Search results for: machine learning tools and techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16907

Search results for: machine learning tools and techniques

14147 Artificial Intelligence in Management Simulators

Authors: Nuno Biga

Abstract:

Artificial Intelligence (AI) has the potential to transform management into several impactful ways. It allows machines to interpret information to find patterns in big data and learn from context analysis, optimize operations, make predictions sensitive to each specific situation and support data-driven decision making. The introduction of an 'artificial brain' in organization also enables learning through complex information and data provided by those who train it, namely its users. The "Assisted-BIGAMES" version of the Accident & Emergency (A&E) simulator introduces the concept of a "Virtual Assistant" (VA) sensitive to context, that provides users useful suggestions to pursue the following operations such as: a) to relocate workstations in order to shorten travelled distances and minimize the stress of those involved; b) to identify in real time existing bottleneck(s) in the operations system so that it is possible to quickly act upon them; c) to identify resources that should be polyvalent so that the system can be more efficient; d) to identify in which specific processes it may be advantageous to establish partnership with other teams; and e) to assess possible solutions based on the suggested KPIs allowing action monitoring to guide the (re)definition of future strategies. This paper is built on the BIGAMES© simulator and presents the conceptual AI model developed and demonstrated through a pilot project (BIG-AI). Each Virtual Assisted BIGAME is a management simulator developed by the author that guides operational and strategic decision making, providing users with useful information in the form of management recommendations that make it possible to predict the actual outcome of different alternative management strategic actions. The pilot project developed incorporates results from 12 editions of the BIGAME A&E that took place between 2017 and 2022 at AESE Business School, based on the compilation of data that allows establishing causal relationships between decisions taken and results obtained. The systemic analysis and interpretation of data is powered in the Assisted-BIGAMES through a computer application called "BIGAMES Virtual Assistant" (VA) that players can use during the Game. Each participant in the VA permanently asks himself about the decisions he should make during the game to win the competition. To this end, the role of the VA of each team consists in guiding the players to be more effective in their decision making, through presenting recommendations based on AI methods. It is important to note that the VA's suggestions for action can be accepted or rejected by the managers of each team, as they gain a better understanding of the issues along time, reflect on good practice and rely on their own experience, capability and knowledge to support their own decisions. Preliminary results show that the introduction of the VA provides a faster learning of the decision-making process. The facilitator designated as “Serious Game Controller” (SGC) is responsible for supporting the players with further analysis. The recommended actions by the SGC may differ or be similar to the ones previously provided by the VA, ensuring a higher degree of robustness in decision-making. Additionally, all the information should be jointly analyzed and assessed by each player, who are expected to add “Emotional Intelligence”, an essential component absent from the machine learning process.

Keywords: artificial intelligence, gamification, key performance indicators, machine learning, management simulators, serious games, virtual assistant

Procedia PDF Downloads 105
14146 OER on Academic English, Educational Research and ICT Literacy, Promoting International Graduate Programs in Thailand

Authors: Maturos Chongchaikit, Sitthikorn Sumalee, Nopphawan Chimroylarp, Nongluck Manowaluilou, Thapanee Thammetha

Abstract:

The 2015 Kasetsart University Research Plan, which was funded by the National Research Institutes: TRF – NRCT, comprises four sub-research projects on the development of three OER websites and on their usage study by students in international programs. The goals were to develop the open educational resources (OER) in the form of websites that will promote three key skills of quality learning and achievement: Academic English, Educational Research, and ICT Literacy, to graduate students in international programs of Thailand. The statistics from the Office of Higher Education showed that the number of foreign students who come to study in international higher education of Thailand has increased respectively by 25 percent per year, proving that the international education system and institutes of Thailand have been already recognized regionally and globally as meeting the standards. The output of the plan: the OER websites and their materials, and the outcome: students’ learning improvement due to lecturers’ readiness for open educational media, will ultimately lead the country to higher business capabilities for international education services in ASEAN Community in the future. The OER innovation is aimed at sharing quality knowledge to the world, with the adoption of Creative Commons Licenses that makes sharing be able to do freely (5Rs openness), without charge and leading to self and life-long learning. The research has brought the problems on the low usage of existing OER in the English language to develop the OER on three specific skills and try them out with the sample of 100 students randomly selected from the international graduate programs of top 10 Thai universities, according to QS Asia University Rankings 2014. The R&D process was used for product evaluation in 2 stages: the development stage and the usage study stage. The research tools were the questionnaires for content and OER experts, the questionnaires for the sample group and the open-ended interviews for the focus group discussions. The data were analyzed using frequency, percentage, mean and SD. The findings revealed that the developed websites were fully qualified as OERs by the experts. The students’ opinions and satisfaction were at the highest levels for both the content and the technology used for presentation. The usage manual and self-assessment guide were finalized during the focus group discussions. The direct participation according to the concept of 5Rs Openness Activities through the provided tools of OER models like MERLOT and OER COMMONS, as well as the development of usage manual and self-assessment guide, were revealed as a key approach to further extend the output widely and sustainably to the network of users in various higher education institutions.

