Search results for: steel moment frame
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3285

Search results for: steel moment frame

555 Stereotyping of Non-Western Students in Western Universities: Applying Critical Discourse Analysis to Undermine Educational Hegemony

Authors: Susan Lubbers

Abstract:

This study applies critical discourse analysis to the language used by educators to frame international students of Asian backgrounds in Anglo-Western universities as quiet, shy, passive and unable to think critically. Emphasis is on the self-promoted ‘internationalised’ Australian tertiary context, where negative stereotypes are commonly voiced not only in the academy but also in the media. Parallels are drawn as well with other Anglo-Western educational contexts. The study critically compares the discourse of these persistent negative stereotypes, with in-class and interview discourses of international students of Asian and Western language, cultural and educational backgrounds enrolled in a Media and Popular Culture unit in an Australian university. The focus of analysis of the student discourse is on their engagement in critical dialogic interactions on the topics of culture and interculturality. The evidence is also drawn from student interviews and focus groups and from observation of whole-class discussion participation rates. The findings of the research project provide evidence that counters the myth of student as problem. They point rather to the widespread lack of intercultural awareness of Western educators and students as being at the heart of the negative perceptions of students of Asian backgrounds. The study suggests the efficacy of an approach to developing intercultural competence that is embedded, or integrated, into tertiary programs. The presentation includes an overview of the main strategies that have been developed by the tertiary educator (author) to support the development of intercultural competence of and among the student cohort. The evidence points to the importance of developing intercultural competence among tertiary educators and students. The failure by educators to ensure that the diverse voices, ideas and perspectives of students from all cultural, educational and language backgrounds are heard in our classrooms means that our universities can hardly be regarded or promoted as genuinely internationalised. They will continue as undemocratic institutions that perpetrate persistent Western educational hegemony.

Keywords: critical discourse analysis, critical thinking, embedding, intercultural competence, interculturality, international student, internationalised education

Procedia PDF Downloads 292
554 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 162
553 12 Real Forensic Caseworks Solved by the DNA STR-Typing of Skeletal Remains Exposed to Extremely Environment Conditions without the Conventional Bone Pulverization Step

Authors: Chiara Della Rocca, Gavino Piras, Andrea Berti, Alessandro Mameli

Abstract:

DNA identification of human skeletal remains plays a valuable role in the forensic field, especially in missing persons and mass disaster investigations. Hard tissues, such as bones and teeth, represent a very common kind of samples analyzed in forensic laboratories because they are often the only biological materials remaining. However, the major limitation of using these compact samples relies on the extremely time–consuming and labor–intensive treatment of grinding them into powder before proceeding with the conventional DNA purification and extraction step. In this context, a DNA extraction assay called the TBone Ex kit (DNA Chip Research Inc.) was developed to digest bone chips without powdering. Here, we simultaneously analyzed bone and tooth samples that arrived at our police laboratory and belonged to 15 different forensic casework that occurred in Sardinia (Italy). A total of 27 samples were recovered from different scenarios and were exposed to extreme environmental factors, including sunlight, seawater, soil, fauna, vegetation, and high temperature and humidity. The TBone Ex kit was used prior to the EZ2 DNA extraction kit on the EZ2 Connect Fx instrument (Qiagen), and high-quality autosomal and Y-chromosome STRs profiles were obtained for the 80% of the caseworks in an extremely short time frame. This study provides additional support for the use of the TBone Ex kit for digesting bone fragments/whole teeth as an effective alternative to pulverization protocols. We empirically demonstrated the effectiveness of the kit in processing multiple bone samples simultaneously, largely simplifying the DNA extraction procedure and the good yield of recovered DNA for downstream genetic typing in highly compromised forensic real specimens. In conclusion, this study turns out to be extremely useful for forensic laboratories, to which the various actors of the criminal justice system – such as potential jury members, judges, defense attorneys, and prosecutors – required immediate feedback.

Keywords: DNA, skeletal remains, bones, tbone ex kit, extreme conditions

Procedia PDF Downloads 45
552 Full-Scale 3D Simulation of the Electroslag Rapid Remelting Process

Authors: E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig

Abstract:

The standard electroslag remelting (ESR) process can ideally control the solidification of an ingot and produce homogeneous structure with minimum defects. However, the melt rate of electrode is rather low that makes the whole process uneconomical especially to produce small ingot sizes. In contrast, continuous casting is an economical process to produce small ingots such as billets at high casting speed. Unfortunately, deep liquid melt pool forms in the billet ingot of continuous casting that leads to center porosity and segregation. As such, continuous casting is not suitable to produce segregation prone alloys like tool steel or several super alloys. On the other hand, the electro slag rapid remelting (ESRR) process has advantages of both traditional ESR and continuous casting processes to produce billets. In the ESRR process, a T-shaped mold is used including a graphite ring that takes major amount of current through the mold. There are only a few reports available in the literature discussing about this topic. The research on the ESRR process is currently ongoing aiming to improve the design of the T-shaped mold, to decrease overall heat loss in the process, and to obtain a higher temperature at metal meniscus. In the present study, a 3D model is proposed to investigate the electromagnetic, thermal, and flow fields in the whole process as well as solidification of the billet ingot. We performed a fully coupled numerical simulation to explore the influence of the electromagnetically driven flow (MHD) on the thermal field in the slag and ingot. The main goal is to obtain some fundamental understanding of the formation of melt pool of the solidifying billet ingot in the ESRR process.

Keywords: billet ingot, magnetohydrodynamics (mhd), numerical simulation, remelting, solidification, t-shaped mold.

Procedia PDF Downloads 294
551 Men’s Attendance in Labour and Birth Room: A Choice and Coercion in Childbirth

Authors: A/Prof Marjan Khajehei

Abstract:

In the last century, the role of fathers in the birth has changed exponentially. Before the 1970s, the principal view was that birth was a female business and not a man’s place. Changing cultural and professional attitudes around the emotional bond between a man and a woman, family structure and the more proactive involved role of men in the family have encouraged fathers’ attendance at birth. There is evidence that fathers’ support can make birthing less traumatic for some women and can make couples closer. This has made some clinicians to believe the fathers should be more involved throughout the birth process. Some clinicians even go further and ask the fathers to watch the medical procedures, such as inserting vaginal speculum, forceps or vacuum, episiotomy and stitches. Although birth can unfold like a beautiful picture captured by birth photographers, with fathers massaging women’s backs by candle light and the miraculous moment of birth, it can be overshadowed by less attractive images of cervical mucous, emptying bowels and the invasive medical procedures. What happens in the birth room and the fathers’ reaction to the graphic experience of birthing can be unpredictable. Despite the fact that most men are absolutely thrilled to be in the delivery room, for some men, a very intimate body part can become completely desexualised, and they can experience psychological and sexual scarring. They see someone they cherish dramatically sliced open and can then associate their partners with a disturbing scene, and it can dramatically affect their relationships. While most women want the expectant fathers by their side for this life-changing event, not all of them may be happy for their partners to watch the perineum to be cut or stitched or when large blades of forceps are inserted inside the vagina. Anecdotal reports have shown that consent is not sought from the labouring women as to whether they want their partners to watch these procedures. The majority of research1, 2, 3 focuses on men’s and women’s retrospective attitudes towards their birth experience. However, the effect of witnessing invasive procedures during childbirth on a man's attraction to his partner, while she is most vulnerable, and also an increased risk of post-traumatic stress disorder in fathers have not been widely investigated. There is a lack of sufficient research investigating whether women need to be asked for their consent before inviting their partners to closely watch medical procedures during childbirth. Future research is required to provide a basis for better awareness and involve the consumers to understanding the men’s and women’s experience and their expectations for labour and birth.

Keywords: birth, childbirth, father, labour, men, women

Procedia PDF Downloads 127
550 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates

Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao

Abstract:

Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.

Keywords: natural fiber reinforced composites, delamination, thrust force, machinability

Procedia PDF Downloads 128
549 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino

Abstract:

Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy

Procedia PDF Downloads 312
548 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II

Authors: Heerak Banerjee, Sourov Roy

Abstract:

Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.

Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry

Procedia PDF Downloads 127
547 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia

Authors: Michael Wright, Tiago Costa

Abstract:

The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.

Keywords: fine grained, As-rolled, long products, process control, metallurgy

Procedia PDF Downloads 300
546 Soft Skills: Expectations and Needs in Tourism

Authors: Susana Silva, Dora Martins

Abstract:

