Search results for: automatic classification of tremor types
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8065

Search results for: automatic classification of tremor types

5275 The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components

Authors: Mikel Alonso López

Abstract:

The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.

Keywords: emotion, consumer behaviour, feelings, decision making

Procedia PDF Downloads 347
5274 Developing Abbreviated Courses

Authors: Lynette Nickleberry Stewart

Abstract:

The present presentation seeks to explore distinction across disciplines in the appropriateness of accelerated courses and suggestions for implementing accelerated courses in various disciplines. Grounded in a review of research on accelerated learning (AL), this presentation will discuss the intradisciplinary appropriateness of accelerated courses for various topics and student types, and make suggestions for implementing augmented courses. Meant to inform an emerging ‘handbook’ of accelerated course development, facilitators will lead participants in a discussion of personal challenges and triumphs in their attempts at accelerated course design.

Keywords: adult learning, abbreviated courses, accelerated learning, course design

Procedia PDF Downloads 120
5273 Comparison with Two Clinical Cases of Plasma Cell Neoplasm by Using the Method of Capillary Electrophoresis

Authors: Kai Pai Huang

Abstract:

Background: There are several types of plasma cell neoplasms including multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are found in our lab. Today, we want to compare with two cases using the method of capillary electrophoresis. Method: Serum is prepared and electrophoresis is performed at alkaline PH in a capillary using the Sebia® Capillary 2. Albumin and globulins are detected by the detector which is located in the cathode of the capillary and the signals are transformed to peaks. Serum was treated with beta-mercaptoethanol which reducing the polymerized immunoglobulin to monomer immunoglobulin to clarify two M-protein are secreted from the same plasma cell clone in bone marrow. Result: Case 1: A 78-year-old female presenting dysuria, oliguria and leg edema for several months. Laboratory data showed proteinuria, leukocytosis, results of high serum IgA and lambda light chain. A renal biopsy found amyloid fibrils in the glomerular mesangial area. Serum protein electrophoresis shows a major monoclonal peak in the β region and minor small peak in gamma region, and the immunotyping studies for serum showed two IgA/λ type. Case 2: A 55-year-old male presenting abdominal distension and low back pain for more than one month. Laboratory data showed T12 T8 compression fracture, results of high serum IgM and kappa light chain. Bone marrow aspiration showed the cells from the bone marrow are B cells with monotypic kappa chain expression. Bone marrow biopsy found this is lymphoplasmacytic lymphoma (Waldenstrom macroglobulin). Serum protein electrophoresis shows a monoclonal peak in the β region and the immunotyping studies for serum showed IgM/κ type. Conclusion: Plasma cell neoplasm can be diagnosed by many examinations. Among them, using capillary electrophoresis by a lab can separate several types of gammopathy and the quantification of a monoclonal peak can be used to evaluate the patients’ prognosis or treatment.

Keywords: plasma cell neoplasm, capillary electrophoresis, serum protein electrophoresis, immunotyping

Procedia PDF Downloads 146
5272 Synaesthetic Metaphors in Persian: a Cognitive Corpus Based and Comparative Perspective

Authors: A. Afrashi

Abstract:

Introduction: Synaesthesia is a term denoting the perception or description of the perception of one sense modality in terms of another. In literature, synaesthesia refers to a technique adopted by writers to present ideas, characters or places in such a manner that they appeal to more than one sense like hearing, seeing, smell etc. at a given time. In everyday language too we find many examples of synaesthesia. We commonly hear phrases like ‘loud colors’, ‘frozen silence’ and ‘warm colors’, ‘bitter cold’ etc. Empirical cognitive studies have proved that synaesthetic representations both in literature and everyday languages are constrained ie. they do not map randomly among sensory domains. From the beginning of the 20th century Synaesthesia has been a research domain both in literature and structural linguistics. However the exploration of cognitive mechanisms motivating synaesthesia, have made it an important topic in 21st century cognitive linguistics and literary studies. Synaesthetic metaphors are linguistic representations of those mental mechanisms, the study of which reveals invaluable facts about perception, cognition and conceptualization. According to the main tenets of cognitive approach to language and literature, unified and similar cognitive mechanisms are active both in everyday language and literature, and synaesthesia is one of those cognitive mechanisms. Main objective of the present research is to answer the following questions: What types of sense transfers are accessible in Persian synaesthetic metaphors. How are these types of sense transfers cognitively explained. What are the results of cross-linguistic comparative study of synaestetic metaphors based on the existing observations? Methodology: The present research employs a cognitive - corpus based method, and the theoretical framework adopted to analyze linguistic synaesthesia is the contemporary theory of metaphor, where conceptual metaphor is the result of systemic mappings across cognitive domains. Persian Language Data- base (PLDB) in the Institute for Humanities and Cultural Studies which consists mainly of Persian modern prose, is searched for synaesthetic metaphors. Then for each metaphorical structure, the source and target domains are determined. Then sense transfers are identified and the types of synaesthetic metaphors recognized. Findings: Persian synaesthetic metaphors conform to the hierarchical distribution principle, according to which transfers tend to go from touch to taste to smell to sound and to sight, not vice versa. In other words mapping from more accessible or basic concepts onto less accessible or less basic ones seems more natural. Furthermore the most frequent target domain in Persian synaesthetic metaphors is sound. Certain characteristics of Persian synaesthetic metaphors are comparable with existing related researches carried on English, French, Hungarian and Chinese synaesthetic metaphors. Conclusion: Cognitive corpus based approaches to linguistic synaesthesia, are applicable to stylistics and literary criticism and this recent research domain is an efficient approach to study cross linguistic variations to find out which of the five senses is dominant cross linguistically and cross culturally as the target domain in metaphorical mappings , and so forth receiving dominance in conceptualizations.

Keywords: cognitive semantics, conceptual metaphor, synaesthesia, corpus based approach

Procedia PDF Downloads 562
5271 The Processing of Implicit Stereotypes in Everyday Scene Perception

Authors: Magali Mari, Fabrice Clement

Abstract:

The present study investigated the influence of implicit stereotypes on adults’ visual information processing, using an eye-tracking device. Implicit stereotyping is an automatic and implicit process; it happens relatively quickly, outside of awareness. In the presence of a member of a social group, a set of expectations about the characteristics of this social group appears automatically in people’s minds. The study aimed to shed light on the cognitive processes involved in stereotyping and to further investigate the use of eye movements to measure implicit stereotypes. With an eye-tracking device, the eye movements of participants were analyzed, while they viewed everyday scenes depicting women and men in congruent or incongruent gender role activities (e.g., a woman ironing or a man ironing). The settings of these scenes had to be analyzed to infer the character’s role. Also, participants completed an implicit association test that combined the concept of gender with attributes of occupation (home/work), while measuring reaction times to assess participants’ implicit stereotypes about gender. The results showed that implicit stereotypes do influence people’s visual attention; within a fraction of a second, the number of returns, between stereotypical and counter-stereotypical scenes, differed significantly, meaning that participants interpreted the scene itself as a whole before identifying the character. They predicted that, in such a situation, the character was supposed to be a woman or a man. Also, the study showed that eye movements could be used as a fast and reliable supplement for traditional implicit association tests to measure implicit stereotypes. Altogether, this research provides further understanding of implicit stereotypes processing as well as a natural method to study implicit stereotypes.

Keywords: eye-tracking, implicit stereotypes, social cognition, visual attention

Procedia PDF Downloads 159
5270 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques

Authors: Zakaria Baka, Halima Alem

Abstract:

Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.

Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques

Procedia PDF Downloads 196
5269 Electric Propulsion Systems in Aerospace Applications - Energy Balance Analysis

Authors: T. Tulwin, M. Gęca, R. Sochaczewski

Abstract:

Recent improvements in electric propulsion systems and energy storage systems allow for the electrification of many sectors where it was previously not feasible. This analysis proves the feasibility of electric propulsion in aviation applications reviewing recent energy storage developments. It can be more quiet, energy efficient and more environmentally friendly. Numerical simulations were done to prove that energy efficiency can be improved for rotorcrafts especially in hover conditions. New types of aircraft configurations are reviewed and future trends are presented.

