental health, leading to reduced perinatal bonding with long-term implications on breastfeeding and parenting confidence. This study supports the need for the development of standardized protocols specifically for obese patients undergoing caesarean section. Multidisciplinary team care, in conjunction with anaesthesia, family physicians, and plastic surgery counterparts, early on in the antenatal journey, may be beneficial where wound complications are anticipated and to minimize the burden of postoperative infection in obese mothers.

Keywords: pregnancy, obesity, caesarean, infection

Procedia PDF Downloads 82
461 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap

Authors: Batuhan Kocaoglu

Abstract:

Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.

Keywords: digital transformation, digital business, ERP, roadmap

Procedia PDF Downloads 170
460 The Mental Workload of Intensive Care Unit Nurses in Performing Human-Machine Tasks: A Cross-Sectional Survey

Authors: Yan Yan, Erhong Sun, Lin Peng, Xuchun Ye

Abstract:

Aims: The present study aimed to explore Intensive Care Unit (ICU) nurses’ mental workload (MWL) and associated factors with it in performing human-machine tasks. Background: A wide range of emerging technologies have penetrated widely in the field of health care, and ICU nurses are facing a dramatic increase in nursing human-machine tasks. However, there is still a paucity of literature reporting on the general MWL of ICU nurses performing human-machine tasks and the associated influencing factors. Methods: A cross-sectional survey was employed. The data was collected from January to February 2021 from 9 tertiary hospitals in 6 provinces (Shanghai, Gansu, Guangdong, Liaoning, Shandong, and Hubei). Two-stage sampling was used to recruit eligible ICU nurses (n=427). The data were collected with an electronic questionnaire comprising sociodemographic characteristics and the measures of MWL, self-efficacy, system usability, and task difficulty. The univariate analysis, two-way analysis of variance (ANOVA), and a linear mixed model were used for data analysis. Results: Overall, the mental workload of ICU nurses in performing human-machine tasks was medium (score 52.04 on a 0-100 scale). Among the typical nursing human-machine tasks selected, the MWL of ICU nurses in completing first aid and life support tasks (‘Using a defibrillator to defibrillate’ and ‘Use of ventilator’) was significantly higher than others (p < .001). And ICU nurses’ MWL in performing human-machine tasks was also associated with age (p = .001), professional title (p = .002), years of working in ICU (p < .001), willingness to study emerging technology actively (p = .006), task difficulty (p < .001), and system usability (p < .001). Conclusion: The MWL of ICU nurses is at a moderate level in the context of a rapid increase in nursing human-machine tasks. However, there are significant differences in MWL when performing different types of human-machine tasks, and MWL can be influenced by a combination of factors. Nursing managers need to develop intervention strategies in multiple ways. Implications for practice: Multidimensional approaches are required to perform human-machine tasks better, including enhancing nurses' willingness to learn emerging technologies actively, developing training strategies that vary with tasks, and identifying obstacles in the process of human-machine system interaction.

Keywords: mental workload, nurse, ICU, human-machine, tasks, cross-sectional study, linear mixed model, China

Procedia PDF Downloads 69
459 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 50
458 Effect of Amount of Crude Fiber in Grass or Silage to the Digestibility of Organic Matter in Suckler Cow Feeding Systems

Authors: Scholz Heiko, Kuhne Petra, Heckenberger Gerd

Abstract:

Problems during the calving period (December to May) often result in a high body condition score (BCS) at this time. At the end of the grazing period (frequently after early weaning), however, an increase of BCS can often be observed under German conditions. In the last eight weeks before calving, the body condition should be reduced or at least not increased. Rations with a higher amount of crude fiber can be used (rations with straw or late mowed grass silage). Fermentative digestion of fiber is slow and incomplete; that’s why the fermentative process in the rumen can be reduced over a long feeding time. Viewed in this context, feed intake of suckler cows (8 weeks before calving) in different rations and fermentation in the rumen should be checked by taking rumen fluid. Eight suckler cows (Charolais) were feeding a Total Mixed Ration (TMR) in the last eight weeks before calving and grass silage after calving. By the addition of straw (30 % [TMR1] vs. 60 % [TMR2] of dry matter) was varied the amount of crude fiber in the TMR (grass silage, straw, mineral) before calving. After calving of the cow's grass, silage [GS] was fed ad libitum, and the last measurement of rumen fluid took place on the pasture [PS]. Rumen fluid, plasma, body weight, and backfat thickness were collected. Rumen fluid pH was assessed using an electronic pH meter. Volatile fatty acids (VFA), sedimentation, methylene-blue and amount of infusorians were measured. From these 4 parameters, an “index of rumen fermentation” [IRF] in the rumen was formed. Fixed effects of treatment (TMR1, TMR2, GS and PS) and a number of lactations (3-7 lactations) were analyzed by ANOVA using SPSS Version 25.0 (significant by p ≤ 5 %). Rumen fluid pH was significant influenced by variants (TMR 1 by 6.6; TMR 2 by 6.9; GS by 6.6 and PS by 6.9) but was not affected by other effects. The IRF showed disturbed fermentation in the rumen by feeding the TMR 1+2 with a high amount of crude fiber (Score: > 10.0 points) and a very good environment for fermentation during grazing the pasture (Score: 6.9 points). Furthermore, significant differences were found for VFA, methylene blue and the number of infusorians. The use of rations with the high amount of crude fiber from weaning to calving may cause deviations from undisturbed fermentation in the rumen and adversely affect the utilization of the feed in the rumen.

Keywords: suckler cow, feeding systems, crude fiber, digestibilty of organic matter

Procedia PDF Downloads 145
457 Ultrastructural Study of Surface Topography of Trematode Parasites of Domestic Buffalo (Bubalus bubalis) in Udaipur, India

Authors: Gayatri Swarnakar

Abstract:

Paramphistomiasis and fascioliasis diseases have been prevalent due to presence of trematode parasites in the rumen and liver of domestic buffalo (Bubalus bubalis) in Udaipur, India. The trematode parasites such as Paramphistomum cervi, Gastrothylax crumenifer, Cotylophoron cotylophorum, Orthocoelium scoliocoelium, Fasciola hepatica and Fasciola gigantica were collected from infected rumen and liver of the freshly slaughtered buffaloes (Bubalus bubalis) at local zoo abattoir in Udaipur. Live trematodes were washed in normal saline, fixed in 0.2M cacodylate fixative, post fixed in osmium tetraoxide, dehydrated, dried, coated with gold sputter and observed under scanning electronic microscope (SEM). The surface tegument of Paramphistomum cervi was spineless with transverse folds, discontinuous with ridges and grooves. Two types of sensory papillae such as knob like and button shaped were also observed. The oral opening of Cotylophoron cotylophorum was surrounded by wrinkled and ridged tegument which formed concentric elevated rings. Tegument of Cotylophoron cotylophorum in acetabulum region was observed to be rough and bee-comb like structure. Genital sucker of this worm was surrounded by a tyre- shaped elevation of the tegument. Orthocoelium scoliocoelium showed circular and concentric rings of tegumental folds around the oral sucker. Genital pore had knob like papillae with radial tegumental folds. Surface topography of Fasciola gigantica and Fasciola hepatica were found to be rough due to occurrence of different types of spines, three types of sensory papillae, transverse folds and grooves. Oral and ventral suckers were spineless and covered with thick rims of transverse folds. Genital pore showed small scattered spines. Present research work would provide knowledge for ultrastructural characteristics of trematode parasites for chemotherapeutic measures and help us to evolve suitable strategy for the eradication of trematode parasites from the domestic buffalo (Bubalus bubalis).

Keywords: Domestic buffalo, tegument, trematode parasites, ultrastructure

Procedia PDF Downloads 308
456 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 183