Search results for: predictive decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4867

Search results for: predictive decision

2137 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
2136 Developing a Systems Dynamics Model for Security Management

Authors: Kuan-Chou Chen

Abstract:

This paper will demonstrate a simulation model of an information security system by using the systems dynamic approach. The relationships in the system model are designed to be simple and functional and do not necessarily represent any particular information security environments. The purpose of the paper aims to develop a generic system dynamic information security system model with implications on information security research. The interrelated and interdependent relationships of five primary sectors in the system dynamic model will be presented in this paper. The integrated information security systems model will include (1) information security characteristics, (2) users, (3) technology, (4) business functions, and (5) policy and management. Environments, attacks, government and social culture will be defined as the external sector. The interactions within each of these sectors will be depicted by system loop map as well. The proposed system dynamic model will not only provide a conceptual framework for information security analysts and designers but also allow information security managers to remove the incongruity between the management of risk incidents and the management of knowledge and further support information security managers and decision makers the foundation for managerial actions and policy decisions.

Keywords: system thinking, information security systems, security management, simulation

Procedia PDF Downloads 430
2135 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots

Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu

Abstract:

The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.

Keywords: deep reinforcement learning, interpretation, motion control, legged robots

Procedia PDF Downloads 21
2134 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 117
2133 Labour Standards and Bilateral Migration Flows in ASEAN

Authors: Rusmawati Said, N. Kar Yee, Asmaddy Haris

Abstract:

This study employs a panel data set of ASEAN member states, 17 European Union (EU) countries, 7 American countries and 11 other Asia Pacific countries (China Mainland and Hong Kong SAR are treated as two separated countries) to investigate the role of labour standards in explaining the pattern of bilateral migration flows in ASEAN. Using pooled Ordinary Least Square (OLS) this study found mixed results. The result varies on how indicators were used to measure the level of labour standards in the empirical analysis. In one side, better labour standards (represented by number of strikes and weekly average working hours) promote bilateral migration among the selected countries. On the other side, increase in cases of occupational injuries lead to an increase in bilateral migration, reflecting that worsen in working conditions do not influence the workers’ decision from moving. The finding from this study become important to policy maker as the issues of massive low skilled workers have a significant impact to the role of labour standard in shaping the migration flows.

Keywords: labour standard, migration, ASEAN, economics and financial engineering

Procedia PDF Downloads 411
2132 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance

Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie

Abstract:

This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.

Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling

Procedia PDF Downloads 113
2131 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy

Authors: Wichian Sriprachan, Chutikarn Sriviboon

Abstract:

The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.

Keywords: management, local town (Tambon), principles of sufficiency economy, marketing management

Procedia PDF Downloads 347
2130 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram

Abstract:

The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.

Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems

Procedia PDF Downloads 356
2129 Finding out the Best Criteria for Locating the Best Place Resettling of Victims after the Earthquake: A Case Study for Tehran, Iran

Authors: Reyhaneh Saeedi

Abstract:

Iran is a capable zone for the earthquake that follows the loss of lives and financial damages. To have sheltering for earthquake victims is one of the basic requirements although it is hard to select suitable places for temporary resettling after an earthquake happens. Before these kinds of disasters happen, the best places for resettling the victims must be designated. This matter is an important issue in disaster management and planning. Geospatial Information System(GIS) has a determining role in disaster management, it can determine the best places for temporary resettling after such a disaster. In this paper, the best criteria have been determined associated with their weights and buffers by use of research and questionnaire for locating the best places. In this paper, AHP method is used as decision model and to locate the best places for temporary resettling is done based on the selected criteria. Also, in this research are made the buffer layers of criteria and change them to the raster layers. Later on, the raster layers are multiplied on desired weights then, the results are added together. Finally, there are suitable places for resettling of victims by desired criteria by different colors with their optimum rate in ArcGIS software.

Keywords: disaster management, temporary resettlement, earthquake, criteria

Procedia PDF Downloads 293
2128 Unearthing Air Traffic Control Officers Decision Instructional Patterns From Simulator Data for Application in Human Machine Teams

Authors: Zainuddin Zakaria, Sun Woh Lye

Abstract:

Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.

