Search results for: optimum design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13471

Search results for: optimum design

10711 Notched Bands in Ultra-Wideband UWB Filter Design for Advanced Wireless Applications

Authors: Abdul Basit, Amil Daraz, Guoqiang Zhang

Abstract:

With the increasing demand for wireless communication systems for unlicensed indoor applications, the FCC, in February 2002, allocated unlicensed bands ranging from 3.1 GHZ to 10.6 GHz with fractional bandwidth of about 109 %, because it plays a key role in the radiofrequency (RF) front ends devices and has been widely applied in many other microwave circuits. Targeting the proposed band defined by the FCC for the UWB system, this article presents a UWB bandpass filter with three stop bands for the mitigation of wireless bands that may interfere with the UWB range. For this purpose, two resonators are utilized for the implementation of triple-notched bands. The C-shaped resonator is used for the first notch band creation at 3.4 GHz to suppress the WiMAX signal, while the H-shaped resonator is employed in the initial UWB design to introduce the dual notched characteristic at 4.5 GHz and 8.1 GHz to reject the WLAN and Satellite Communication signals. The overall circuit area covered by the proposed design is 30.6 mm × 20 mm, or in terms of guided wavelength at the first stopband, its size is 0.06 λg × 0.02 λg. The presented structure shows a good return loss under -10 dB over most of the passband and greater than -15 dB for the notched frequency bands. Finally, the filter is simulated and analyzed in HFSS 15.0. All the bands for the rejection of wireless signals are independently controlled, which makes this work superior to the rest of the UWB filters presented in the literature.

Keywords: a bandpass filter (BPF), ultra-wideband (UWB), wireless communication, C-shaped resonator, triple notch

Procedia PDF Downloads 60
10710 Strategies for Patient Families Integration in Caregiving: A Consensus Opinion

Authors: Ibrahim A. Alkali

Abstract:

There is no reservation on the outstanding contribution of patient families in restoration of hospitalised patients, hence their consideration as essential component of hospital ward regimen. The psychological and emotional support a patient requires has been found to be solely provided by the patient’s family. However, consideration of their presence as one of the major functional requirements of an inpatient setting design have always been a source of disquiet, especially in developing countries where policies, norms and protocols of healthcare administration have no consideration for the patients’ family. This have been a major challenge to the hospital ward facilities, a concern for the hospital administration and patient management. The study therefore is aimed at obtaining a consensus opinion on the best approach for family integration in the design of an inpatient setting.  A one day visioning charrette involving Architects, Nurses, Medical Doctors, Healthcare assistants and representatives from the Patient families was conducted with the aim of arriving at a consensus opinion on practical design approach for sustainable family integration. Patient’s family are found to be decisive character of hospital ward regimen that cannot be undermined. However, several challenges that impede family integration were identified and subsequently a recommendation for an ideal approach. This will serve as a guide to both architects and hospital management in implementing much desired Patient and Family Centred Care.

Keywords: patient's family, inpatient setting, care giving, integration

Procedia PDF Downloads 188
10709 Design and Construction Demeanor of a Very High Embankment Using Geosynthetics

Authors: Mariya Dayana, Budhmal Jain

Abstract:

Kannur International Airport Ltd. (KIAL) is a new Greenfield airport project with airside development on an undulating terrain with an average height of 90m above Mean Sea Level (MSL) and a maximum height of 142m. To accommodate the desired Runway length and Runway End Safety Area (RESA) at both the ends along the proposed alignment, it resulted in 45.5 million cubic meters in cutting and filling. The insufficient availability of land for the construction of free slope embankment at RESA 07 end resulted in the design and construction of Reinforced Soil Slope (RSS) with a maximum slope of 65 degrees. An embankment fill of average 70m height with steep slopes located in high rainfall area is a unique feature of this project. The design and construction was challenging being asymmetrical with curves and bends. The fill was reinforced with high strength Uniaxial geogrids laid perpendicular to the slope. Weld mesh wrapped with coir mat acted as the facia units to protect it against surface failure. Face anchorage were also provided by wrapping the geogrids along the facia units where the slope angle was steeper than 45 degrees. Considering high rainfall received on this table top airport site, extensive drainage system was designed for the high embankment fill. Gabion wall up to 10m height were also designed and constructed along the boundary to accommodate the toe of the RSS fill beside the jeepable track at the base level. The design of RSS fill was done using ReSSA software and verified in PLAXIS 2D modeling. Both slip surface failure and wedge failure cases were considered in static and seismic analysis for local and global failure cases. The site won excavated laterite soil was used as the fill material for the construction. Extensive field and laboratory tests were conducted during the construction of RSS system for quality assurance. This paper represents a case study detailing the design and construction of a very high embankment using geosynthetics for the provision of Runway length and RESA area.

Keywords: airport, embankment, gabion, high strength uniaxial geogrid, kial, laterite soil, plaxis 2d

Procedia PDF Downloads 142
10708 Development Framework Based on Mobile Augmented Reality for Pre-Literacy Kit

Authors: Nazatul Aini Abd Majid, Faridah Yunus, Haslina Arshad, Mohammad Farhan Mohammad Johari

Abstract:

Mobile technology, augmented reality, and game-based learning are some of the key learning technologies that can be fully optimized to promote pre-literacy skills. The problem is how to design an effective pre-literacy kit that utilizes some of the learning technologies. This paper presents a framework based on mobile augmented reality for the development of pre-literacy kit. This pre-literacy kit incorporates three main components which are contents, design, and tools. A prototype of a mobile app based on the three main components was developed for promoting pre-literacy. The results show that the children and teachers gave positive feedbacks after using the mobile app for the pre-literacy.

Keywords: framework, mobile technology, augmented reality, pre-literacy skills

Procedia PDF Downloads 567
10707 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid

Authors: Hassan Hajabdollahi

Abstract:

Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.

Keywords: shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration

Procedia PDF Downloads 402
10706 Optimization of Multi-Zone Unconventional (Shale) Gas Reservoir Using Hydraulic Fracturing Technique

Authors: F. C. Amadi, G. C. Enyi, G. G. Nasr

Abstract:

Hydraulic fracturing is one of the most important stimulation techniques available to the petroleum engineer to extract hydrocarbons in tight gas sandstones. It allows more oil and gas production in tight reservoirs as compared to conventional means. The main aim of the study is to optimize the hydraulic fracturing as technique and for this purpose three multi-zones layer formation is considered and fractured contemporaneously. The three zones are named as Zone1 (upper zone), Zone2 (middle zone) and Zone3 (lower zone) respectively and they all occur in shale rock. Simulation was performed with Mfrac integrated software which gives a variety of 3D fracture options. This simulation process yielded an average fracture efficiency of 93.8%for the three respective zones and an increase of the average permeability of the rock system. An average fracture length of 909 ft with net height (propped height) of 210 ft (average) was achieved. Optimum fracturing results was also achieved with maximum fracture width of 0.379 inches at an injection rate of 13.01 bpm with 17995 Mscf of gas production.

Keywords: hydraulic fracturing, optimisation, shale, tight reservoir

Procedia PDF Downloads 411
10705 Fault Diagnosis in Induction Motor

Authors: Kirti Gosavi, Anita Bhole

Abstract:

The paper demonstrates simulation and steady-state performance of three phase squirrel cage induction motor and detection of rotor broken bar fault using MATLAB. This simulation model is successfully used in the fault detection of rotor broken bar for the induction machines. A dynamic model using PWM inverter and mathematical modelling of the motor is developed. The dynamic simulation of the small power induction motor is one of the key steps in the validation of the design process of the motor drive system and it is needed for eliminating advertent design errors and the resulting error in the prototype construction and testing. The simulation model will be helpful in detecting the faults in three phase induction motor using Motor current signature analysis.