Keywords: aircraft, propulsion , efficiency, storage

Procedia PDF Downloads 170
5268 Predicting Machine-Down of Woodworking Industrial Machines

Authors: Matteo Calabrese, Martin Cimmino, Dimos Kapetis, Martina Manfrin, Donato Concilio, Giuseppe Toscano, Giovanni Ciandrini, Giancarlo Paccapeli, Gianluca Giarratana, Marco Siciliano, Andrea Forlani, Alberto Carrotta

Abstract:

In this paper we describe a machine learning methodology for Predictive Maintenance (PdM) applied on woodworking industrial machines. PdM is a prominent strategy consisting of all the operational techniques and actions required to ensure machine availability and to prevent a machine-down failure. One of the challenges with PdM approach is to design and develop of an embedded smart system to enable the health status of the machine. The proposed approach allows screening simultaneously multiple connected machines, thus providing real-time monitoring that can be adopted with maintenance management. This is achieved by applying temporal feature engineering techniques and training an ensemble of classification algorithms to predict Remaining Useful Lifetime of woodworking machines. The effectiveness of the methodology is demonstrated by testing an independent sample of additional woodworking machines without presenting machine down event.

Keywords: predictive maintenance, machine learning, connected machines, artificial intelligence

Procedia PDF Downloads 226
5267 Women Entrepreneurs’ in Nigeria: Issues and Challenges

Authors: Mohammed Mainoma, Abubakar Tijanni, Mohammed Aliyu

Abstract:

Globalization has brought a structural change in industry. It is the breaking of artificial boundaries and given way to new product, new service, new market, and new technology among others. It leads to the realization that men entrepreneurs’ alone cannot meet the demand of the teeming population. Therefore there is a need for the participation, involvement, and engagement of females in the production and distribution of goods and services. This will enhance growth and development of a nation. It is in line with the above that this paper attempt to discuss meaning of women entrepreneurs, roles, types, problems, and prospects. Also, on the basis of conclusion the paper recommended that entrepreneurship education should be introduced in all Tertiary Institutions in Nigeria.

Keywords: women, entrepreneurs, issues, challenges

Procedia PDF Downloads 518
5266 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database

Procedia PDF Downloads 151
5265 Physicochemical Characterizations of Marine and River Sediments in the North of France

Authors: Abriak Nor Edine, Zentar Rachid, Achour Raouf, Tran Ngoc Thanh

Abstract:

This work is undertaken to develop a methodology to enhance the management of dredged marine and river sediments in the North of France. The main objective of this study is to determine the main characteristics of these sediments. In this order, physical, mineralogical and chemical properties of both types of sediments are measured. Moreover, their potential impacts on the environment are assessed throughout leaching tests. From the obtained results, the potential of their use in road engineering is discussed.

Keywords: marine sediments, river sediments, physico chemical characterizations, environmental characterizations

Procedia PDF Downloads 548
5264 ESL Material Evaluation: The Missing Link in Nigerian Classrooms

Authors: Abdulkabir Abdullahi

Abstract:

The paper is a pre-use evaluation of grammar activities in three primary English course books (two of which are international primary English course books and the other a popular Nigerian primary English course book). The titles are - Cambridge Global English, Collins International Primary English, and Nigeria Primary English – Primary English. Grammar points and grammar activities in the three-course books were identified, grouped, and evaluated. The grammar activity which was most common in the course books, simple past tense, was chosen for evaluation, and the units which present simple past tense activities were selected to evaluate the extent to which the treatment of simple past tense in each of the course books help the young learners of English as a second language in Nigeria, aged 8 – 11, level A1 to A2, who lack the basic grammatical knowledge, to know grammar/communicate effectively. A bespoke checklist was devised, through the modification of existing checklists for the purpose of the evaluation, to evaluate the extent to which the grammar activities promote the communicative effectiveness of Nigerian learners of English as a second language. The results of the evaluation and the analysis of the data reveal that the treatment of grammar, especially the treatment of the simple past tense, is evidently insufficient. While Cambridge Global English’s, and Collins International Primary English’s treatment of grammar, the simple past tense, is underpinned by state-of-the-art theories of learning, language learning theories, second language learning principles, second language curriculum-syllabus design principles, grammar learning and teaching theories, the grammar load is insignificantly low, and the grammar tasks do not promote creative grammar practice sufficiently. Nigeria Primary English – Primary English, on the other hand, treats grammar, the simple past tense, in the old-fashioned direct way. The book does not favour the communicative language teaching approach; no opportunity for learners to notice and discover grammar rules for themselves, and the book lacks the potency to promote creative grammar practice. The research and its findings, therefore, underscore the need to improve grammar contents and increase grammar activity types which engage learners effectively and promote sufficient creative grammar practice in EFL and ESL material design and development.

