Search results for: fraud prevention and detection
2238 An Early Detection Type 2 Diabetes Using K - Nearest Neighbor Algorithm
Authors: Ng Liang Shen, Ngahzaifa Abdul Ghani
Abstract:
This research aimed at developing an early warning system for pre-diabetic and diabetics by analyzing simple and easily determinable signs and symptoms of diabetes among the people living in Malaysia using Particle Swarm Optimized Artificial. With the skyrocketing prevalence of Type 2 diabetes in Malaysia, the system can be used to encourage affected people to seek further medical attention to prevent the onset of diabetes or start managing it early enough to avoid the associated complications. The study sought to find out the best predictive variables of Type 2 Diabetes Mellitus, developed a system to diagnose diabetes from the variables using Artificial Neural Networks and tested the system on accuracy to find out the patent generated from diabetes diagnosis result in machine learning algorithms even at primary or advanced stages.Keywords: diabetes diagnosis, Artificial Neural Networks, artificial intelligence, soft computing, medical diagnosis
Procedia PDF Downloads 3362237 Great Powers’ Proxy Wars in Middle East and Difficulty in Transition from Cold War to Cold Peace
Authors: Arash Sharghi, Irina Dotu
Abstract:
The developments in the Middle East region have activated the involvement of a numerous diverse state and non-state actors in the regional affairs. The goals, positions, ideologies, different, and even contrast policy behaviors had procured the spreading and continuity of crisis. Non-state actors varying from Islamic organizations to takfiri-terrorist movements on one hand and regional and trans- regional actors, from another side, seek to reach their interests in the power struggle. Here, a research worthy question comes on the agenda: taking into consideration actors’ contradictory interests and constraints what are the regional peace and stability perspectives? Therein, different actors’ aims definition, their actions and behaviors, which affect instability, can be regarded as independent variables; whereas, on the contrary, Middle East peace and stability perspective analysis is a dependent variable. Though, this regional peace and war theory based research admits the significant influence of trans-regional actors, it asserts the roots of violence to derive from region itself. Consequently, hot war and conflict prevention and hot peace assurance in the Middle East region cannot be attained only by demands and approaches of trans-regional actors. Moreover, capacity of trans-regional actors is sufficient only for a cold war or cold peace to be reached in the region. Furthermore, within the framework of current conflict (struggle) between regional actors it seems to be difficult and even impossible to turn the cold war into a cold peace in the region.Keywords: cold peace, cold war, hot war, Middle East, non-state actors, regional and Great powers, war theory
Procedia PDF Downloads 2742236 A Fast Version of the Generalized Multi-Directional Radon Transform
Authors: Ines Elouedi, Atef Hammouda
Abstract:
This paper presents a new fast version of the generalized Multi-Directional Radon Transform method. The new method uses the inverse Fast Fourier Transform to lead to a faster Generalized Radon projections. We prove in this paper that the fast algorithm leads to almost the same results of the eldest one but with a considerable lower time computation cost. The projection end result of the fast method is a parameterized Radon space where a high valued pixel allows the detection of a curve from the original image. The proposed fast inversion algorithm leads to an exact reconstruction of the initial image from the Radon space. We show examples of the impact of this algorithm on the pattern recognition domain.Keywords: fast generalized multi-directional Radon transform, curve, exact reconstruction, pattern recognition
Procedia PDF Downloads 2782235 Functions of Public Policy in Private International Law
Authors: Fedorova Elena
Abstract:
In this article, we draw a distinction between two important functions of public policy in private international law. The first function is widely recognized and relates to the prevention of application of foreign laws and enforcement of foreign court judgments whenever their effects are incompatible with the domestic legal system of the forum. This effectively protects sovereign rights of the forum state as it allows to resist against the undesirable effects of foreign law-making and law-enforcement policies. The second function is less obvious, but not less important. As the internal private legal relationships, international private relationships are usually governed by rules of public policy, to which the parties can not derogate by mutual agreement. Thefore, for international private law relations public policy has a different function than previously mentioned: in this case, the public policy acts as a defense against unacceptable effects of the party autonomy. Thus, this second function of public policy consists in the limitation of the party autonomy wich effects would be unacceptable for the local legal system. In the frame of this second function the author will analyse two types of public policy which can limit the party autonomy: « substantial » public policy (which regulates the substance of international legal relationship) and « conflictual » public policy (which regulates the party autonomy to choose the law applicable for the substance of relationship). The author provides an analysis of these functions of the public policy in the field of international contract law because of the important role of the principle of party autonomy for international contract relations.Keywords: public policy, general theory of private international law, substantial public policy, conflictual public policy
Procedia PDF Downloads 5732234 Enabling Non-invasive Diagnosis of Thyroid Nodules with High Specificity and Sensitivity
Authors: Sai Maniveer Adapa, Sai Guptha Perla, Adithya Reddy P.