Keywords: squirrel cage induction motor, pulse width modulation (PWM), fault diagnosis, induction motor

Procedia PDF Downloads 608
10704 Harvesting Alternative Energy: Exploring Exergy, Human Power, Animal Body Heat, and Noise as Sustainable Sources

Authors: Fatemeh Yazdandoust, Derrick Mirrindi

Abstract:

The excessive use of non-renewable fossil fuels has led to a pressing energy crisis that demands urgent attention. While renewable sources like solar, wind, and water have gained significant attention as alternatives, we must explore additional avenues. This study takes an interdisciplinary approach, investigating the potential of waste streams from energy production and other untapped natural sources as sustainable energy solutions. Through a review of case studies, this study demonstrates how these alternative sources, including human power, animal body heat, and noise, can seamlessly integrate into architecture and urban planning. This article first discusses passive design strategies integrating alternative energy sources into vernacular architecture. Then, it reviews the waste stream (exergy) and potential energy sources, such as human power, animal body heat, and noise, in contemporary proposals and case studies. It demonstrates how an alternative energy design strategy may easily incorporate these many sources into our architecture and urban planning through passive and active design strategies to increase the energy efficiency of our built environment.

Keywords: alternative energy sources, energy exchange, human and animal power, potential energy sources, waste stream

Procedia PDF Downloads 34
10703 A New Correlation Between SPT-N and SSPT-N values for Various Soil Types in Peninsular Malaysia

Authors: Abdull Halim

Abstract:

The Standard Penetration Test (SPT-N) is the most common in situ test for soil investigations. The Shearing Seismic Standard Penetration Test (SSPT-N), on the other hand, is a new method using shearing wave with propagation exponent equation between the shearing wave, Vs., and hardness, N values without any need for borehole data. Due to the fast and accurate results that can be obtained, the SSPT has found many applications such as in the field rectification buried pipe line, the acid tank settlement and foundation design analyses, and the quality control assessment. Many geotechnical regimes and properties have attempted to correlate both the SSPT and the SPT-N values. Various foundation design methods have been developed based on the outcomes of these tests. Hence, it is pertinent to correlate these tests so that either one of the test can be used in the absence of the other, especially for preliminary evaluation and design purposes. The primary purpose of this study was to investigate the relationship between the SSPT-N and SPT-N values for different types of cohesive soil in Peninsular Malaysia. Data were collected from four different sites, and the correlations were established between the hardness N values, principal stress-strain Mohr circle curve, cohesion, friction angle and vertical effective stress. A positive exponent relationship was found between the shearing wave, sVs., and the hardness N values of the soil. In general, the SSPT-N value was slightly lower than the SPT-N value due to the upper limit boundary of the soil layer.

Keywords: InsituSoil determination; shearing wave; hardness; correlation, SSPT-N, SPT-N

Procedia PDF Downloads 163
10702 Development of an Indigenous Motorized Planter for the Sustainable Production of Grain Crops in Nigeria

Authors: Babatunde Oluwamayokun Soyoye

Abstract:

This technology, whose development revolves round culture, tradition, and prevailing needs of the people, is seen as a solution in promoting development in poor rural communities in many parts of Nigeria. The research was based on one of the food security agenda of the Federal Government of Nigeria by developing a motorized multi-grain crop planter suitable for planting operations in tropical soils. The ergonomic design is tailored towards the ease of planting operations for would-be users, improve crop yields and profitability by minimizing the cost of production. Some properties of the grain crops were determined and were used to develop and assemble the locally-made motorized planter. These properties were used in establishing the design criteria of various components of the planter. The geometric mean diameter of the maize, cowpea, groundnut, and soybean were 8.26 mm, 8.72 mm, 9.51 mm and 6.52 mm respectively, with respective groove depths of 8 mm, 7 mm, 9 mm and 6 mm. The results obtained from the evaluation of the planter confirmed that the planter has a uniform discharge and application rates. The field capacity of the planter was determined to be 0.187 ha/h. Also, the average performance efficiency of the planter was 95.5%, with the average discharge and application rates of 7.86 kg/h and 42.1 kg/ha, respectively. The motorized multi-grain planter can be used in increasing food production, reduce time, cost of production, and can become a major tool to fast-track the food security agenda of the government of Nigeria.