Keywords: open educational resources, international education services business, academic English, educational research, ICT literacy, international graduate program, OER

Procedia PDF Downloads 223
14145 Artificial Intelligence in Duolingo

Authors: Jwana Khateeb, Lamar Bawazeer, Hayat Sharbatly, Mozoun Alghamdi

Abstract:

This research paper explores the idea of learning new languages through an innovative-mobile based learning technology. Throughout this paper we will discuss and examine a mobile-based application called Duolingo. Duolingo is a college standard application for learning foreign languages such as Spanish and English. It is a smart application where it uses smart adaptive technologies to advance the level of their students at each period of time by offering new tasks. Furthermore, we will discuss the history of the application and the methodology used within it. We have conducted a study in which we surveyed ten people about their experience using Duolingo. The results are examined and analyzed in which it indicates the effectiveness on Duolingo students who are seeking to learn new languages. Thus, the research paper will furthermore discuss the diverse methods and approaches in learning new languages through this mobile-based application.

Keywords: Duolingo, AI, personalized, customized

Procedia PDF Downloads 289
14144 Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits

Authors: Hasan Çiçekli, Ahmet Gökçen, Uğur Çam

Abstract:

In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35 µm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.

Keywords: integrator circuits, MOS-C realization, nonlinearity cancellation, tuneable resistors

Procedia PDF Downloads 533
14143 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
14142 The Autonomy Use of Preparatory School Students to Learn English Language

Authors: Mi̇hri̇ban Müge Aras

Abstract:

The present study aims to investigate the learner autonomy usage of prep school students. This research focuses on the prep school students' autonomy habits according to their self-regulated studies, age and duration of learning English. The research also analyzes whether prep school students have strong autonomy to learn the English language or depend on teachers and English classes only. The participants of the study consisted of 32 prep school students. The "Likert- type of questionnaire " was adopted by the researcher from the survey of Dede (2017). The scale was a one-dimensional 4-Likert type, which has the options of 1=never, 2= sometimes, 3=often, and 4=always. There are 19 questions in the questionnaire to understand the autonomy of students when they try to learn English. Descriptive statistics and OneANOVA were used to analyze the data. The results of the study showed that there is no significant correlation between their ages and their duration of learning English according to their autonomy studies for English.

Keywords: learner autonomy, self-regulated learning, independent learning, English language learning, prep school students

Procedia PDF Downloads 242
14141 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 380
14140 Teaching and Education Science as a Way of Enhancing Student’s Skills and Employability

Authors: Nabbengo Minovia

Abstract:

Teaching and education science encompasses a broad spectrum of research and practices aimed at understanding and improving the processes of teaching and learning. This abstract explores key themes within this field, including pedagogical methodologies, educational psychology, curriculum development, and the integration of technology in education. It highlights the importance of evidence-based practices in enhancing student outcomes and fostering lifelong learning. The abstract also discusses current trends such as personalized learning, inclusive education, and the role of educators as facilitators of knowledge and critical thinking. By examining these aspects, this abstract aims to contribute to the ongoing dialogue on effective educational strategies and their impact on shaping future generations.

Keywords: employability through skilling, excellence as a way to self-esteem, science as an art, skills gained through learning

Procedia PDF Downloads 27
14139 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings

Authors: Annette Cosgrove

Abstract:

The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.