Abstract:
Thyroid nodules can often be diagnosed with ultrasound imaging, although differentiating between benign and malignant nodules can be challenging for medical professionals. This work suggests a novel approach to increase the precision of thyroid nodule identification by combining machine learning and deep learning. The new approach first extracts information from the ultrasound pictures using a deep learning method known as a convolutional autoencoder. A support vector machine, a type of machine learning model, is then trained using these features. With an accuracy of 92.52%, the support vector machine can differentiate between benign and malignant nodules. This innovative technique may decrease the need for pointless biopsies and increase the accuracy of thyroid nodule detection.Keywords: thyroid tumor diagnosis, ultrasound images, deep learning, machine learning, convolutional auto-encoder, support vector machine
Procedia PDF Downloads 582233 Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System
Authors: Dinebari Akpee, Friday Aabe Gaage, Florence Fred Nwaigwu
Abstract:
Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation.Keywords: flood disaster, risk maps, geographic information system, hazards
Procedia PDF Downloads 2272232 Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases
Authors: Husham Bayazed
Abstract:
A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation.Keywords: atherosclerotic plagues, immune microenvironment, lipid-lowering agents, and immunomodulatory drugs
Procedia PDF Downloads 692231 A Generalized Framework for Adaptive Machine Learning Deployments in Algorithmic Trading
Authors: Robert Caulk
Abstract:
A generalized framework for adaptive machine learning deployments in algorithmic trading is introduced, tested, and released as open-source code. The presented software aims to test the hypothesis that recent data contains enough information to form a probabilistically favorable short-term price prediction. Further, the framework contains various adaptive machine learning techniques that are geared toward generating profit during strong trends and minimizing losses during trend changes. Results demonstrate that this adaptive machine learning approach is capable of capturing trends and generating profit. The presentation also discusses the importance of defining the parameter space associated with the dynamic training data-set and using the parameter space to identify and remove outliers from prediction data points. Meanwhile, the generalized architecture enables common users to exploit the powerful machinery while focusing on high-level feature engineering and model testing. The presentation also highlights common strengths and weaknesses associated with the presented technique and presents a broad range of well-tested starting points for feature set construction, target setting, and statistical methods for enforcing risk management and maintaining probabilistically favorable entry and exit points. The presentation also describes the end-to-end data processing tools associated with FreqAI, including automatic data fetching, data aggregation, feature engineering, safe and robust data pre-processing, outlier detection, custom machine learning and statistical tools, data post-processing, and adaptive training backtest emulation, and deployment of adaptive training in live environments. Finally, the generalized user interface is also discussed in the presentation. Feature engineering is simplified so that users can seed their feature sets with common indicator libraries (e.g. TA-lib, pandas-ta). The user also feeds data expansion parameters to fill out a large feature set for the model, which can contain as many as 10,000+ features. The presentation describes the various object-oriented programming techniques employed to make FreqAI agnostic to third-party libraries and external data sources. In other words, the back-end is constructed in such a way that users can leverage a broad range of common regression libraries (Catboost, LightGBM, Sklearn, etc) as well as common Neural Network libraries (TensorFlow, PyTorch) without worrying about the logistical complexities associated with data handling and API interactions. The presentation finishes by drawing conclusions about the most important parameters associated with a live deployment of the adaptive learning framework and provides the road map for future development in FreqAI.Keywords: machine learning, market trend detection, open-source, adaptive learning, parameter space exploration
Procedia PDF Downloads 892230 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures
Authors: Harshit Agrawal, Salman Muhammad
Abstract:
Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention
Procedia PDF Downloads 822229 Diagnostic Physiopathology of Osteitis in the Diabetic Foot
Authors: Adaour Mohamed Amine, Bachene Mohamed Sadek, Fortassi Mosaab, Siouda Wafaa
Abstract:
Foot infections are responsible for a significant number of hospitalizations and amputations in diabetic patients. The objective of our study is to analyze and evaluate the management of diabetic foot in a surgical setting. A retrospective study was conducted based on a selected case of suspected diabetic foot infections of osteitis treated at the Mohamed Boudiaf hospital in Medea. The case was reiterated as a therapeutic charge, consisting of treating first the infection of the soft tissues, then the osteitis: biopsy after at least 15 days of cessation of antibiotic therapy. Successful treatment of osteitis was defined at the end of a follow-up period of complete wound healing, lack of bone resection/amputation surgery at the initial bone site during follow-up , Instead, biopsies are prescribed in the treatment of soft tissue infection. The mean duration of treatment for soft tissue infection was 2-3 weeks, the duration of the antibiotic-free window of therapy prior to bone biopsy was 2-4 weeks. This patient received medical management without surgical resection. The success rate for treating osteitis at one year was 73% and healing at one year was 88%.It is often limited to a sausage of the foot at the cost of repeated amputations. The best management remains prevention, which necessarily involves setting up a specialized and adapted centre.Keywords: osteitis, antibiotic therapy, bone biopsy, diabetic foot
Procedia PDF Downloads 1032228 Detection Efficient Enterprises via Data Envelopment Analysis
Authors: S. Turkan
Abstract:
In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.Keywords: data envelopment analysis, super efficiency, logistic regression, financial ratios
Procedia PDF Downloads 3242227 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration
Authors: Danny Barash
Abstract:
Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods
Procedia PDF Downloads 2342226 An Exemption for Vertical Restraint Regarding Intellectual Property Licensing: Case Study of Thailand
Authors: Sanpetchuda Krutkrua, Suphawatchara Malanond
Abstract:
Throughout the history of Antitrust regimes in Thailand, Thailand has been trying to prevent collusive practices in the market through the amendments of the Trade Competition Act, and Thailand just passed the current Trade Competition Act of B.E. 2560 in 2017 of which several aspects of the law were amended in order to enhance the prevention of collusive outcome through both vertical trade restraints and horizontal trade restraints. An agreement is vertical when it involves arrangements that are in a complementary relationship. In Section 55 of the Act, any agreements to reduce the price, quantity, or quality of the goods, agreements to assign a sole retailer for the goods, and the agreement to impose conditions on the retailers are not allowed. However, Section 56 provides exemptions for the vertical relationship between the business operators, the franchise agreement, and the licensing agreement as long as such agreements do not surpass the necessity to do so, create monopolization, or affect the consumers in terms of price, quality, quantity, or options. The paper aims to explore the extent of the exemption under Section 56 and sequential regulations in terms of the vertical trade restraints regarding intellectual property licensing, and, at the same time, compare with the exemptions under the European Union competition law, and Singapore competition law. Comparative legal analysis with leading jurisdiction will illustrate the application of the newly enacted Thai Competition Act in terms of its enforcement in the global impact of IP rights, which, by nature are de jure or de facto international protection.Keywords: antitrust, competition law, vertical restraint, intellectual property, IP licensing
Procedia PDF Downloads 1582225 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN
Authors: Kwangmin Joo
Abstract:
Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique
Procedia PDF Downloads 1252224 Developing a Staff Education Program on Subglottic Suction Endotracheal Tubes
Authors: Emily Toon
Abstract:
Nurses play a critical role in the prevention of ventilator-associated pneumonia through the maintenance of endotracheal tubes and use of subglottic secretion drainage via subglottic suctioning endotracheal tubes. The purpose of this evidence based practice project is to develop a staff education program on subglottic suctioning endotracheal tubes for critical care nurses at Middlesex Health with the aim of determining and documenting increased knowledge and/or practice change. The setting included registered nurses within Middlesex Health’s critical care unit who were recruited to complete a pre-test (n=14), view a presentation, and complete a post-test (n=10). Average pre-test scores were compared to average post-test scores to determine an increase in knowledge and/or practice change. The overall mean pre-test score was 59.7 percent, compared with the mean post-test score of 88.1 percent. Pre- and post-test scores were unmatched, so statistical significance could not be determined. The hypothesis that a staff education program on subglottic suctioning endotracheal tubes would demonstrate an increase in knowledge was supported, but not statistically. By integrating a pre-test/post-test design into educational presentations to evaluate increased knowledge, data generated may be used to improve methods and practices of delivering education and enhance staff learning.Keywords: endotracheal tubes, staff education, subglottic secretion drainage, ventilator-associated pneumonia