Keywords: design and fabrication, food security, grain crop, motorized planter

Procedia PDF Downloads 113
10701 Application of Semantic Technologies in Rapid Reconfiguration of Factory Systems

Authors: J. Zhang, K. Agyapong-Kodua

Abstract:

Digital factory based on visual design and simulation has emerged as a mainstream to reduce digital development life cycle. Some basic industrial systems are being integrated via semantic modelling, and products (P) matching process (P)-resource (R) requirements are designed to fulfill current customer demands. Nevertheless, product design is still limited to fixed product models and known knowledge of product engineers. Therefore, this paper presents a rapid reconfiguration method based on semantic technologies with PPR ontologies to reuse known and unknown knowledge. In order to avoid the influence of big data, our system uses a cloud manufactory and distributed database to improve the efficiency of querying meeting PPR requirements.

Keywords: semantic technologies, factory system, digital factory, cloud manufactory

Procedia PDF Downloads 465
10700 Demand-Oriented Supplier Integration in Agile New Product Development Projects

Authors: Guenther Schuh, Stephan Schroeder, Marcel Faulhaber

Abstract:

Companies are facing an increasing pressure to innovate faster, cheaper and more radical in last years, due to shrinking product lifecycles and higher volatility of markets and customer demands. Especially established companies struggle meeting those demands. Thus, many producing companies are adapting their development processes to address this increasing pressure. One approach taken by many companies is the use of agile, highly iterative development processes to reduce development times and costs as well as to increase the fulfilled customer requirements and the realized level of innovation. At the same time decreasing depths of added value and increasing focus on core competencies as well as a growing product complexity result in a high dependency on suppliers and external development partners during the product development. Thus, a successful introduction of agile development methods into the development of physical products requires also a successful integration of the necessary external partners and suppliers into the new processes and procedures and an adaption of the organizational interfaces to external partners according to the new circumstances and requirements of agile development processes. For an effective and efficient product development, the design of customer-supplier-relationships should be demand-oriented. A significant influence on the required design has the characteristics of the procurement object. Examples therefore are the complexity of technical interfaces between supply object and final product or the importance of the supplied component for the major product functionalities. Thus, this paper presents an approach to derive general requirements on the design of supplier integration according to the characteristics of supply objects. First, therefore the most relevant evaluation criteria and characteristics have been identified based on a thorough literature review. Subsequently the resulting requirements on the design of the supplier integration were derived depending on the different possible values of these criteria.

Keywords: iterative development processes, agile new product development, procurement, supplier integration

Procedia PDF Downloads 154
10699 Open Jet Testing for Buoyant and Hybrid Buoyant Aerial Vehicles

Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S Mohamed Ali

Abstract:

Open jet testing is a valuable testing technique which provides the desired results with reasonable accuracy. It has been used in past for the airships and now has recently been applied for the hybrid ones, having more non-buoyant force coming from the wings, empennage and the fuselage. In the present review work, an effort has been done to review the challenges involved in open jet testing. In order to shed light on the application of this technique, the experimental results of two different configurations are presented. Although, the aerodynamic results of such vehicles are unique to its own design; however, it will provide a starting point for planning any future testing. Few important testing areas which need more attention are also highlighted. Most of the hybrid buoyant aerial vehicles are unconventional in shape and there experimental data is generated, which is unique to its own design.

Keywords: open jet testing, aerodynamics, hybrid buoyant aerial vehicles, airships

Procedia PDF Downloads 555
10698 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain

Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik

Abstract:

The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.