Keywords: air traffic control strategies, conflict resolution, simulator data, strategy classification system

Procedia PDF Downloads 148
2127 A Comprehensive Metamodel of an Urbanized Information System: Experimental Case

Authors: Leila Trabelsi

Abstract:

The urbanization of Information Systems (IS) is an effective approach to master the complexity of the organization. It strengthens the coherence of IS and aligns it with the business strategy. Moreover, this approach has significant advantages such as reducing Information Technologies (IT) costs, enhancing the IS position in a competitive environment and ensuring the scalability of the IS through the integration of technological innovations. Therefore, the urbanization is considered as a business strategic decision. Thus, its embedding becomes a necessity in order to improve the IS practice. However, there is a lack of experimental cases studying meta-modelling of Urbanized Information System (UIS). The aim of this paper addresses new urbanization content meta-model which permits modelling, testing and taking into consideration organizational aspects. This methodological framework is structured according to two main abstraction levels, a conceptual level and an operational level. For each of these levels, different models are proposed and presented. The proposed model for has been empirically tested on company. The findings of this paper present an experimental study of urbanization meta-model. The paper points out the significant relationships between dimensions and their evolution.

Keywords: urbanization, information systems, enterprise architecture, meta-model

Procedia PDF Downloads 437
2126 Developing Serious Games to Improve Learning Experience of Programming: A Case Study

Authors: Shan Jiang, Xinyu Tang

Abstract:

Game-based learning is an emerging pedagogy to make the learning experience more effective, enjoyable, and fun. However, most games used in classroom settings have been overly simplistic. This paper presents a case study on a Python-based online game designed to improve the effectiveness in both teaching and research in higher education. The proposed game system not only creates a fun and enjoyable experience for students to learn various topics in programming but also improves the effectiveness of teaching in several aspects, including material presentation, helping students to recognize the importance of the subjects, and linking theoretical concepts to practice. The proposed game system also serves as an information cyber-infrastructure that automatically collects and stores data from players. The data could be useful in research areas including human-computer interaction, decision making, opinion mining, and artificial intelligence. They further provide other possibilities beyond these areas due to the customizable nature of the game.

Keywords: game-based learning, programming, research-teaching integration, Hearthstone

Procedia PDF Downloads 165
2125 Nondestructive Prediction and Classification of Gel Strength in Ethanol-Treated Kudzu Starch Gels Using Near-Infrared Spectroscopy

Authors: John-Nelson Ekumah, Selorm Yao-Say Solomon Adade, Mingming Zhong, Yufan Sun, Qiufang Liang, Muhammad Safiullah Virk, Xorlali Nunekpeku, Nana Adwoa Nkuma Johnson, Bridget Ama Kwadzokpui, Xiaofeng Ren

Abstract:

Enhancing starch gel strength and stability is crucial. However, traditional gel property assessment methods are destructive, time-consuming, and resource-intensive. Thus, understanding ethanol treatment effects on kudzu starch gel strength and developing a rapid, nondestructive gel strength assessment method is essential for optimizing the treatment process and ensuring product quality consistency. This study investigated the effects of different ethanol concentrations on the microstructure of kudzu starch gels using a comprehensive microstructural analysis. We also developed a nondestructive method for predicting gel strength and classifying treatment levels using near-infrared (NIR) spectroscopy, and advanced data analytics. Scanning electron microscopy revealed progressive network densification and pore collapse with increasing ethanol concentration, correlating with enhanced mechanical properties. NIR spectroscopy, combined with various variable selection methods (CARS, GA, and UVE) and modeling algorithms (PLS, SVM, and ELM), was employed to develop predictive models for gel strength. The UVE-SVM model demonstrated exceptional performance, with the highest R² values (Rc = 0.9786, Rp = 0.9688) and lowest error rates (RMSEC = 6.1340, RMSEP = 6.0283). Pattern recognition algorithms (PCA, LDA, and KNN) successfully classified gels based on ethanol treatment levels, achieving near-perfect accuracy. This integrated approach provided a multiscale perspective on ethanol-induced starch gel modification, from molecular interactions to macroscopic properties. Our findings demonstrate the potential of NIR spectroscopy, coupled with advanced data analysis, as a powerful tool for rapid, nondestructive quality assessment in starch gel production. This study contributes significantly to the understanding of starch modification processes and opens new avenues for research and industrial applications in food science, pharmaceuticals, and biomaterials.