Procedia PDF Downloads 1132223 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1502222 Mercury Detection in Two Fishes from the Persian Gulf
Authors: Zahra Khoshnood, Mehdi Kazaie, Sajedeh Neisi
Abstract:
In 2013, 24 fish samples were taken from two fishery regions in the north of Persian Gulf near the Iranian coastal lines. The two flatfishes were Yellofin seabream (Acanthopagrus latus) and Longtail tuna (Thannus tonggol). We analyzed total Hg concentration of liver and muscle tissues by Mercury Analyzer (model LECO AMA 254). The average concentration of total Hg in edible Muscle tissue of deep-Flounder was measured in Bandar-Abbas and was found to be 18.92 and it was 10.19 µg.g-1 in Bandar-Lengeh. The corresponding values for Oriental sole were 8.47 and 0.08 µg.g-1. The average concentration of Hg in liver tissue of deep-Flounder, in Bandar-Abbas was 25.49 and that in Bandar-Lengeh was 12.52 µg.g-1.the values for Oriental sole were 11.88 and 3.2 µg.g-1 in Bandar-Abbas and Bandar-Lengeh, respectively.Keywords: mercury, Acanthopagrus latus, Thannus tonggol, Persian Gulf
Procedia PDF Downloads 6032221 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis
Procedia PDF Downloads 3932220 Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya
Authors: Osama Sassi, Manal Eltorki, Iftikhar Ahmad
Abstract:
Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection.Keywords: corrosion mitigation on gas transmission pipelines, pipeline integrity management, corrosion management of gas pipelines, prevention and inspection of corrosion
Procedia PDF Downloads 772219 Foreign Women Affecting the Social Life of the Ottoman Empire at the Beginning of the Twentieth Century: The Case of Lady Alice Lowther (1873-1939)
Authors: Meliha Nur Cercinli
Abstract:
In the last period of the Ottoman Empire, foreign officers played important role in the political area. Behind their political activities, their wives had a considerable influence on Ottoman social life. Despite the difficult conditions, these women involved in educating girls, encouraging Ottoman women to take part in the production area. For this purpose, they opened many schools and workplaces in various regions of the capital-Istanbul. One of these women was Lady Alice Lowther, who was known as the wife of British ambassador Gerard Agustus Lowther. She arranged various organizations in order to create necessary resources to help families of martyrs. Also, she chaired the Committee for Aid to Ottoman Military Families (Asker Ailelerine Yardım Komitesi), made an effort to establish the Society for Protection Animals in Istanbul (Istanbul Himaye-i Hayvanat Cemiyeti) with the supports of The Royal Society For Prevention Cruelty For Animals. Apart from these, she was also a good observer and writer as a traveller. She wrote and published her memories with the name of Down The Old Road (1921), When It Was June (1923) Land Of Gold Mohur (1932), Moments In Portugal Or Land Of The Laurel (1939). This paper aims to analyze Lady Alice Lowther’s activities in Istanbul based on Ottoman Archive documents. In addition, her books will also be examined as they will present a different perspective regarding her experiences.Keywords: Lady Lowther, Ottoman Empire, women history, social life
Procedia PDF Downloads 1582218 An Analytical Approach for Medication Protocol Errors from Pediatric Nurse Curriculum
Authors: Priyanka Jani
Abstract:
The main focus of this research is to consider the objective of nursing curriculum in concern with pediatric nurses in respect to various parameters such as causes, reporting and prevention of medication protocol errors. A design or method selected for the study is the descriptive and cross sectional with respect to analytical study. Nurses were selected from inpatient pediatric wards of 5 hospitals in Gujarat, as a population. 126 pediatric nurses gave approval to participate in the research and completed with quarter questionnaires. The actual data was collected and analyzed. The actual data was collected and analyzed. The medium age of the nurses was 25.7 ± 3.68 years; the maximum was lady (97.6%) pediatric nurses stated that the most common causes of medication protocol errors were large work time (69.2%) and a huge ratio of patient: nurse (59.9%). Even though the highest number of nurses (89%) made use of a medication protocol errors notification system, or else they use to check it before. Many errors were not reported and nurses cited abeyant claims of nurses in case of adverse and opposite output for patient (53.97%), distrust (52.45%), and fear of various/different protocol for mediations (42%) among the causes of insufficient of notification in concern to ignorance, nurses most commonly noted the requirement for efficient data concerning the safe use of medications (47.5%). This is the frequent study made by researcher in Gujarat about the pediatric nurse curriculum regarding medication protocol errors. The outputs debate that there is a requirement for ongoing coaching of pediatric nurses regarding safe & secure medication observation and that the causes and post reporting of medication protocol errors by hand further survey.Keywords: pediatric, medication, protocol, errors