Keywords: distribution strategy, mathematical model, network design, supply chain management

Procedia PDF Downloads 279
10697 Research on Ecological Space Improvement Strategy from the Perspective of Urban Double Reform

Authors: Sisi Xia, Dezhuan Tao

Abstract:

Urban Double Reform is an effective means to improve the quality of ecological space, based on improving the living environment and urban functions and promoting the organic integration of the city and nature. This paper takes the design of Qinyang Wetland Park in Jiaozuo, Henan Province, as an example, attempting to closely link the ecological restoration of wetland with the urban culture and to extend the urban spirit of the ancient county of Qinyang while purifying the ecological water system. This design uses ecological technology to repair underwater forests and underwater turf, rapidly improving the quality of urban water without biological side effects. The ecological grass slope is used to create multiple bank forms, combining with a number of hydrophilic platforms to provide a good view of the public. Through the placement of ecological education bases, urban cultural exhibition halls, and other means, the cultural value of wetland parks will be enhanced, and the citizens will return to nature and experience the ecology and appreciate the charm of urban culture in the ecological space. Repair the ecosystem, sculpt the urban culture, let the public return to nature, experience the ecology, and experience the charm of urban culture in the ecological space.

Keywords: urban double reform, ecological space, improvement strategy, wetland park design

Procedia PDF Downloads 206
10696 Design and Implementation of 3kVA Grid-Tied Transformerless Power Inverter for Solar Photovoltaic Application

Authors: Daniel O. Johnson, Abiodun A. Ogunseye, Aaron Aransiola, Majors Samuel

Abstract:

Power Inverter is a very important device in renewable energy use particularly for solar photovoltaic power application because it is the effective interface between the DC power generator and the load or the grid. Transformerless inverter is getting more and more preferred to the power converter with galvanic isolation transformer and may eventually supplant it. Transformerless inverter offers advantages of improved DC to AC conversion and power delivery efficiency; and reduced system cost, weight and complexity. This work presents thorough analysis of the design and prototyping of 3KVA grid-tie transformerless inverter. The inverter employs electronic switching method with minimised heat generation in the system and operates based on the principle of pulse-width modulation (PWM). The design is such that it can take two inputs, one from PV arrays and the other from Battery Energy Storage BES and addresses the safety challenge of leakage current. The inverter system was designed around microcontroller system, modeled with Proteus® software for simulation and testing of the viability of the designed inverter circuit. The firmware governing the operation of the grid-tied inverter is written in C language and was developed using MicroC software by Mikroelectronica® for writing sine wave signal code for synchronization to the grid. The simulation results show that the designed inverter circuit performs excellently with very high efficiency, good quality sinusoidal output waveform, negligible harmonics and gives very stable performance under voltage variation from 36VDC to 60VDC input. The prototype confirmed the simulated results and was successfully synchronized with the utility supply. The comprehensive analyses of the circuit design, the prototype and explanation on overall performance will be presented.

Keywords: grid-tied inverter, leakage current, photovoltaic system, power electronic, transformerless inverter

Procedia PDF Downloads 268
10695 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 615
10694 Performance Analysis of Encased Sand Columns in Different Clayey Soils Using 3D Numerical Method

Authors: Enayatallah Najari, Ali Noorzad, Mehdi Siavoshnia

Abstract:

One of the most decent and low-cost options in soft clayey soil improvement is using stone columns to reduce the settlement and increase the bearing capacity which is used for different ways to do this in various projects with diverse conditions. In the current study, it is tried to evaluate this improvement method in 4 different weak soils with diverse properties like specific gravity, permeability coefficient, over consolidation ratio (OCR), poison’s ratio, internal friction angle and bulk modulus by using ABAQUS 3D finite element software. Increment and decrement impacts of each mentioned factor on settlement and lateral displacement of weak soil beds are analyzed. In analyzed models, the properties related to sand columns and geosynthetic cover are assumed to be constant with their optimum values, and just soft clayey soil parameters are considered to be variable. It’s also demonstrated that OCR value can play a determinant role in soil resistance.