Keywords: TEL, DTL, digital teaching, digital assessment

Procedia PDF Downloads 70
14138 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 290
14137 Teachers and Learners Perceptions on the Impact of Different Test Procedures on Reading: A Case Study

Authors: Bahloul Amel

Abstract:

The main aim of this research was to investigate the perspectives of English language teachers and learners on the effect of test techniques on reading comprehension, test performance and assessment. The research has also aimed at finding the differences between teacher and learner perspectives, specifying the test techniques which have the highest effect, investigating the other factors affecting reading comprehension, and comparing the results with the similar studies. In order to achieve these objectives, perspectives and findings of different researchers were reviewed, two different questionnaires were prepared to collect data for the perspectives of teachers and learners, the questionnaires were applied to 26 learners and 8 teachers from the University of Batna (Algeria), and quantitative and qualitative data analysis of the results were done. The results and analysis of the results show that different test techniques affect reading comprehension, test performance and assessment at different percentages rates.

Keywords: reading comprehension, reading assessment, test performance, test techniques

Procedia PDF Downloads 458
14136 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 167
14135 Software Cloning and Agile Environment

Authors: Ravi Kumar, Dhrubajit Barman, Nomi Baruah

Abstract:

Software Cloning has grown an active area in software engineering research community yielding numerous techniques, various tools and other methods for clone detection and removal. The copying, modifying a block of code is identified as cloning as it is the most basic means of software reuse. Agile Software Development is an approach which is currently being used in various software projects, so that it helps to respond the unpredictability of building software through incremental, iterative, work cadences. Software Cloning has been introduced to Agile Environment and many Agile Software Development approaches are using the concept of Software Cloning. This paper discusses the various Agile Software Development approaches. It also discusses the degree to which the Software Cloning concept is being introduced in the Agile Software Development approaches.

Keywords: agile environment, refactoring, reuse, software cloning

Procedia PDF Downloads 530
14134 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria

Authors: Bello Ali

Abstract:

The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.

Keywords: accessibility, availability, college of education, ICT, Islamic studies, learning, North-East, teaching, utilization

Procedia PDF Downloads 363
14133 The Impact of Using Authentic Materials on Students' Motivation in Learning Indonesian Language as a Foreign Language

Authors: Ratna Elizabeth

Abstract:

Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language.

Keywords: authentic materials, ILFL, language learning, motivation

Procedia PDF Downloads 388
14132 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 179
14131 A Learning Process for Aesthetics of Language in Thai Poetry for High School Teachers

Authors: Jiraporn Adchariyaprasit

Abstract:

The aesthetics of language in Thai poetry are emerged from the combination of sounds and meanings. The appreciation of such beauty can be achieved by means of education, acquisition of knowledge, and training. This research aims to study the learning process of aesthetics of language in Thai poetry for high school teachers in Bangkok and nearby provinces. There are 10 samples selected by purposive sampling for in-depth interviews. According to the research, there are four patterns in the learning process of aesthetics of language in Thai poetry which are 1) the study of characteristics and patterns of poetry, 2) the training of poetic reading, 3) the study of social and cultural contexts of poetry’s creation, and 4) the study of other sciences related to poetry such as linguistics, traditional dance, and so on.

Keywords: aesthetics, poetry, Thai poetry, poetry learning

Procedia PDF Downloads 436
14130 Analytical Study of Educational Theories of Educational Psychology

Authors: Ajay Krishan Tiwari

Abstract:

Studies on educational psychology have demonstrated the interest of the child's psychological and cognitive environment in the quality of their school commitment. The educational psychologist works with children and adolescents to remedy these factors. The task of the educational psychologist is to liberate the child and adolescent intellectually. Its purpose is to harmonize the child with the system of learning. Psychoanalytic support requires practice in creativity, reading, math, and meditation methods. The goal of educational psychology is to restore the desire and enjoyment of learning. The educational psychologist takes into account the concerns and personality traits that hinder student learning and restores self-esteem. Educational psychologists specialize in supporting children or adolescents who have a different approach to learning. Its role is to consider the child as a whole (cognitive, affective, physical, school, family factors, etc.). It welcomes the child's way of thinking and participates in its development. It is an essential point of contact between the child and his school environment.

Keywords: educational psychology, educational theories, psychologist, cognitive environment, psychoanalytic support, enjoyment of learning

Procedia PDF Downloads 73
14129 High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill

Authors: Kazumasa Kawasaki, Katsuya Fukazawa

Abstract:

Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear.