The recent political, economic, social technological and employment changes significantly affect the tourism organizations and consequently the changing nature of the employment experience of the tourism workforce. Such scene leads several researchers and labor analysts to reflect about what kinds of jobs, knowledge and competences are need to ensure the success to teach, to learning and to work on this sector. In recent years the competency-based approach in high education level has become of significant interest. On the one hand, this approach could leads to the forming of the key students’ competences which contribute their better preparation to the professional future and on the other hand could answer better to practical demands from tourism job market. The goals of this paper are (1) to understand the expectations of university tourism students in relation to the present and future tourism competences demands, (2) to identify the importance put on the soft skills, (3) to know the importance of high qualification to their future professional activity and (4) to explore the students perception about present and future tourist sector specificities. To this proposal, a questionnaire was designed and distributed to every students who participate on classes of Hospitality Management under degree and master from one public Portuguese university. All participants were invited, during December 2014 and September 2015, to answer the questionnaire at the moment and on presence of one researcher of this study. Fulfilled the questionnaire 202 students (72, 35,6% male and 130, 64.4% female), the mean age was 21,64 (SD=5,27), 91% (n=86) were undergraduate and 18 (9%) were master students. 80% (n=162) of our participants refers as a possibility to look for a job outside the country.42% (n=85) prefers to work in a medium-sized tourism units (with 50-249 employees). According to our participants the most valued skills in tourism are the domain of foreign languages (87.6%, n=177), the ability to work as a team (85%), the personal persistence (83%, n=168), the knowledge of the product/services provided (73.8%, n=149), and assertiveness (66.3%, n=134). 65% (n=131) refers the availability to look for a job in a home distance of 1000 kilometers and 59% (n=119) do not consider the possibility to work in another area than tourism. From the results of this study we are in the position of confirming the need for universities to maintain a better link with the professional tourism companies and to rethink some competences into their learning course model. Based on our results students, universities and companies could understand more deeply the motivations, expectations and competences need to build the future career who study and work on the tourism sector.

Keywords: human capital, employability, students’ competencies perceptions, soft skills, tourism

Procedia PDF Downloads 271
545 The Determination of the Phosphorous Solubility in the Iron by the Function of the Other Components

Authors: Andras Dezső, Peter Baumli, George Kaptay

Abstract:

The phosphorous is the important components in the steels, because it makes the changing of the mechanical properties and possibly modifying the structure. The phosphorous can be create the Fe3P compounds, what is segregated in the ferrite grain boundary in the intervals of the nano-, or microscale. This intermetallic compound is decreasing the mechanical properties, for example it makes the blue brittleness which means that the brittle created by the segregated particles at 200 ... 300°C. This work describes the phosphide solubility by the other components effect. We make calculations for the Ni, Mo, Cu, S, V, C, Si, Mn, and the Cr elements by the Thermo-Calc software. We predict the effects by approximate functions. The binary Fe-P system has a solubility line, which has a determinating equation. The result is below: lnwo = -3,439 – 1.903/T where the w0 means the weight percent of the maximum soluted concentration of the phosphorous, and the T is the temperature in Kelvin. The equation show that the P more soluble element when the temperature increasing. The nickel, molybdenum, vanadium, silicon, manganese, and the chromium make dependence to the maximum soluted concentration. These functions are more dependent by the elements concentration, which are lower when we put these elements in our steels. The copper, sulphur and carbon do not make effect to the phosphorous solubility. We predict that all of cases the maximum solubility concentration increases when the temperature more and more high. Between 473K and 673 K, in the phase diagram, these systems contain mostly two or three phase eutectoid, and the singe phase, ferritic intervals. In the eutectoid areas the ferrite, the iron-phosphide, and the metal (III)-phospide are in the equilibrium. In these modelling we predicted that which elements are good for avoid the phosphide segregation or not. These datas are important when we make or choose the steels, where the phosphide segregation stopping our possibilities.

Keywords: phosphorous, steel, segregation, thermo-calc software

Procedia PDF Downloads 625
544 Numerical Modeling of Air Shock Wave Generated by Explosive Detonation and Dynamic Response of Structures

Authors: Michał Lidner, Zbigniew SzcześNiak

Abstract:

The ability to estimate blast load overpressure properly plays an important role in safety design of buildings. The issue of studying of blast loading on structural elements has been explored for many years. However, in many literature reports shock wave overpressure is estimated with simplified triangular or exponential distribution in time. This indicates some errors when comparing real and numerical reaction of elements. Nonetheless, it is possible to further improve setting similar to the real blast load overpressure function versus time. The paper presents a method of numerical analysis of the phenomenon of the air shock wave propagation. It uses Finite Volume Method and takes into account energy losses due to a heat transfer with respect to an adiabatic process rule. A system of three equations (conservation of mass, momentum and energy) describes the flow of a volume of gaseous medium in the area remote from building compartments, which can inhibit the movement of gas. For validation three cases of a shock wave flow were analyzed: a free field explosion, an explosion inside a steel insusceptible tube (the 1D case) and an explosion inside insusceptible cube (the 3D case). The results of numerical analysis were compared with the literature reports. Values of impulse, pressure, and its duration were studied. Finally, an overall good convergence of numerical results with experiments was achieved. Also the most important parameters were well reflected. Additionally analyses of dynamic response of one of considered structural element were made.