Keywords: stone columns, geosynthetic, finite element, 3D analysis, soft soils

Procedia PDF Downloads 342
10693 A Coupling Study of Public Service Facilities and Land Price Based on Big Data Perspective in Wuxi City

Authors: Sisi Xia, Dezhuan Tao, Junyan Yang, Weiting Xiong

Abstract:

Under the background of Chinese urbanization changing from incremental development to stock development, the completion of urban public service facilities is essential to urban spatial quality. As public services facilities is a huge and complicated system, clarifying the various types of internal rules associated with the land market price is key to optimizing spatial layout. This paper takes Wuxi City as a representative sample location and establishes the digital analysis platform using urban price and several high-precision big data acquisition methods. On this basis, it analyzes the coupling relationship between different public service categories and land price, summarizing the coupling patterns of urban public facilities distribution and urban land price fluctuations. Finally, the internal mechanism within each of the two elements is explored, providing the reference of the optimum layout of urban planning and public service facilities.

Keywords: public service facilities, land price, urban spatial morphology, big data

Procedia PDF Downloads 182
10692 Life-Saving Design Strategies for Nursing Homes and Long-Term Care Facilities

Authors: Jason M. Hegenauer, Nicholas Fucci

Abstract:

In the late 1990s, a major deinstitutionalization movement of elderly patients took place, since which, the design of long-term care facilities has not been adequately analyzed in the United States. Over the course of the last 25 years, major innovations in construction methods, technology, and medicine have been developed, drastically changing the landscape of healthcare architecture. In light of recent events, and the expected increase in elderly populations with the aging of the baby-boomer generation, it is evident that reconsideration of these facilities is essential for the proper care of aging populations. The global response has been effective in stifling this pandemic; however, widespread disease still poses an imminent threat to the human race. Having witnessed the devastation Covid-19 has reaped throughout nursing homes and long-term care facilities, it is evident that the current strategies for protecting our most vulnerable populations are not enough. Light renovation of existing facilities and previously overlooked considerations for new construction projects can drastically lower the risk at nursing homes and long-term care facilities. A reconfigured entry sequence supplements several of the features which have been long-standing essentials of the design of these facilities. This research focuses on several aspects identified as needing improvement, including indoor environment quality, security measures incorporated into healthcare architecture and design, and architectural mitigation strategies for sick building syndrome. The results of this study have been compiled as 'best practices' for the design of future healthcare construction projects focused on the health, safety, and quality of life of the residents of these facilities. These design strategies, which can easily be implemented through renovation of existing facilities and new construction projects, minimize risk of infection and spread of disease while allowing routine functions to continue with minimal impact, should the need for future lockdowns arise. Through the current lockdown procedures, which were implemented during the Covid-19 pandemic, isolation of residents has caused great unrest and worry for family members and friends as they are cut off from their loved ones. At this time, data is still being reported, leaving infection and death rates inconclusive; however, recent projections in some states list long-term care facility deaths as high as 60% of all deaths in the state. The population of these facilities consists of residents who are elderly, immunocompromised, and have underlying chronic medical conditions. According to the Centers for Disease Control, these populations are particularly susceptible to infection and serious illness. The obligation to protect our most vulnerable population cannot be overlooked, and the harsh measures recently taken as a response to the Covid-19 pandemic prove that the design strategies currently utilized for doing so are inadequate.