Keywords: evaluation, activity, second language, activity-types, creative grammar practice

Procedia PDF Downloads 81
5263 Prediction of All-Beta Protein Secondary Structure Using Garnier-Osguthorpe-Robson Method

Authors: K. Tejasri, K. Suvarna Vani, S. Prathyusha, S. Ramya

Abstract:

Proteins are chained sequences of amino acids which are brought together by the peptide bonds. Many varying formations of the chains are possible due to multiple combinations of amino acids and rotation in numerous positions along the chain. Protein structure prediction is one of the crucial goals worked towards by the members of bioinformatics and theoretical chemistry backgrounds. Among the four different structure levels in proteins, we emphasize mainly the secondary level structure. Generally, the secondary protein basically comprises alpha-helix and beta-sheets. Multi-class classification problem of data with disparity is truly a challenge to overcome and has to be addressed for the beta strands. Imbalanced data distribution constitutes a couple of the classes of data having very limited training samples collated with other classes. The secondary structure data is extracted from the protein primary sequence, and the beta-strands are predicted using suitable machine learning algorithms.

Keywords: proteins, secondary structure elements, beta-sheets, beta-strands, alpha-helices, machine learning algorithms

Procedia PDF Downloads 94
5262 A Constructivist Grounded Theory Study on the Impact of Automation on People and Gardening

Authors: Hamilton V. Niculescu

Abstract:

Following a three year study conducted on eighteen Irish people that are involved in growing vegetables in various community gardens around Dublin, Republic of Ireland, it was revealed that addition of some automated features aimed at improving agricultural practices represented a process which was regarded as potentially beneficial, and as a great tool to closely monitor climate conditions inside the greenhouses. The participants were provided with a free custom-built mobile app through which they could remotely monitor and control features such as irrigation, air ventilation, and windows to ensure optimal growing conditions for vegetables growing inside purpose-built greenhouses. While the initial interest was generally high, within weeks, the participants' level of interaction with the enclosures slowly declined. By employing a constructivist grounded theory methodology, following focus group discussions, in-depth semi-structured interviews, and observations, it was revealed that participants' trust in newer technologies, and renewables, in particular, was low. There are various reasons for this, but because the participants in this study consist of mainly working-class people, it can be argued that lack of education and knowledge are the main barriers acting against the adoption of innovations. Consequently, it was revealed that most participants eventually decided to "set and forget" the systems in automatic working mode, indicating that the immediate effect of introducing people to assisting technologies also introduced some unintended consequences into their lifestyle. It is argued that this occurrence also indicates the fact that people initially "read" newer technologies and only adopt those features that they find useful and less intrusive in regards to their current lifestyle.

Keywords: automation, communication, greenhouse, sustainable

Procedia PDF Downloads 119
5261 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 427
5260 Investigation of Heating Behaviour of E-Textile Structures

Authors: Hande Sezgin, Senem Kursun Bahadır, Yakup Erhan Boke, Fatma Kalaoğlu

Abstract:

Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples were examined by thermal camera.

Keywords: conductive yarn, e-textiles, smart textiles, thermal analysis

Procedia PDF Downloads 557
5259 Interruption Overload in an Office Environment: Hungarian Survey Focusing on the Factors that Affect Job Satisfaction and Work Efficiency

Authors: Fruzsina Pataki-Bittó, Edit Németh

Abstract:

On the one hand, new technologies and communication tools improve employee productivity and accelerate information and knowledge transfer, while on the other hand, information overload and continuous interruptions make it even harder to concentrate at work. It is a great challenge for companies to find the right balance, while there is also an ongoing demand to recruit and retain the talented employees who are able to adopt the modern work style and effectively use modern communication tools. For this reason, this research does not focus on the objective measures of office interruptions, but aims to find those disruption factors which influence the comfort and job satisfaction of employees, and the way how they feel generally at work. The focus of this research is on how employees feel about the different types of interruptions, which are those they themselves identify as hindering factors, and those they feel as stress factors. By identifying and then reducing these destructive factors, job satisfaction can reach a higher level and employee turnover can be reduced. During the research, we collected information from depth interviews and questionnaires asking about work environment, communication channels used in the workplace, individual communication preferences, factors considered as disruptions, and individual steps taken to avoid interruptions. The questionnaire was completed by 141 office workers from several types of workplaces based in Hungary. Even though 66 respondents are working at Hungarian offices of multinational companies, the research is about the characteristics of the Hungarian labor force. The most important result of the research shows that while more than one third of the respondents consider office noise as a disturbing factor, personal inquiries are welcome and considered useful, even if in such cases the work environment will not be convenient to solve tasks requiring concentration. Analyzing the sizes of the offices, in an open-space environment, the rate of those who consider office noise as a disturbing factor is surprisingly lower than in smaller office rooms. Opinions are more diverse regarding information communication technologies. In addition to the interruption factors affecting the employees' job satisfaction, the research also focuses on the role of the offices in the 21st century.

Keywords: information overload, interruption, job satisfaction, office environment, work efficiency

Procedia PDF Downloads 227
5258 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB

Procedia PDF Downloads 144
5257 Communicative Strategies in Colombian Political Speech: On the Example of the Speeches of Francia Marquez

Authors: Danila Arbuzov

Abstract:

In this article the author examines the communicative strategies used in the Colombian political discourse, following the example of the speeches of the Vice President of Colombia Francia Marquez, who took office in 2022 and marked a new development vector for the Colombian nation. The lexical and syntactic means are analyzed to achieve the communicative objectives. The material presented may be useful for those who are interested in investigating various aspects of discursive linguistics, particularly political discourse, as well as the implementation of communicative strategies in certain types of discourse.

Keywords: political discourse, communication strategies, Colombian political discourse, Colombia, manipulation

Procedia PDF Downloads 114
5256 The Adoption of Psychomorphological Psychometrics on Behavioral Modification in Africans in Diaspora

Authors: P. Ayawei, A. D. Spiff

Abstract:

It is certain that most African diasporans have experienced several types of traumas, which have conjured unprecedented psychological disorders needing adequate psychomorphological psychometrics. However, slavery was a long-term, multidimensional experience involving black victimization as well as effective black coping. In assessing, collecting, and analyzing the needed data, we first identify a group that has experienced a jolting, unpredictable, and monstrous assault. Second, we assess the depth of the trauma and an unambiguous period that marks the termination of the trauma using the alliterational psychomorphological psychometrics deca perimeter.

Keywords: slavery, Diaspora, Africa, psychomorphology, psychometrics, ancestry, disorder, phobias and trauma

Procedia PDF Downloads 61
5255 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
5254 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 163
5253 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 462
5252 Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway

Authors: Nor-Edine Abriak, Mahfoud Benzerzour, Mouhamadou Amar, Abdeljalil Zri

Abstract:

In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads.

Keywords: sediment, lime, cement, roadway

Procedia PDF Downloads 267
5251 Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-Off for South African Birds

Authors: Chevonne Reynolds, Res Altwegg, Andrew Balmford, Claire N. Spottiswoode

Abstract:

Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.

Keywords: agriculture, birds, land sharing, land sparing

Procedia PDF Downloads 208
5250 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
5249 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets

Authors: Akshat Kumar, Vidushi

Abstract:

This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.

Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry

Procedia PDF Downloads 75
5248 Primes as Sums and Differences of Two Binomial Coefficients and Two Powersums

Authors: Benjamin Lee Warren

Abstract:

Many problems exist in additive number theory which is essential to determine the primes that are the sum of two elements from a given single-variable polynomial sequence, and most of them are unattackable in the present day. Here, we determine solutions for this problem to a few certain sequences (certain binomial coefficients and power sums) using only elementary algebra and some algebraic factoring methods (as well as Euclid’s Lemma and Faulhaber’s Formula). In particular, we show that there are finitely many primes as sums of two of these types of elements. Several cases are fully illustrated, and bounds are presented for the cases not fully illustrated.

Keywords: binomial coefficients, power sums, primes, algebra

Procedia PDF Downloads 104
5247 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures

Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui

Abstract:

The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.

Keywords: multi-cores DSP, scheduling, SMT solver, workflow

Procedia PDF Downloads 286
5246 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194