Search results for: web usage data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26400

Search results for: web usage data

23640 Scalable Learning of Tree-Based Models on Sparsely Representable Data

Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou

Abstract:

Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.

Keywords: big data, sparsely representable data, tree-based models, scalable learning

Procedia PDF Downloads 263
23639 Management and Evaluation of Developing Medical Device Software in Compliance with Rules

Authors: Arash Sepehri bonab

Abstract:

One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.

Keywords: medical devices, regulation, software, development, healthcare

Procedia PDF Downloads 108
23638 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 427
23637 Retrospective Insight on the Changing Status of the Romanian Language Spoken in the Republic of Moldova

Authors: Gina Aurora Necula

Abstract:

From its transformation into a taboo and its hiding under the so-called “Moldovan language” or under the euphemistic expression “state language” to its regained status recognition as an official language, the Romanian language spoken in the Republic of Moldova has undergone impressive reforms in the last 60 years. Meant to erase the awareness of citizens’ ethnic identity and turn a majority language into a minority one, all the laws and regulations issued on the field succeeded into setting numerous barriers for speakers of Romanian. Either manifested as social constraints or materialized into assumed rejection of mother tongue usage, all these laws have demonstrated their usefulness and major impact on the Romanian-speaking population. This article is the result of our research carried out over 10 years with the support of students, and Moldovan citizens, from the master's degree program "Romanian language - identity and cultural awareness." We present here a retrospective insight of the reforms, laws, and regulations that contributed to the shifted status of the Romanian language from the official language, seen as the language of common use both in the public and private spheres, in the minority language that surrendered its privileged place to the Russian language, firstly in the public sphere, and then, slowly but surely, in the private sphere. Our main goal here is to identify and make speakers understand what the barriers to learning Romanian language are nowadays when the social pressure on using Russian no longer exists.

Keywords: linguistic barriers, lingua franca, private sphere, public sphere, reformation

Procedia PDF Downloads 115
23636 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 251
23635 On Estimating the Low Income Proportion with Several Auxiliary Variables

Authors: Juan F. Muñoz-Rosas, Rosa M. García-Fernández, Encarnación Álvarez-Verdejo, Pablo J. Moya-Fernández

Abstract:

Poverty measurement is a very important topic in many studies in social sciences. One of the most important indicators when measuring poverty is the low income proportion. This indicator gives the proportion of people of a population classified as poor. This indicator is generally unknown, and for this reason, it is estimated by using survey data, which are obtained by official surveys carried out by many statistical agencies such as Eurostat. The main feature of the mentioned survey data is the fact that they contain several variables. The variable used to estimate the low income proportion is called as the variable of interest. The survey data may contain several additional variables, also named as the auxiliary variables, related to the variable of interest, and if this is the situation, they could be used to improve the estimation of the low income proportion. In this paper, we use Monte Carlo simulation studies to analyze numerically the performance of estimators based on several auxiliary variables. In this simulation study, we considered real data sets obtained from the 2011 European Union Survey on Income and Living Condition. Results derived from this study indicate that the estimators based on auxiliary variables are more accurate than the naive estimator.

Keywords: inclusion probability, poverty, poverty line, survey sampling

Procedia PDF Downloads 458
23634 TessPy – Spatial Tessellation Made Easy

Authors: Jonas Hamann, Siavash Saki, Tobias Hagen

Abstract:

Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.

Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies

Procedia PDF Downloads 128
23633 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir V. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown. An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics

Procedia PDF Downloads 382
23632 Restructuring the College Classroom: Scaffolding Student Learning and Engagement in Higher Education

Authors: Claire Griffin

Abstract:

Recent years have witnessed a surge in the use of innovative teaching approaches to support student engagement and higher-order learning within higher education. This paper seeks to explore the use of collaborative, interactive teaching and learning strategies to support student engagement in a final year undergraduate Developmental Psychology module. In particular, the use of the jigsaw method, in-class presentations and online discussion fora were adopted in a ‘lectorial’ style teaching approach, aimed at scaffolding learning, fostering social interdependence and supporting various levels of student engagement in higher education. Using the ‘Student Course Engagement Questionnaire’, the impact of such teaching strategies on students’ college classroom experience was measured, with additional qualitative student feedback gathered. Results illustrate the positive impact of the teaching methodologies on students’ levels of engagement, with positive implications emerging across the four engagement factors: skills engagement, emotional engagement, participation/interaction engagement and performance engagement. Thematic analysis on students’ qualitative comments also provided greater insight into the positive impact of the ‘lectorial’ teaching approach on students’ classroom experience within higher level education. Implications of the findings are presented in terms of informing effective teaching practices within higher education. Additional avenues for future research and strategy usage will also be discussed, in light of evolving practice and cutting edge literature within the field.