Keywords: kudzu starch gel, near-infrared spectroscopy, gel strength prediction, support vector machine, pattern recognition algorithms, ethanol treatment

Procedia PDF Downloads 37
2124 Determinants of Foreign Direct Investment in Tourism: A Panel Data Analysis of Developing Countries

Authors: Malraj Bharatha Kiriella

Abstract:

The purpose of this paper is to investigate the determinants of tourism foreign direct investment (TFDI) to selected developing countries during 1978-2017. The study used pooled panel data to estimate an econometric model. The findings show that market size and institutional barriers are determining factors for TFDI in countries, while other variables of positive country conditions, FDI-related government policy, tourism-related infrastructure and labor conditions are insignificant. The result shows that institutional effects are positive, while market size negatively affects TFDI inflows. The research is limited to eight developing countries. The results can be used to support government policy on TFDI. The paper makes the following contributions: First, it provides important insight and understanding into the TFDI decision-making process in developing countries. Second, both TFDI theory and evidence are minimal, and an econometric model developed on the basis of available literature has been empirically tested.

Keywords: determinants, developing countries, FDI in tourism, panel data

Procedia PDF Downloads 107
2123 Attributable Mortality of Nosocomial Infection: A Nested Case Control Study in Tunisia

Authors: S. Ben Fredj, H. Ghali, M. Ben Rejeb, S. Layouni, S. Khefacha, L. Dhidah, H. Said

Abstract:

Background: The Intensive Care Unit (ICU) provides continuous care and uses a high level of treatment technologies. Although developed country hospitals allocate only 5–10% of beds in critical care areas, approximately 20% of nosocomial infections (NI) occur among patients treated in ICUs. Whereas in the developing countries the situation is still less accurate. The aim of our study is to assess mortality rates in ICUs and to determine its predictive factors. Methods: We carried out a nested case-control study in a 630-beds public tertiary care hospital in Eastern Tunisia. We included in the study all patients hospitalized for more than two days in the surgical or medical ICU during the entire period of the surveillance. Cases were patients who died before ICU discharge, whereas controls were patients who survived to discharge. NIs were diagnosed according to the definitions of ‘Comité Technique des Infections Nosocomiales et les Infections Liées aux Soins’ (CTINLIS, France). Data collection was based on the protocol of Rea-RAISIN 2009 of the National Institute for Health Watch (InVS, France). Results: Overall, 301 patients were enrolled from medical and surgical ICUs. The mean age was 44.8 ± 21.3 years. The crude ICU mortality rate was 20.6% (62/301). It was 35.8% for patients who acquired at least one NI during their stay in ICU and 16.2% for those without any NI, yielding an overall crude excess mortality rate of 19.6% (OR= 2.9, 95% CI, 1.6 to 5.3). The population-attributable fraction due to ICU-NI in patients who died before ICU discharge was 23.46% (95% CI, 13.43%–29.04%). Overall, 62 case-patients were compared to 239 control patients for the final analysis. Case patients and control patients differed by age (p=0,003), simplified acute physiology score II (p < 10-3), NI (p < 10-3), nosocomial pneumonia (p=0.008), infection upon admission (p=0.002), immunosuppression (p=0.006), days of intubation (p < 10-3), tracheostomy (p=0.004), days with urinary catheterization (p < 10-3), days with CVC ( p=0.03), and length of stay in ICU (p=0.003). Multivariate analysis demonstrated 3 factors: age older than 65 years (OR, 5.78 [95% CI, 2.03-16.05] p=0.001), duration of intubation 1-10 days (OR, 6.82 [95% CI, [1.90-24.45] p=0.003), duration of intubation > 10 days (OR, 11.11 [95% CI, [2.85-43.28] p=0.001), duration of CVC 1-7 days (OR, 6.85[95% CI, [1.71-27.45] p=0.007) and duration of CVC > 7 days (OR, 5.55[95% CI, [1.70-18.04] p=0.004). Conclusion: While surveillance provides important baseline data, successful trials with more active intervention protocols, adopting multimodal approach for the prevention of nosocomial infection incited us to think about the feasibility of similar trial in our context. Therefore, the implementation of an efficient infection control strategy is a crucial step to improve the quality of care.