Keywords: Inconel 625, ball end mill, carbide tool, high speed cutting, tool wear

Procedia PDF Downloads 212
14128 Color-Based Emotion Regulation Model: An Affective E-Learning Environment

Authors: Sabahat Nadeem, Farman Ali Khan

Abstract:

Emotions are considered as a vital factor affecting the process of information handling, level of attention, memory capacity and decision making. Latest e-Learning systems are therefore taking into consideration the effective state of learners to make the learning process more effective and enjoyable. One such use of user’s affective information is in the systems that tend to regulate users’ emotions to a state optimally desirable for learning. So for, this objective has been tried to be achieved with the help of teaching strategies, background music, guided imagery, video clips and odors. Nevertheless, we know that colors can affect human emotions. Relationship between color and emotions has a strong influence on how we perceive our environment. Similarly, the colors of the interface can also affect the user positively as well as negatively. This affective behavior of color and its use as emotion regulation agent is not yet exploited. Therefore, this research proposes a Color-based Emotion Regulation Model (CERM), a new framework that can automatically adapt its colors according to user’s emotional state and her personality type and can help in producing a desirable emotional effect, aiming at providing an unobtrusive emotional support to the users of e-learning environment. The evaluation of CERM is carried out by comparing it with classical non-adaptive, static colored learning management system. Results indicate that colors of the interface, when carefully selected has significant positive impact on learner’s emotions.

Keywords: effective learning, e-learning, emotion regulation, emotional design

Procedia PDF Downloads 305
14127 Family Background and Extracurricular English Learning: Ethnography of Language Ideologies and Language Management in China

Authors: Yan Ma

Abstract:

Parents in China now are of great enthusiasm to outsource extracurricular lessons and activities to ensure their children’s English learning. This study draws on one year of ethnographic observations and interviews with parents and children in 6 families in Shaoxing, a small city in East China, to explore how parents in different social classes differ in their ideology and investment practice towards their children’s English education. Through comparative analysis, the study reveals though all the families acknowledge the importance of English and there are great similarities among families in the same social class, differences are distinct among those in different social classes with regard to how they perceived the importance and what measures they take. The results also reflect China’s sociocultural and socioeconomic factors that underlined the heated wave of English learning as well as the social, cultural and economic conditions of different families that exert a decisive influence on their children’s learning experience.

Keywords: family background, extracurricular English learning, language ideologies, language management

Procedia PDF Downloads 110
14126 Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East

Authors: Shurouq Munzer

Abstract:

This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts.

Keywords: coarse ware, cooking utensils, ḥisba, waqif, muḥtasib, foodways, practice, cuisine, food preparation

Procedia PDF Downloads 74
14125 Online Foreign Language Learning Motivation for Tunisian Students of English

Authors: Leila Najeh

Abstract:

This study investigates the motivational factors influencing Tunisian university students learning English through online platforms. Using a mixed-methods approach, data were collected from 112 undergraduate students of English across universities in Tunisia. The study employed an online questionnaire to measure intrinsic and extrinsic motivation, incorporating the Learning Motivation Questionnaire (FFLLM-Q) developed by Gonzales in 2001 and semi-structured interviews to explore students’ perspectives on their online learning experiences. Quantitative analysis revealed a significant correlation between intrinsic motivation and interactive features such as gamification and adaptive content delivery, while extrinsic motivation was strongly linked to career aspirations and academic requirements. Qualitative findings highlighted challenges such as limited interaction with peers and teachers, technical constraints, and a lack of immediate feedback as demotivating factors. Participants expressed a preference for blended learning models, combining the flexibility of online education with the collaborative environment of traditional classrooms. This study underscores the need for tailored online learning solutions to enhance the motivational landscape for Tunisian students, emphasizing the importance of culturally relevant content, accessible platforms, and supportive learning communities. Further research is recommended to evaluate the long-term impact of these interventions on language proficiency and learner autonomy.

Keywords: motivational factor, online foreign language learnig, tunsian students of english, online learning platforms

Procedia PDF Downloads 7
14124 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life

Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan

Abstract:

The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.