Keywords: learning, higher education, scaffolding, student engagement

Procedia PDF Downloads 378
23631 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.

Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis

Procedia PDF Downloads 731
23630 A Unified Approach for Digital Forensics Analysis

Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles

Abstract:

Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.

Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool

Procedia PDF Downloads 196
23629 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 172
23628 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis

Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare

Abstract:

The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.

Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test

Procedia PDF Downloads 403
23627 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models

Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana

Abstract:

The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.

Keywords: electricity demand forecasting, load shedding, demand side management, data science

Procedia PDF Downloads 61
23626 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: corporate governance, stock price, performance, panel data analysis

Procedia PDF Downloads 393
23625 Establishing a Change Management Model for Precision Machinery Industry in Taiwan

Authors: Feng-Tsung Cheng, Shu-Li Wang, Mei-Fang Wu, , Hui-Yu Chuang

Abstract:

Due to the rapid development of modern technology, the widespread usage of the Internet makes business environment changing quickly. In order to be a leader in the global competitive market and to pursuit survive, “changing” becomes an unspoken rules need to follow for the company survival. The purpose of this paper is to build change model by using SWOT, strategy map, and balance scorecard, KPI and change management theory. The research findings indicate that organizational change plan formulated by the case company should require the employee to resist change factors and performance management system issues into consideration and must be set organizational change related programs, such as performance appraisal reward system, consulting and counseling mechanisms programs to improve motivation and reduce staff negative emotions. Then according to the model revised strategy maps and performance indicators proposed in this paper, such as strategy maps add and modify corporate culture, improve internal processes management, increase the growth rate of net income and other strategies. The performance indicators are based on strategy maps new and modified by adding net income growth rate, to achieve target production rate, manpower training achievement rates and other indicators, through amendments to achieve the company’s goal, be a leading brand of precision machinery industry.

Keywords: organizational change, SWOT analysis, strategy maps, performance indicators

Procedia PDF Downloads 284
23624 Behavioral Changes and Gill Histopathological Alterations of Red Hybrid Tilapia (Oreochromis sp.) Exposed to Glyphosate Herbicide

Authors: Abubakar Muhammad Umar, Nur Adeela Yasid, Hassan Mohd Daud, Mohd Yunus Abd Shukor

Abstract:

Glyphosate [N-(phosphonomethyl) glycine] is among the most broadly and generally recognised broad-spectrum herbicides used in agriculture due to its low cost and effectiveness in weed management. The pollution of glyphosate in the aquatic environment can be via water run-off from agricultural lands, or by spray drift, aerial spraying or due to industrial discharge, which may be seen as a threat to aquatic biota. Fish is one of the best organisms to study the toxicological aspects of glyphosate. A 49 days experiment was conducted under laboratory conditions to ascertain the effects of technical grade glyphosate on behaviour and histopathological conditions in the gills of red hybrid tilapia using a light inverted microscope. Air gasping, erratic swimming, fin movement, mucus secretion, hemorrhages, and loss of scales were observed as behavioural changes in the exposed fish. There was no histopathological complication observed in the gill of the control fish, but various levels of alterations were seen in the gills of the fish exposed to glyphosate herbicide. These include lifting of primary lamella, congestion of secondary lamella, as well as hyperplasia in both primary and secondary gill lamella, and hypertrophy of secondary gill lamella. Based on the findings of this study, glyphosate herbicide exerts behavioural and histopathological changes in the gill of red hybrid tilapia, and therefore, the fish is considered a good bioindicator in aquatic environment monitoring. Excessive usage of glyphosate herbicide near aquatic habitats should be discouraged.

Keywords: behavioural, histopathological, Oreochromis niloticus, glyphosate

Procedia PDF Downloads 49
23623 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)

Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke

Abstract:

Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.