Keywords: building security, healthcare architecture and design, indoor environment quality, new construction, sick building syndrome, renovation

Procedia PDF Downloads 73
10691 Effect of Electric Stimulation on Characteristic Changes in Hot-Boned Beef Brisket of Different Potential Tenderness

Authors: Orose Rugchati, Kanita Thanacharoenchanaphas, Sarawut Wattanawongpitak

Abstract:

In this study, the effect of electric stimulation on the quality of hot-boned beef brisket muscles was evaluated, including the tenderness, pH, temperature change, and colorant. Muscles were obtained from steers in the local slaughter house. (3 steers for each muscle), removed from the carcasses 4-hour postmortem and variable time to treated with direct current electric 1 and 5 minutes, respectively. Six different electric intensities (direct current voltage of 50, 70 and 90 Volt, pulse with 10, 20 and 40 ms) plus a control were applied to each muscle to determine the optimum treatment conditions. Hot-boned beef brisket was found to get tender with increasing treatment direct current voltage and reduction in the shear force with pulsed with electric treatment. But in a long time to treated with electric current get fading in red color and temperature increase whereas pH quite different compared to non-treated control samples.

Keywords: electric stimulation, characteristic changes, hot-boned beef brisket, potential tenderness

Procedia PDF Downloads 319
10690 Landscape Factors Eliciting the Sense of Relaxation in Urban Green Space

Authors: Kaowen Grace Chang

Abstract:

Urban green spaces play an important role in promoting wellbeing through the sense of relaxation for urban residents. Among many designing factors, what the principal ones that could effectively influence people’s sense of relaxation? And, what are the relationship between the sense of relaxation and those factors? Regarding those questions, there is still little evidence for sufficient support. Therefore, the purpose of this study, based on individual responses to environmental information, is to investigate the landscape factors that relate to well-being through the sense of relaxation in mixed-use urban environments. We conducted the experimental design and model construction utilizing choice-based conjoint analysis to test the factors of plant arrangement pattern, plant trimming condition, the distance to visible automobile, the number of landmark objects, and the depth of view. Through the operation of balanced fractional orthogonal design, the goal is to know the relationship between the sense of relaxation and different designs. In a result, the three factors of plant trimming condition, the distance to visible automobile, and the depth of view shed are significantly effective to the sense of relaxation. The stronger magnitude of maintenance and trimming, the further distance to visible automobiles, and deeper view shed that allow the users to see further scenes could significantly promote green space users’ sense of relaxation in urban green spaces.

Keywords: urban green space, landscape planning and design, sense of relaxation, choice model

Procedia PDF Downloads 132
10689 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London

Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz

Abstract:

Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.

Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration

Procedia PDF Downloads 126
10688 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel

Authors: Joseph C. Chen, Joshua Cox

Abstract:

This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.

Keywords: Taguchi Parameter Design, surface roughness, Wire EDM, dimensional accuracy

Procedia PDF Downloads 351
10687 Information Security Risk Management in IT-Based Process Virtualization: A Methodological Design Based on Action Research

Authors: Jefferson Camacho Mejía, Jenny Paola Forero Pachón, Luis Carlos Gómez Flórez

Abstract:

Action research is a qualitative research methodology, which leads the researcher to delve into the problems of a community in order to understand its needs in depth and finally, to propose actions that lead to a change of social paradigm. Although this methodology had its beginnings in the human sciences, it has attracted increasing interest and acceptance in the field of information systems research since the 1990s. The countless possibilities offered nowadays by the use of Information Technologies (IT) in the development of different socio-economic activities have meant a change of social paradigm and the emergence of the so-called information and knowledge society. According to this, governments, large corporations, small entrepreneurs and in general, organizations of all kinds are using IT to virtualize their processes, taking them from the physical environment to the digital environment. However, there is a potential risk for organizations related with exposing valuable information without an appropriate framework for protecting it. This paper shows progress in the development of a methodological design to manage the information security risks associated with the IT-based processes virtualization, by applying the principles of the action research methodology and it is the result of a systematic review of the scientific literature. This design consists of seven fundamental stages. These are distributed in the three stages described in the action research methodology: 1) Observe, 2) Analyze and 3) Take actions. Finally, this paper aims to offer an alternative tool to traditional information security management methodologies with a view to being applied specifically in the planning stage of IT-based process virtualization in order to foresee risks and to establish security controls before formulating IT solutions in any type of organization.