Keywords: adiabatic process, air shock wave, explosive, finite volume method

Procedia PDF Downloads 192
543 Medical Authorizations for Cannabis-Based Products in Canada: Sante Cannabis Data on Patient’s Safety and Treatment Profiles

Authors: Rihab Gamaoun, Cynthia El Hage, Laura Ruiz, Erin Prosk, Antonio Vigano

Abstract:

Introduction: Santé Cannabis (SC), a Canadian medical cannabis-specialized group of clinics based in Montreal and in the province of Québec, has served more than 5000 patients seeking cannabis-based treatment prescription for medical indications over the past five years. Within a research frame, data on the use of medical cannabis products from all the above patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to gather information on the profiles of both patients and prescribed medical cannabis products at SC clinics and to assess the safety of medical cannabis among Canadian patients. Methods: Using a retrospective analysis of the database, records of 2585 patients who were prescribed medical cannabis products for therapeutic purposes between 01-November 2017 and 04-September 2019 were included. Patients’ demographics, primary diagnosis, route of administration, and chemovars recorded at the initial visits were investigated. Results: At baseline: 9% of SC patients were female, with a mean age of 57 (SD= 15.8, range= [18-96]); Cannabis products were prescribed mainly for patients with a diagnosis of chronic pain (65.9% of patients), cancer (9.4%), neurological disorders (6.5%), mood disorders (5.8 %) and inflammatory diseases (4.1%). Route of administration and chemovars of prescribed cannabis products were the following: 96% of patients received cannabis oil (51% CBD rich, 42.5% CBD:THC); 32.1% dried cannabis (21.3% CBD:THC, 7.4% THC rich, 3.4 CBD rich), and 2.1% oral spray cannabis (1.1% CBD:THC, 0.8% CBD rich, 0.2% THC rich). Most patients were prescribed simultaneously, a combination of products with different administration routes and chemovars. Safety analysis is undergoing. Conclusion: Our results provided initial information on the profile of medical cannabis products prescribed in a Canadian population and the experienced adverse events over the past three years. The Santé Cannabis database represents a unique opportunity for comparing clinical practices in prescribing and titrating cannabis-based medications across different centers. Ultimately real-world data, including information about safety and effectiveness, will help to create standardized and validated guidelines for choosing dose, route of administration, and chemovars types for the cannabis-based medication in different diseases and indications.

Keywords: medical cannabis, real-world data, safety, pharmacovigilance

Procedia PDF Downloads 108
542 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 40
541 Incident Management System: An Essential Tool for Oil Spill Response

Authors: Ali Heyder Alatas, D. Xin, L. Nai Ming

Abstract:

An oil spill emergency can vary in size and complexity, subject to factors such as volume and characteristics of spilled oil, incident location, impacted sensitivities and resources required. A major incident typically involves numerous stakeholders; these include the responsible party, response organisations, government authorities across multiple jurisdictions, local communities, and a spectrum of technical experts. An incident management team will encounter numerous challenges. Factors such as limited access to location, adverse weather, poor communication, and lack of pre-identified resources can impede a response; delays caused by an inefficient response can exacerbate impacts caused to the wider environment, socio-economic and cultural resources. It is essential that all parties work based on defined roles, responsibilities and authority, and ensure the availability of sufficient resources. To promote steadfast coordination and overcome the challenges highlighted, an Incident Management System (IMS) offers an essential tool for oil spill response. It provides clarity in command and control, improves communication and coordination, facilitates the cooperation between stakeholders, and integrates resources committed. Following the preceding discussion, a comprehensive review of existing literature serves to illustrate the application of IMS in oil spill response to overcome common challenges faced in a major-scaled incident. With a primary audience comprising practitioners in mind, this study will discuss key principles of incident management which enables an effective response, along with pitfalls and challenges, particularly, the tension between government and industry; case studies will be used to frame learning and issues consolidated from previous research, and provide the context to link practice with theory. It will also feature the industry approach to incident management which was further crystallized as part of a review by the Joint Industry Project (JIP) established in the wake of the Macondo well control incident. The authors posit that a common IMS which can be adopted across the industry not only enhances response capacity towards a major oil spill incident but is essential to the global preparedness effort.