Procedia PDF Downloads 2922217 Computer Aide Discrimination of Benign and Malignant Thyroid Nodules by Ultrasound Imaging
Authors: Akbar Gharbali, Ali Abbasian Ardekani, Afshin Mohammadi
Abstract:
Introduction: Thyroid nodules have an incidence of 33-68% in the general population. More than 5-15% of these nodules are malignant. Early detection and treatment of thyroid nodules increase the cure rate and provide optimal treatment. Between the medical imaging methods, Ultrasound is the chosen imaging technique for assessment of thyroid nodules. The confirming of the diagnosis usually demands repeated fine-needle aspiration biopsy (FNAB). So, current management has morbidity and non-zero mortality. Objective: To explore diagnostic potential of automatic texture analysis (TA) methods in differentiation benign and malignant thyroid nodules by ultrasound imaging in order to help for reliable diagnosis and monitoring of the thyroid nodules in their early stages with no need biopsy. Material and Methods: The thyroid US image database consists of 70 patients (26 benign and 44 malignant) which were reported by Radiologist and proven by the biopsy. Two slices per patient were loaded in Mazda Software version 4.6 for automatic texture analysis. Regions of interests (ROIs) were defined within the abnormal part of the thyroid nodules ultrasound images. Gray levels within an ROI normalized according to three normalization schemes: N1: default or original gray levels, N2: +/- 3 Sigma or dynamic intensity limited to µ+/- 3σ, and N3: present intensity limited to 1% - 99%. Up to 270 multiscale texture features parameters per ROIs per each normalization schemes were computed from well-known statistical methods employed in Mazda software. From the statistical point of view, all calculated texture features parameters are not useful for texture analysis. So, the features based on maximum Fisher coefficient and the minimum probability of classification error and average correlation coefficients (POE+ACC) eliminated to 10 best and most effective features per normalization schemes. We analyze this feature under two standardization states (standard (S) and non-standard (NS)) with Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Non-Linear Discriminant Analysis (NDA). The 1NN classifier was performed to distinguish between benign and malignant tumors. The confusion matrix and Receiver operating characteristic (ROC) curve analysis were used for the formulation of more reliable criteria of the performance of employed texture analysis methods. Results: The results demonstrated the influence of the normalization schemes and reduction methods on the effectiveness of the obtained features as a descriptor on discrimination power and classification results. The selected subset features under 1%-99% normalization, POE+ACC reduction and NDA texture analysis yielded a high discrimination performance with the area under the ROC curve (Az) of 0.9722, in distinguishing Benign from Malignant Thyroid Nodules which correspond to sensitivity of 94.45%, specificity of 100%, and accuracy of 97.14%. Conclusions: Our results indicate computer-aided diagnosis is a reliable method, and can provide useful information to help radiologists in the detection and classification of benign and malignant thyroid nodules.Keywords: ultrasound imaging, thyroid nodules, computer aided diagnosis, texture analysis, PCA, LDA, NDA
Procedia PDF Downloads 2792216 Novel Synthesis of Metal Oxide Nanoparticles from Type IV Deep Eutectic Solvents
Authors: Lorenzo Gontrani, Marilena Carbone, Domenica Tommasa Donia, Elvira Maria Bauer, Pietro Tagliatesta
Abstract:
One of the fields where DES shows remarkable added values is the synthesis Of inorganic materials, in particular nanoparticles. In this field, the higher- ent and highly-tunable nano-homogeneities of DES structure give origin to a marked templating effect, a precious role that has led to the recent bloom of a vast number of studies exploiting these new synthesis media to prepare Nanomaterials and composite structures of various kinds. In this contribution, the most recent developments in the field will be reviewed, and some ex-citing examples of novel metal oxide nanoparticles syntheses using non-toxic type-IV Deep Eutectic Solvents will be described. The prepared materials possess nanometric dimensions and show flower-like shapes. The use of the pre- pared nanoparticles as fluorescent materials for the detection of various contaminants is under development.Keywords: metal deep eutectic solvents, nanoparticles, inorganic synthesis, type IV DES, lamellar