Keywords: action research, information security, information technology, methodological design, process virtualization, risk management

Procedia PDF Downloads 146
10686 Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer

Authors: Ching Yern Chee

Abstract:

Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load.

Keywords: porcelain, nanocomposite coating, morphology, friction, wear behavior

Procedia PDF Downloads 506
10685 Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.

Keywords: initial pressure, rubber buffer, simulation, tabulated method

Procedia PDF Downloads 123
10684 Easy Way of Optimal Process-Storage Network Design

Authors: Gyeongbeom Yi

Abstract:

The purpose of this study is to introduce the analytic solution for determining the optimal capacity (lot-size) of a multiproduct, multistage production and inventory system to meet the finished product demand. Reasonable decision-making about the capacity of processes and storage units is an important subject for industry. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ (Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. However, the unrealistic material flow assumption of the EOQ/EPQ model is not suitable for chemical plant design with highly interlinked processes and storage units. This study overcomes the limitation of the classical lot sizing method developed on the basis of the single product and single stage assumption. The superstructure of the plant considered consists of a network of serially and/or parallelly interlinked processes and storage units. The processes involve chemical reactions with multiple feedstock materials and multiple products as well as mixing, splitting or transportation of materials. The objective function for optimization is minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis method, PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for plant design and operation problem confronted in diverse economic situations.

Keywords: analytic solution, optimal design, process-storage network

Procedia PDF Downloads 312
10683 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 268
10682 Understanding National Soccer Jersey Design from a Material Culture Perspective: A Content Analysis and Wardrobe Interviews with Canadian Consumers

Authors: Olivia Garcia, Sandra Tullio-Pow

Abstract:

The purpose of this study was to understand what design attributes make the most ideal (wearable and memorable) national soccer jersey. The research probed Canadian soccer enthusiasts to better understand their jersey-purchasing rationale. The research questions framing this study were: how do consumers feel about their jerseys? How do these feelings influence their choices? There has been limited research on soccer jerseys from a material culture perspective, and it is not inclusive of national soccer jerseys. The results of this study may be used for product developers and advertisers who are looking to better understand the consumer base for national soccer jersey design. A mixed methods approach informed the research. To begin, a content analysis of all the home jerseys from the 2018 World Cup was done. Information such as size range, main colour, fibre content, brand, collar details, availability, sleeve length, place of manufacturing, pattern, price, fabric as per company, neckline, availability on company website, jersey inspiration, and badge/crest details were noted. Following the content analysis, wardrobe interviews were conducted with six consumers/fans. Participants brought two or more jerseys to the interviews, where the jerseys acted as clothing probes to recount information. Interview questions were semi-structured and focused on the participants’ relationship with the sport, their personal background, who they cheered for, why they bought the jerseys, and fit preferences. The goal of the inquiry was to pull out information on how participants feel about their jerseys and why. Finally, an interview with an industry professional was done. This interview was semi-structured, focusing on basic questions regarding sportswear design, sales, the popularity of soccer, and the manufacturing and marketing process. The findings proved that national soccer jerseys are an integral part of material culture. Women liked more fitted jerseys, and men liked more comfortable jerseys. Jerseys should be made with a cooling, comfortable fabric and should always prevent peeling. The symbols on jerseys are there to convey a team’s history and are most typically placed on the left chest. Jerseys should always represent the flag and/or the country’s colours and should use designs that are both fashionable and innovative. Jersey design should always consider the opinions of the consumers to help influence the design process. Jerseys should always use concepts surrounding culture, as consumers feel connected to the jerseys that represent the culture and/or family they have grown up with. Jerseys should use a team’s history, as well as the nostalgia associated with the team, as consumers prefer jerseys that reflect important moments in soccer. Jerseys must also sit at a reasonable price point for consumers, with an experience to go along with the jersey purchase. In conclusion, national soccer jerseys are considered sites of attachment and memories and play an integral part in the study of material culture.

Keywords: Design, Fashion, Material Culture, Sport

Procedia PDF Downloads 82