Keywords: command and control, incident management system, oil spill response, response organisation

Procedia PDF Downloads 156
540 Investigating the Behaviour of Composite Floors (Steel Beams and Concrete Slabs) under Mans Rhythmical Movement

Authors: M. Ali Lotfollahi Yaghin, M. Reza Bagerzadeh Karimi, Ali Rahmani, V. Sadeghi Balkanlou

Abstract:

Structural engineers have long been trying to develop solutions using the full potential of its composing materials. Therefore, there is no doubt that the structural solution progress is directly related to an increase in materials science knowledge. These efforts in conjunction with up-to-date modern construction techniques have led to an extensive use of composite floors in large span structures. On the other hand, the competitive trends of the world market have long been forcing structural engineers to develop minimum weight and labour cost solutions. A direct consequence of this new design trend is a considerable increase in problems related to unwanted floor vibrations. For this reason, the structural floors systems become vulnerable to excessive vibrations produced by impacts such as human rhythmic activities. The main objective of this paper is to present an analysis methodology for the evaluation of the composite floors human comfort. This procedure takes into account a more realistic loading model developed to incorporate the dynamic effects induced by human walking. The investigated structural models were based on various composite floors, with main spans varying from 5 to 10 m. based on an extensive parametric study the composite floors dynamic response, in terms of peak accelerations, was obtained and compared to the limiting values proposed by several authors and design standards. This strategy was adopted to provide a more realistic evaluation for this type of structure when subjected to vibration due to human walking.

Keywords: vibration, resonance, composite floors, people’s rhythmic movement, dynamic analysis, Abaqus software

Procedia PDF Downloads 303
539 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation

Authors: G. Imran, A. Pandurangan

Abstract:

Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.

Keywords: ALD, epoxidation, mesoporous, MnOx

Procedia PDF Downloads 183
538 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure

Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik

Abstract:

Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.

Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT

Procedia PDF Downloads 128
537 Nostalgia in Photographed Books for Children – the Case of Photography Books of Children in the Kibbutz

Authors: Ayala Amir

Abstract:

The paper presents interdisciplinary research which draws on the literary study and the cultural study of photography to explore a literary genre defined by nostalgia – the photographed book for children. This genre, which was popular in the second half of the 20th century, presents the romantic, nostalgic image of childhood created in the visual arts in the 18th century (as suggested by Ann Higonnet). At the same time, it capitalizes on the nostalgia inherent in the event of photography as formulated by Jennifer Green-Lewis: photography frames a moment in the present while transforming it into a past longed for in the future. Unlike Freudian melancholy, nostalgia is an effect that enables representation by acknowledging the loss and containing it in the very experience of the object. The representation and preservation of the lost object (nature, childhood, innocence) are in the center of the genre of children's photography books – a modern version of ancient pastoral. In it, the unique synergia of word and image results in a nostalgic image of childhood in an era already conquered by modernization. The nostalgic effect works both in the representation of space – an Edenic image of nature already shadowed by its demise, and of time – an image of childhood imbued by what Gill Bartholnyes calls the "looking backward aesthetics" – under the sign of loss. Little critical attention has been devoted to this genre with the exception of the work of Bettina Kümmerling-Meibauer, who noted the nostalgic effect of the well-known series of photography books by Astrid Lindgren and Anna Riwkin-Brick. This research aims to elaborate Kümmerling-Meibauer's approach using the theories of the study of photography, word-image studies, as well as current studies of childhood. The theoretical perspectives are implemented in the case study of photography books created in one of the most innovative social structures in our time – the Israeli Kibbutz. This communal way of life designed a society where children will experience their childhood in a parentless rural environment that will save them from the fate of the Oedipal fall. It is suggested that in documenting these children in a fictional format, photographers and writers, images and words cooperated in creating nostalgic works situated on the border between nature and culture, imagination and reality, utopia and its realization in history.

Keywords: nostalgia, photography , childhood, children's books, kibutz

Procedia PDF Downloads 142
536 Inclusion and Equity in Higher Education: Case of a Higher Education Institution in Portugal

Authors: Mariana Fernandes

Abstract:

Instituto Politécnico de Viana do Castelo (IPVC) has adopted a policy of inclusion and equity and the promotion of health and academic well-being, reinforcing measures already implemented in previous years, but also with the inclusion of new inclusion and equity policies that allow access, throughout all students, to Higher Education (ES). The Inclusive School project, the Plan for Equality, the IPVC's own Regulations for students with Special Educational Needs (SEN), and the support guaranteed by the Health and Wellbeing Office, Academic Services, and teaching staff are some of the examples of the varied strategies that IPVC undertakes to guarantee effective conditions so that students with disabilities can enter ES and experience a positive academic experience. This study's main objective is to reflect and disseminate the inclusion practices that IPVC practices with regard to Students with SEN. To this, a consultation and documentary analysis of internal documentation was carried out, consultation of the IPVC Quality Management System (QMS) process and, also, using the report referring to the ENEE questionnaire implemented in the year 2023, this report which presents the opinion of IPVC students with SEN, whether with support throughout the ENEE application submission process, with response deadlines, with the Individual Support Plan, as well as with physical and technological accessibility and communication. The results obtained show IPVC's effective commitment to this topic, in addition to the entire circuit created to guarantee equitable access for these students from the moment they join IPVC, a circuit that involves various human resources and( s) its sensitivity to this topic, it also promoted, through the Health and Wellbeing Office, the restructuring of the IPVC ENEE Regulation itself based on the needs and challenges felt in monitoring these students, the innovation of the services themselves of health and consequent awareness of all surrounding resources and services (from the Management, to the teaching staff and academic services). Currently, there is already an Individual Pedagogical Support Plan (PIAP), frequent meetings with the Reception Group, Psychology consultations – both clinically and educationally – and a growing concern in listening to the student community to improve the process. Based on these results, it is concluded that IPVC is an institution sensitive to promoting a positive, equitable, and, above all, inclusive higher education path.

Keywords: special educational needs, inclusion, equity, equality

Procedia PDF Downloads 38
535 NFTs, between Opportunities and Absence of Legislation: A Study on the Effect of the Rulings of the OpenSea Case

Authors: Andrea Ando

Abstract:

The development of the blockchain has been a major innovation in the technology field. It opened the door to the creation of novel cyberassets and currencies. In more recent times, the non-fungible tokens have started to be at the centre of media attention. Their popularity has been increasing since 2021, and they represent the latest in the world of distributed ledger technologies and cryptocurrencies. It seems more and more likely that NFTs will play a more important role in our online interactions. They are indeed increasingly taking part in the arts and technology sectors. Their impact on society and the market is still very difficult to define, but it is very likely that there will be a turning point in the world of digital assets. There are some examples of their peculiar behaviour and effect in our contemporary tech-market: the former CEO of the famous social media site Twitter sold an NFT of his first tweet for around £2,1 million ($2,5 million), or the National Basketball Association has created a platform to sale unique moment and memorabilia from the history of basketball through the non-fungible token technology. Their growth, as imaginable, paved the way for civil disputes, mostly regarding their position under the current intellectual property law in each jurisdiction. In April 2022, the High Court of England and Wales ruled in the OpenSea case that non-fungible tokens can be considered properties. The judge, indeed, concluded that the cryptoasset had all the indicia of property under common law (National Provincial Bank v. Ainsworth). The research has demonstrated that the ruling of the High Court is not providing enough answers to the dilemma of whether minting an NFT is a violation or not of intellectual property and/or property rights. Indeed, if, on the one hand, the technology follows the framework set by the case law (e.g., the 4 criteria of Ainsworth), on the other hand, the question that arises is what is effectively protected and owned by both the creator and the purchaser. Then the question that arises is whether a person has ownership of the cryptographed code, that it is indeed definable, identifiable, intangible, distinct, and has a degree of permanence, or what is attached to this block-chain, hence even a physical object or piece of art. Indeed, a simple code would not have any financial importance if it were not attached to something that is widely recognised as valuable. This was demonstrated first through the analysis of the expectations of intellectual property law. Then, after having laid the foundation, the paper examined the OpenSea case, and finally, it analysed whether the expectations were met or not.

Keywords: technology, technology law, digital law, cryptoassets, NFTs, NFT, property law, intellectual property law, copyright law

Procedia PDF Downloads 89
534 Apollo Quality Program: The Essential Framework for Implementing Patient Safety

Authors: Anupam Sibal

Abstract:

Apollo Quality Program(AQP) was launched across the Apollo Group of Hospitals to address the four patient safety areas; Safety during Clinical Handovers, Medication Safety, Surgical Safety and the six International Patient Safety Goals(IPSGs) of JCI. A measurable, online, quality dashboard covering 20 process and outcome parameters was devised for monthly monitoring. The expected outcomes were also defined and categorized into green, yellow and red ranges. An audit methodology was also devised to check the processes for the measurable dashboard. Documented clinical handovers were introduced for the first time at many locations for in-house patient transfer, nursing-handover, and physician-handover. Prototype forms using the SBAR format were made. Patient-identifiers, read-back for verbal orders, safety of high-alert medications, site marking and time-outs and falls risk-assessment were introduced for all hospitals irrespective of accreditation status. Measurement of Surgical-Site-Infection (SSI) for 30 days postoperatively, was done. All hospitals now tracked the time of administration of antimicrobial prophylaxis before surgery. Situations with high risk of retention of foreign body were delineated and precautionary measures instituted. Audit of medications prescribed in the discharge summaries was made uniform. Formularies, prescription-audits and other means for reduction of medication errors were implemented. There is a marked increase in the compliance to processes and patient safety outcomes. Compliance to read-back for verbal orders rose from 86.83% in April’11 to 96.95% in June’15, to policy for high alert medications from 87.83% to 98.82%, to use of measures to prevent wrong-site, wrong-patient, wrong procedure surgery from 85.75% to 97.66%, to hand-washing from 69.18% to 92.54%, to antimicrobial prophylaxis within one hour before incision from 79.43% to 93.46%. Percentage of patients excluded from SSI calculation due to lack of follow-up for the requisite time frame decreased from 21.25% to 10.25%. The average AQP scores for all Apollo Hospitals improved from 62 in April’11 to 87.7 in Jun’15.