Procedia PDF Downloads 1352215 General Mathematical Framework for Analysis of Cattle Farm System
Authors: Krzysztof Pomorski
Abstract:
In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations
Procedia PDF Downloads 1452214 A New Manoeuvre for Prevention of Post-Partum Haemorrhage
Authors: Amr Hamdy
Abstract:
Background: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. Many methods have been developed to decrease its rate. The aim of this study was to evaluate the applicability of a new non-pharmacologic maneuver in decreasing its rate. Methods: This case series study was conducted in one centre in Cairo, Egypt, from January-2010 to June-2013. 400 pregnant–women aged 18 years or more and candidate for normal labour; were enrolled to this study. High-risk subjects for PPH were excluded. After placental delivery, the new maneuver was done by sustained traction of the anterior and posterior lips of the cervix by two ovum forceps for duration of 90 seconds. The amount of blood loss was estimated by standardized visual estimation after removal of the forceps. All subjects were followed up for 6 hours. Results: The rate of PPH, defined as more than 500 ml, was 8 cases (2%) with 95% CI (0.63-3.37%). The rate of PPH was not affected by parity, gestational age, episiotomy or the presence of tears. PPH is more in cases with anemia (p 0.032). It occurred in all cases with uterine atony (p <0.001). The range of estimated blood loss was 550-600ml in cases with PPH and 150-450ml in cases without PPH. Severe PPH more than 1000 ml, did not occur. Conclusion: This pilot study introduced a novel maneuver that can be helpful in decreasing the rate of PPH and reducing the amount of post partum blood loss.Despite the low rate of PPH showed in this study, the need for conducting a randomized controlled study is at its highest level before further inclusion of such manoeuvre to be a part of the current medical practice and before considering it as an evident tool to decrease the burden of PPH.Keywords: maternal mortality, new manoeuvre, post-partum haemorrhage, uterine atony
Procedia PDF Downloads 1962213 Reasonableness to Strengthen Citizen Participation in Mexican Anti-Corruption Policies
Authors: Amós García Montaño
Abstract:
In a democracy, a public policy must be developed within the regulatory framework and considering citizen participation in its planning, design, execution, and evaluation stages, necessary factors to have both legal support and sufficient legitimacy for its operation. However, the complexity and magnitude of certain public problems results in difficulties for the generation of consensus among society members, leading to unstable and unsuccessful scenarios for the exercise of the right to citizen participation and the generation of effective and efficient public policies. This is the case of public policies against corruption, an issue that in Mexico is difficult to define and generates conflicting opinions. To provide a possible solution to this delicate reality, this paper analyzes the principle of reasonableness as a tool for identifying the basic elements that guarantee a fundamental level of the exercise of the right to citizen participation in the fight against corruption, adopting elements of human rights indicator methodologies. In this sense, the relevance of having a legal framework that establishes obligations to incorporate proactive and transversal citizen participation in the matter is observed. It is also noted the need to monitor the operation of various citizen participation mechanisms in the decision-making processes of the institutions involved in the fight and prevention of corruption, which lead to an increase in the improvement of the perception of the citizen role as a relevant actor in this field. It is concluded that the principle of reasonableness is presented as a very useful tool for the identification of basic elements that facilitate the fulfillment of human rights commitments in the field of public policies.Keywords: anticorruption, public participation, public policies, reasonableness
Procedia PDF Downloads 822212 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice
Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti
Abstract:
Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.Keywords: analogue rice, taro, seaweed, collagen
Procedia PDF Downloads 2642211 An Algorithm for Removal of Noise from X-Ray Images
Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See
Abstract:
In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF
Procedia PDF Downloads 3832210 Remote Patient Monitoring for Covid-19
Authors: Launcelot McGrath
Abstract:
The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management
Procedia PDF Downloads 1082209 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction
Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian
Abstract:
Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.Keywords: marijuana, youth, integrative model of behavioral prediction, Iran
Procedia PDF Downloads 554