Keywords: intensive care unit, mortality, nosocomial infection, risk factors

Procedia PDF Downloads 406
2122 Hybrid Model for Measuring the Hedge Strategy in Exchange Risk in Information Technology Industry

Authors: Yi-Hsien Wang, Fu-Ju Yang, Hwa-Rong Shen, Rui-Lin Tseng

Abstract:

The business is notably related to the market risk according to the increase of liberalization of financial markets. Hence, the company usually utilized high financial leverage of derivatives to hedge the risk. When the company choose different hedging instruments to face a variety of exchange rate risk, we employ the Multinomial Logistic-AHP to analyze the impact of various derivatives. Hence, the research summarized the literature on relevant factors affecting managers selected exchange rate hedging instruments, using Multinomial Logistic Model and and further integrate AHP. Using Experts’ Questionnaires can test multi-level selection and hedging effect of different hedging instruments in order to calculate the hedging instruments and the multi-level factors of weights to understand the gap between the empirical results and practical operation. Finally, the Multinomial Logistic-AHP Model will sort the weights to analyze. The research findings can be a basis reference for investors in decision-making.

Keywords: exchange rate risk, derivatives, hedge, multinomial logistic-AHP

Procedia PDF Downloads 442
2121 The Parliamentary Intention behind Schedule 21 to the Criminal Justice Act 2003

Authors: George R. Mawhinney

Abstract:

In 2003 Parliament passed statutory sentencing guidelines, the only of their kind, for the sentencing of murder in England and Wales, after the Home Secretary's role in determining sentences for the offence was effectively ended by the House of Lords' decision in Anderson applying Art.6 of the ECHR (European Convention on Human Rights). However, in the parliamentary debates during the passage of the Criminal Justice Act 2003 containing the guidelines, many views were expressed both by government ministers and backbench MPs of various parties concerning the gravity of the offence of murder, principally discussing the harm of death. This paper examines parliamentary debates as recorded in Hansard, to assess whether this was isolated or indeed there was a broader movement at the time to treat the harm of death more seriously by toughening sentencing regimes for other related homicide offences, or even creating new offences concerning the causing of death. Such evidence of valuing the harm of death more seriously than before would shine a new light on what previously has been deemed mere 'popular punitiveness' and offer a principled basis for lengthening the sentences of these kind of crimes.

Keywords: death, desert, gravity, harm, murder, parliamentary intention, Schedule 21, sentencing, seriousness

Procedia PDF Downloads 149
2120 Designing Inventory System with Constrained by Reducing Ordering Cost, Lead Time and Lost Sale Rate and Considering Random Disturbance in Ordering Quantity

Authors: Arezoo Heidary, Abolfazl Mirzazadeh, Aref Gholami-Qadikolaei

Abstract:

In the business environment it is very common that a lot received may not be equal to quantity ordered. in this work, a random disturbance in a received quantity is considered. It is assumed a maximum allowable limit for storage space and inventory investment.The impact of lead time and ordering cost reductions once they act dependently is also investigated. Further, considering a mixture of back order and lost sales for allowable shortage system, the effect of investment on reducing lost sale rate is analyzed. For the proposed control system, a Lagrangian method is applied in order to solve the problem and an algorithmic procedure is utilized to achieve optimal solution with the global minimum expected cost. Finally, proves on concavity and convexity of the model in the decision variables are shown.

Keywords: stochastic inventory system, lead time, ordering cost, lost sale rate, inventory constraints, random disturbance

Procedia PDF Downloads 419
2119 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 590
2118 IoT Based Information Processing and Computing

Authors: Mannan Ahmad Rasheed, Sawera Kanwal, Mansoor Ahmad Rasheed

Abstract:

The Internet of Things (IoT) has revolutionized the way we collect and process information, making it possible to gather data from a wide range of connected devices and sensors. This has led to the development of IoT-based information processing and computing systems that are capable of handling large amounts of data in real time. This paper provides a comprehensive overview of the current state of IoT-based information processing and computing, as well as the key challenges and gaps that need to be addressed. This paper discusses the potential benefits of IoT-based information processing and computing, such as improved efficiency, enhanced decision-making, and cost savings. Despite the numerous benefits of IoT-based information processing and computing, several challenges need to be addressed to realize the full potential of these systems. These challenges include security and privacy concerns, interoperability issues, scalability and reliability of IoT devices, and the need for standardization and regulation of IoT technologies. Moreover, this paper identifies several gaps in the current research related to IoT-based information processing and computing. One major gap is the lack of a comprehensive framework for designing and implementing IoT-based information processing and computing systems.