Keywords: clinical handovers, international patient safety goals, medication safety, surgical safety

Procedia PDF Downloads 256
533 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 271
532 Analysis of the Behavior of the Structure Under Internal Anfo Explosion

Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim

Abstract:

Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.

Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety

Procedia PDF Downloads 79
531 Efficacy Study of Post-Tensioned I Girder Made of Ultra-High Performance Fiber Reinforced Concrete and Ordinary Concrete for IRC Loading

Authors: Ayush Satija, Ritu Raj

Abstract:

Escalating demand for elevated structures as a remedy for traffic congestion has led to a surge in the construction of viaducts and bridges predominantly employing prestressed beams. However, post-tensioned I-girder superstructures are gaining traction for their attributes like structural efficiency, cost-effectiveness, and easy construction. Recently, Ultra-high-performance fiber-reinforced concrete (UHPFRC) has emerged as a revolutionary material in reshaping conventional infrastructure engineering. UHPFRC offers exceptional properties including high compressive and tensile strength, alongside enhanced durability. Its adoption in bridges yields benefits, notably a remarkable strength-to-weight ratio enabling the design of lighter and slender structural elements, enhancing functionality and sustainability. Despite its myriad advantages, integration of UHPFRC in construction is still evolving, hindered by factors like cost, material availability, and design standardization. Consequently, there's a need to assess the feasibility of substituting ordinary concrete (OC) with UHPFRC in bridges, focusing on economic considerations. This research undertakes an efficacy study between post-tensioned I-girders fabricated from UHPFRC and OC, evaluating cost parameters associated with concrete production, reinforcement, and erection. The study reveals that UHPFRC becomes economically viable for spans exceeding 40.0m. This shift in cost-effectiveness is attributed to factors like reduced girder depth, elimination of un-tensioned steel, diminished need for shear reinforcement and decreased erection costs.

Keywords: post tensioned I girder, superstructure, ultra-high-performance fiber reinforced concrete, ordinary concrete

Procedia PDF Downloads 40
530 Towards Modern Approaches of Intelligence Measurement for Clinical and Educational Practices

Authors: Alena Kulikova, Tatjana Kanonire

Abstract:

Intelligence research is one of the oldest fields of psychology. Many factors have made a research on intelligence, defined as reasoning and problem solving [1, 2], a very acute and urgent problem. Thus, it has been repeatedly shown that intelligence is a predictor of academic, professional, and social achievement in adulthood (for example, [3]); Moreover, intelligence predicts these achievements better than any other trait or ability [4]. The individual level, a comprehensive assessment of intelligence is a necessary criterion for the diagnosis of various mental conditions. For example, it is a necessary condition for psychological, medical and pedagogical commissions when deciding on educational needs and the most appropriate educational programs for school children. Assessment of intelligence is crucial in clinical psychodiagnostic and needs high-quality intelligence measurement tools. Therefore, it is not surprising that the development of intelligence tests is an essential part of psychological science and practice. Many modern intelligence tests have a long history and have been used for decades, for example, the Stanford-Binet test or the Wechsler test. However, the vast majority of these tests are based on the classic linear test structure, in which all respondents receive all tasks (see, for example, a critical review by [5]). This understanding of the testing procedure is a legacy of the pre-computer era, in which blank testing was the only diagnostic procedure available [6] and has some significant limitations that affect the reliability of the data obtained [7] and increased time costs. Another problem with measuring IQ is that classical line-structured tests do not fully allow to measure respondent's intellectual progress [8], which is undoubtedly a critical limitation. Advances in modern psychometrics allow for avoiding the limitations of existing tools. However, as in any rapidly developing industry, at the moment, psychometrics does not offer ready-made and straightforward solutions and requires additional research. In our presentation we would like to discuss the strengths and weaknesses of the current approaches to intelligence measurement and highlight “points of growth” for creating a test in accordance with modern psychometrics. Whether it is possible to create the instrument that will use all achievements of modern psychometric and remain valid and practically oriented. What would be the possible limitations for such an instrument? The theoretical framework and study design to create and validate the original Russian comprehensive computer test for measuring the intellectual development in school-age children will be presented.