Keywords: macro and micronutrients, tomato, SAS package, photosynthates

Procedia PDF Downloads 475
23622 Synthesis of Amine Functionalized MOF-74 for Carbon Dioxide Capture

Authors: Ghulam Murshid, Samil Ullah

Abstract:

Scientific studies suggested that the incremented greenhouse gas concentration in the atmosphere, particularly of carbon dioxide (CO2) is one of the major factors in global warming. The concentration of CO2 in our climate has crossed the milestone level of 400 parts per million (ppm) hence breaking the record of human history. A report by 49 researchers from 10 countries said, 'Global CO2 emissions from burning fossil fuels will rise to a record 36 billion metric tons (39.683 billion tons) this year.' Main contributors of CO2 in to the atmosphere are usage of fossil fuel, transportation sector and power generation plants. Among all available technologies, which include; absorption via chemicals, membrane separation, cryogenic and adsorption are in practice around the globe. Adsorption of CO2 using metal organic frameworks (MOF) is getting interest of researcher around the globe. In the current work, MOF-74 as well as modified MOF-74 with a sterically hindered amine (AMP) was synthesized and characterized. The modification was carried out using a sterically hindered amine in order to study the effect on its adsorption capacity. Resulting samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analyser (TGA) and Brunauer-Emmett-Teller (BET). The FTIR results clearly confirmed the formation of MOF-74 structure and the presence of AMP. FESEM and TEM revealed the topography and morphology of the both MOF-74 and amine modified MOF. BET isotherm result shows that due to the addition of AMP in to the structure, significant enhancement of CO2 adsorption was observed.

Keywords: adsorbents, amine, CO2, global warming

Procedia PDF Downloads 422
23621 Investigation of Physical Performance of Denim Fabrics Washed with Sustainable Foam Washing Process

Authors: Hazal Yılmaz, Hale Karakaş

Abstract:

In the scope of the study, it is aimed to investigate and review the performance of denim fabrics that are foam washed. Foam washing was compared as an alternative to stone washing in terms of sustainability and performance parameters. For this purpose, seven different denim fabrics, which are both stone washed and foam washed separately in 3 different washing durations (30-60-90 mins), were compared. In the study, the same fabrics were processed with both foam and stone separately. The washing process steps were reviewed, and their water consumption values were compared. After washing, a total of 42 fabric samples were obtained, and tensile strength, tear strength, abrasion, weight loss after abrasion, rubbing fastness, color fastness tests were carried out on the fabric samples. The obtained test results were reviewed and evaluated. As a result of tests, it has been observed that the performance of foam washed fabrics in terms of tensile, tear strength and rubbing fastness test results are better than stone washed fabrics, and it has been seen that foam washed fabrics' color fastness test results are as stone washed. As a result of all these tests, it can be seen that foam washing is an alternative to stone washing due to its performance parameters and its sustainability performance with less water usage.

Keywords: denim fabrics, denim washing, foam washing, performance properties, stone washing, sustainability

Procedia PDF Downloads 71
23620 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia

Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda

Abstract:

This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.

Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers

Procedia PDF Downloads 176
23619 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
23618 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers

Authors: Clare Cunningham

Abstract:

Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.

Keywords: academic writing, students, undergraduates, writing retreat

Procedia PDF Downloads 199
23617 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan

Authors: Mohd Asrul Affedi, Nyi Nyi Naing

Abstract:

Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.

Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS

Procedia PDF Downloads 463
23616 Patient Service Improvement in Public Emergency Department Using Discrete Event Simulation

Authors: Dana Mohammed, Fatemah Abdullah, Hawraa Ali, Najat Al-Shaer, Rawan Al-Awadhi, , Magdy Helal

Abstract:

We study the patient service performance at the emergency department of a major Kuwaiti public hospital, using discrete simulation and lean concepts. In addition to the common problems in such health care systems (over crowdedness, facilities planning and usage, scheduling and staffing, capacity planning) the emergency department suffered from several cultural and patient behavioural issues. Those contributed significantly to the system problems and constituted major obstacles in maintaining the performance in control. This led to overly long waiting times and the potential of delaying providing help to critical cases. We utilized the visual management tools to mitigate the impact of the patients’ behaviours and attitudes and improve the logistics inside the system. In addition a proposal is made to automate the date collection and communication within the department using RFID-based barcoding system. Discrete event simulation models were developed as decision support systems; to study the operational problems and assess achieved improvements. The simulation analysis resulted in cutting the patient delays to about 35% of their current values by reallocating and rescheduling the medical staff. Combined with the application of the visual management concepts, this provided the basis to improving patient service without any major investments.