Keywords: fatigue life, finite element analysis, tolerance analysis, optimization

Procedia PDF Downloads 157
14123 Perception of Faculties Towards Online Teaching-Learning Activities during COVID-19 Pandemic: A Cross-Sectional Study at a Tertiary Care Center in Eastern Nepal

Authors: Deependra Prasad Sarraf, Gajendra Prasad Rauniar, Robin Maskey, Rajiv Maharjan, Ashish Shrestha, Ramayan Prasad Kushwaha

Abstract:

Objectives: To assess the perception of faculties towards online teaching-learning activities conducted during the COVID-19 pandemic and to identify barriers and facilitators to conducting online teaching-learning activities in our context. Methods: A cross-sectional study was conducted among faculties at B. P. Koirala Institute of Health Sciences using a 26-item semi-structured questionnaire. A Google Form was prepared, and its link was sent to the faculties via email. Descriptive statistics were calculated, and findings were presented as tables and graphs. Results: Out of 158 faculties, the majority were male (66.46%), medical faculties (85.44%), and assistant professors (46.84%). Only 16 (10.13%) faculties had received formal training regarding preparing and/or delivering online teaching learning activities. Out of 158, 133 (84.18%) faculties faced technical and internet issues. The most common advantage and disadvantage of online teaching learning activities perceived by the faculties were ‘not limited to time or place’ (94.30%) and ‘lack of interaction with the students’ (82.28%), respectively. Majority (94.3%) of them had a positive perception towards online teaching-learning activities conducted during COVID-19 pandemic. Slow internet connection (91.77%) and frequent electricity interruption (82.91%) were the most common perceived barriers to online teaching-learning. Conclusions: Most of the faculties had a positive perception towards online teaching-learning activities. Academic leaders and stakeholders should provide uninterrupted internet and electricity connectivity, training on online teaching-learning platform, and timely technical support.

Keywords: COVID-19 pandemic, faculties, medical education, perception

Procedia PDF Downloads 173
14122 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home

Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.

Keywords: situation-awareness, smart home, IoT, machine learning, classifier

Procedia PDF Downloads 422
14121 A Review on Applications of Experts Systems in Medical Sciences

Authors: D. K. Sreekantha, T. M. Girish, R. H. Fattepur

Abstract:

In this article, we have given an overview of medical expert systems, which can be used for the developed of physicians in making decisions such as appropriate, prognostic, and therapeutic decisions which help to organize, store, and gives appropriate medical knowledge needed by physicians and practitioners during medical operations or further treatment. If they support the studies by using these systems, advanced tools in medicine will be developed in the future. New trends in the methodology of development of medical expert systems have also been discussed in this paper. So Authors would like to develop an innovative IT based solution to help doctors in rural areas to gain expertise in Medical Science for treating patients. This paper aims to survey the Soft Computing techniques in treating patient’s problems used throughout the world.

Keywords: expert system, fuzzy logic, knowledge base, soft computing, epilepsy

Procedia PDF Downloads 254
14120 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 130
14119 Examining the Perceived Usefulness of ICTs for Learning about Indigenous Foods

Authors: Khumbuzile M. Ngcobo, Seraphin D. Eyono Obono

Abstract:

Science and technology has a major impact on many societal domains such as communication, medicine, food, transportation, etc. However, this dominance of modern technology can have a negative unintended impact on indigenous systems, and in particular on indigenous foods. This problem serves as a motivation to this study whose aim is to examine the perceptions of learners on the usefulness of Information and Communication Technologies (ICT's) for learning about indigenous foods. This aim will be subdivided into two types of research objectives. The design and identification of theories and models will be achieved using literature content analysis. The objective on the empirical testing of such theories and models will be achieved through the survey of Hospitality studies learners from different schools in the iLembe and Umgungundlovu Districts of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after the assessment of the validity and the reliability of the data. The main hypothesis behind this study is that there is a connection between the demographics of learners, their perceptions on the usefulness of ICTs for learning about indigenous foods and the following personality an e-learning related theories constructs: computer self-efficacy, trust in ICT systems, and conscientiousness; as suggested by existing studies on learning theories. This hypothesis was fully confirmed by the survey conducted by this study except for the demographic factors where gender and age were not found to be determinant factors of learners’ perceptions on the usefulness of ICT's for learning about indigenous foods.

Keywords: e-learning, indigenous foods, information and communication technologies, learning theories, personality

Procedia PDF Downloads 280
14118 Implementing a Database from a Requirement Specification

Authors: M. Omer, D. Wilson

Abstract:

Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention.

Keywords: information extraction, natural language processing, relation extraction

Procedia PDF Downloads 261