Keywords: Intelligence, psychometrics, psychological measurement, computerized adaptive testing, multistage testing

Procedia PDF Downloads 80
529 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO₂ capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions

Procedia PDF Downloads 166
528 Walking in a Weather rather than a Climate: Critique on the Meta-Narrative of Buddhism in Early India

Authors: Yongjun Kim

Abstract:

Since the agreement on the historicity of historical Buddha in eastern India, the beginning, heyday and decline of Buddhism in Early India have been discussed in urbanization, commercialism and state formation context, in short, Weberian socio-politico frame. Recent Scholarship, notably in archaeology and anthropology, has proposed ‘re-materialization of Buddhism in Early India’ based on what Buddhist had actually done rather than what they should do according to canonical teachings or philosophies. But its historical narrations still remain with a domain of socio-politico meta-narrative which tends to unjustifiably dismiss the naturally existing heterogeneity and often chaotic dynamic of diverse agencies, landscape perceptions, localized traditions, etc. An author will argue the multiplicity of theoretical standpoints for the reconstruction on the Buddhism in Early India. For this, at first, the diverse agencies, localized traditions, landscape patterns of Buddhist communities and monasteries in Trans-Himalayan regions; focusing Zanskar Valley and Spiti Valley in India will be illustrated based on an author’s field work. And then an author will discuss this anthropological landscape analysis is better appropriated with textual and archaeological evidences on the tension between urban monastic and forest Buddhism, the phenomena of sacred landscape, cemetery, garden, natural cave along with socio-economic landscape, the demographic heterogeneity in Early India. Finally, it will be attempted to compare between anthropological landscape of present Trans-Himalayan and archaeological one of ancient Western India. The study of Buddhism in Early India has hardly been discussed through multivalent theoretical archaeology and anthropology of religion, thus traditional and recent scholarship have produced historical meta-narrative though heterogeneous among them. The multidisciplinary approaches of textual critics, archaeology and anthropology will surely help to deconstruct the grand and all-encompassing historical description on Buddhism in Early India and then to reconstruct the localized, behavioral and multivalent narratives. This paper expects to highlight the importance of lesser-studied Buddhist archaeological sites and the dynamic views on religious landscape in Early India with a help of critical anthropology of religion.

Keywords: analogy by living traditions, Buddhism in Early India, landscape analysis, meta-narrative

Procedia PDF Downloads 333
527 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting

Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini

Abstract:

Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.

Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys

Procedia PDF Downloads 107
526 Communication in the Sciences: A Discourse Analysis of Biology Research Articles and Magazine Articles

Authors: Gayani Ranawake

Abstract:

Effective communication is widely regarded as an important aspect of any discipline. This particular study deals with written communication in science. Writing conventions and linguistic choices play a key role in conveying the message effectively to a target audience. Scientists are responsible for conveying their findings or research results not only to their discourse community but also to the general public. Recognizing appropriate linguistic choices is crucial since they vary depending on the target audience. The majority of scientists can communicate effectively with their discourse community, but public engagement seems more challenging to them. There is a lack of research into the language use of scientists, and in particular how it varies by discipline and audience (genre). A better understanding of the different linguistic conventions used in effective science writing by scientists for scientists and by scientists for the public will help to guide scientists who are familiar with their discourse community norms to write effectively for the public. This study investigates the differences and similarities of linguistic choices in biology articles written by scientists for their discourse community and biology magazine articles written by scientists and science communicators for the general public. This study is a part of a larger project investigating linguistic differences in different genres of science academic writing. The sample for this particular study is composed of 20 research articles from the journal Biological Reviews and 20 magazine articles from the magazine Australian Popular Science. Differences in the linguistic devices were analyzed using Hyland’s metadiscourse model for academic writing proposed in 2005. The frequency of the usage of interactive resources (transitions, frame markers, endophoric markers, evidentials and code glosses) and interactional resources (hedges, boosters, attitude markers, self-mentions and engagement markers) were compared and contrasted using the NVivo textual analysis tool. The results clearly show the differences in the frequency of usage of interactional and interactive resources in the two disciplines under investigation. The findings of this study provide a reference guide for scientists and science writers to understand the differences in the linguistic choices between the two genres. This will be particularly helpful for scientists who are proficient at writing for their discourse community, but not for the public.

Keywords: discourse analysis, linguistic choices, metadiscourse, science writing

Procedia PDF Downloads 141