Keywords: simulation, visual management, health care system, patient

Procedia PDF Downloads 475
23615 Using Geospatial Analysis to Reconstruct the Thunderstorm Climatology for the Washington DC Metropolitan Region

Authors: Mace Bentley, Zhuojun Duan, Tobias Gerken, Dudley Bonsal, Henry Way, Endre Szakal, Mia Pham, Hunter Donaldson, Chelsea Lang, Hayden Abbott, Leah Wilcynzski

Abstract:

Air pollution has the potential to modify the lifespan and intensity of thunderstorms and the properties of lightning. Using data mining and geovisualization, we investigate how background climate and weather conditions shape variability in urban air pollution and how this, in turn, shapes thunderstorms as measured by the intensity, distribution, and frequency of cloud-to-ground lightning. A spatiotemporal analysis was conducted in order to identify thunderstorms using high-resolution lightning detection network data. Over seven million lightning flashes were used to identify more than 196,000 thunderstorms that occurred between 2006 - 2020 in the Washington, DC Metropolitan Region. Each lightning flash in the dataset was grouped into thunderstorm events by means of a temporal and spatial clustering algorithm. Once the thunderstorm event database was constructed, hourly wind direction, wind speed, and atmospheric thermodynamic data were added to the initiation and dissipation times and locations for the 196,000 identified thunderstorms. Hourly aerosol and air quality data for the thunderstorm initiation times and locations were also incorporated into the dataset. Developing thunderstorm climatologies using a lightning tracking algorithm and lightning detection network data was found to be useful for visualizing the spatial and temporal distribution of urban augmented thunderstorms in the region.

Keywords: lightning, urbanization, thunderstorms, climatology

Procedia PDF Downloads 76
23614 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 103
23613 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
23612 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 115
23611 The Impact of the Covid-19 Crisis on the Information Behavior in the B2B Buying Process

Authors: Stehr Melanie

Abstract:

The availability of apposite information is essential for the decision-making process of organizational buyers. Due to the constraints of the Covid-19 crisis, information channels that emphasize face-to-face contact (e.g. sales visits, trade shows) have been unavailable, and usage of digitally-driven information channels (e.g. videoconferencing, platforms) has skyrocketed. This paper explores the question in which areas the pandemic induced shift in the use of information channels could be sustainable and in which areas it is a temporary phenomenon. While information and buying behavior in B2C purchases has been regularly studied in the last decade, the last fundamental model of organizational buying behavior in B2B was introduced by Johnston and Lewin (1996) in times before the advent of the internet. Subsequently, research efforts in B2B marketing shifted from organizational buyers and their decision and information behavior to the business relationships between sellers and buyers. This study builds on the extensive literature on situational factors influencing organizational buying and information behavior and uses the economics of information theory as a theoretical framework. The research focuses on the German woodworking industry, which before the Covid-19 crisis was characterized by a rather low level of digitization of information channels. By focusing on an industry with traditional communication structures, a shift in information behavior induced by an exogenous shock is considered a ripe research setting. The study is exploratory in nature. The primary data source is 40 in-depth interviews based on the repertory-grid method. Thus, 120 typical buying situations in the woodworking industry and the information and channels relevant to them are identified. The results are combined into clusters, each of which shows similar information behavior in the procurement process. In the next step, the clusters are analyzed in terms of the post and pre-Covid-19 crisis’ behavior identifying stable and dynamic information behavior aspects. Initial results show that, for example, clusters representing search goods with low risk and complexity suggest a sustainable rise in the use of digitally-driven information channels. However, in clusters containing trust goods with high significance and novelty, an increased return to face-to-face information channels can be expected after the Covid-19 crisis. The results are interesting from both a scientific and a practical point of view. This study is one of the first to apply the economics of information theory to organizational buyers and their decision and information behavior in the digital information age. Especially the focus on the dynamic aspects of information behavior after an exogenous shock might contribute new impulses to theoretical debates related to the economics of information theory. For practitioners - especially suppliers’ marketing managers and intermediaries such as publishers or trade show organizers from the woodworking industry - the study shows wide-ranging starting points for a future-oriented segmentation of their marketing program by highlighting the dynamic and stable preferences of elaborated clusters in the choice of their information channels.

Keywords: B2B buying process, crisis, economics of information theory, information channel

Procedia PDF Downloads 184