Keywords: IoT, computing, information processing, Iot computing

Procedia PDF Downloads 188
2117 A Geospatial Consumer Marketing Campaign Optimization Strategy: Case of Fuzzy Approach in Nigeria Mobile Market

Authors: Adeolu O. Dairo

Abstract:

Getting the consumer marketing strategy right is a crucial and complex task for firms with a large customer base such as mobile operators in a competitive mobile market. While empirical studies have made efforts to identify key constructs, no geospatial model has been developed to comprehensively assess the viability and interdependency of ground realities regarding the customer, competition, channel and the network quality of mobile operators. With this research, a geo-analytic framework is proposed for strategy formulation and allocation for mobile operators. Firstly, a fuzzy analytic network using a self-organizing feature map clustering technique based on inputs from managers and literature, which depicts the interrelationships amongst ground realities is developed. The model is tested with a mobile operator in the Nigeria mobile market. As a result, a customer-centric geospatial and visualization solution is developed. This provides a consolidated and integrated insight that serves as a transparent, logical and practical guide for strategic, tactical and operational decision making.

Keywords: geospatial, geo-analytics, self-organizing map, customer-centric

Procedia PDF Downloads 183
2116 The Impact of Inpatient New Boarding Policy on Emergency Department Overcrowding: A Discrete Event Simulation Study

Authors: Wheyming Tina Song, Chi-Hao Hong

Abstract:

In this study, we investigate the effect of a new boarding policy - short stay, on the overcrowding efficiency in emergency department (ED). The decision variables are no. of short stay beds for least acuity ED patients. The performance measurements used are national emergency department overcrowding score (NEDOCS) and ED retention rate (the percentage that patients stay in ED over than 48 hours in one month). Discrete event simulation (DES) is used as an analysis tool to evaluate the strategy. Also, common random number (CRN) technique is applied to enhance the simulation precision. The DES model was based on a census of 6 months' patients who were treated in the ED of the National Taiwan University Hospital Yunlin Branch. Our results show that the new short-stay boarding significantly impacts both the NEDOCS and ED retention rate when the no. of short stay beds is more than three.

Keywords: emergency department (ED), common random number (CRN), national emergency department overcrowding score (NEDOCS), discrete event simulation (DES)

Procedia PDF Downloads 348
2115 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 209
2114 Digital Library Evaluation by SWARA-WASPAS Method

Authors: Mehmet Yörükoğlu, Serhat Aydın

Abstract:

Since the discovery of the manuscript, mechanical methods for storing, transferring and using the information have evolved into digital methods over the time. In this process, libraries that are the center of the information have also become digitized and become accessible from anywhere and at any time in the world by taking on a structure that has no physical boundaries. In this context, some criteria for information obtained from digital libraries have become more important for users. This paper evaluates the user criteria from different perspectives that make a digital library more useful. The Step-Wise Weight Assessment Ratio Analysis-Weighted Aggregated Sum Product Assessment (SWARA-WASPAS) method is used with flexibility and easy calculation steps for the evaluation of digital library criteria. Three different digital libraries are evaluated by information technology experts according to five conflicting main criteria, ‘interface design’, ‘effects on users’, ‘services’, ‘user engagement’ and ‘context’. Finally, alternatives are ranked in descending order.

Keywords: digital library, multi criteria decision making, SWARA-WASPAS method

Procedia PDF Downloads 151
2113 Preventive Effect of Locoregional Analgesia Techniques on Chronic Post-Surgical Neuropathic Pain: A Prospective Randomized Study

Authors: Beloulou Mohamed Lamine, Bouhouf Attef, Meliani Walid, Sellami Dalila, Lamara Abdelhak

Abstract:

Introduction: Post-surgical chronic pain (PSCP) is a pathological condition with a rather complex etiopathogenesis that extensively involves sensitization processes and neuronal damage. The neuropathic component of these pains is almost always present, with variable expression depending on the type of surgery. Objective: To assess the presumed beneficial effect of Regional Anesthesia-Analgesia Techniques (RAAT) on the development of post-surgical chronic neuropathic pain (PSCNP) in various surgical procedures. Patients and Methods: A comparative study involving 510 patients distributed across five surgical models (mastectomy, thoracotomy, hernioplasty, cholecystectomy, and major abdominal-pelvic surgery) and randomized into two groups: Group A (240) receiving conventional postoperative analgesia and Group B (270) receiving balanced analgesia, including the implementation of a Regional Anesthesia-Analgesia Technique (RAAT). These patients were longitudinally followed over a 6-month period, with post-surgical chronic neuropathic pain (PSCNP) defined by a Neuropathic Pain Score DN2≥ 3. Comparative measurements through univariate and multivariate analyses were performed to identify associations between the development of PSCNP and certain predictive factors, including the presumed preventive impact (protective effect) of RAAT. Results: At the 6th month post-surgery, 419 patients were analyzed (Group A= 196 and Group B= 223). The incidence of PSCNP was 32.2% (n=135). Among these patients with chronic pain, the prevalence of neuropathic pain was 37.8% (95% CI: [29.6; 46.5]), with n=51/135. It was significantly lower in Group B compared to Group A, with respective percentages of 31.4% vs. 48.8% (p-value = 0.035). The most significant differences were observed in breast and thoracopulmonary surgeries. In a multiple regression analysis, two predictors of PSCNP were identified: the presence of preoperative pain at the surgical site as a risk factor (OR: 3.198; 95% CI [1.326; 7.714]) and RAAT as a protective factor (OR: 0.408; 95% CI [0.173; 0.961]). Conclusion: The neuropathic component of PSCNP can be observed in different types of surgeries. Regional analgesia included in a multimodal approach to postoperative pain management has proven to be effective for acute pain and seems to have a preventive impact on the development of PSCNP and its neuropathic nature or component, particularly in surgeries that are more prone to chronicization.

Keywords: chronic postsurgical pain, postsurgical chronic neuropathic pain, regional anesthesia and analgesia techniques (RAAT), neuropathic pain score dn2, preventive impact

Procedia PDF Downloads 27
2112 Individual Differences in Affective Neuroscience Personality Traits Predict Several Dimensions of Psychological Wellbeing. A Cross-Sectional Study in Healthy Subjects

Authors: Valentina Colonnello, Paolo Maria Russo

Abstract:

Decades of cross-species affective neuroscience research by Panksepp and others have identified basic evolutionarily preserved subcortical emotional systems that humans share with mammals and many vertebrates. These primary emotional systems encode unconditional affective responses and contribute to the development of personality traits throughout ontogenesis and interactions with the environment. The Affective Neuroscience Personality Scale (ANPS) measures individual differences in affective personality traits associated with the basic emotional systems of CARE, PLAY, SEEKING, SADNESS, FEAR, and ANGER, along with Spirituality, which is a more cognitively and socially refined expression of affectivity. Though the ANPS’s power to predict human psychological distress has been documented, to the best of our knowledge, its predictive power for psychological wellbeing has not been explored. This study therefore investigates the relationship between affective neuroscience traits and psychological wellbeing facets. Because the emotional systems are thought to influence cognitively-mediated mental processes about the self and the world, understanding the relationship between affective traits and psychological wellbeing is particularly relevant to understanding the affective dimensions of health. In a cross-sectional study, healthy participants (n = 402) completed the ANPS and the Psychological Wellbeing scale. Multiple regressions revealed that each facet of wellbeing was explained by two to four affective traits, and each trait was significantly related to at least one aspect of wellbeing. Specifically, SEEKING predicted all the wellbeing facets, except for positive relations; CARE predicted personal growth, positive relations, purpose in life, and self-acceptance; PLAY and, inversely, ANGER predicted positive relations; SADNESS inversely predicted autonomy, while FEAR inversely predicted purpose in life. SADNESS and FEAR inversely predicted environmental mastery and self-acceptance. Finally, Spirituality predicted personal growth, positive relations, and self-acceptance. These findings are the first to show the relationship between affective neuroscience personality traits and psychological wellbeing. They also call attention to the distinctive role of FEAR and PANIC traits in psychological wellbeing facets, thereby complementing or even overcoming the traditional personality approach to neuroticism as a global trait.

Keywords: affective neuroscience, individual differences, personality, wellbeing

Procedia PDF Downloads 120
2111 A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis

Authors: Shima Soltanzadeh, Mohammad Hosain Fazel Zarandi, Mojtaba Barzegar Astanjin

Abstract:

Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression.

Keywords: classification, fuzzy c-means, logistic regression, Naive Bayesian, neural network, ROC curve

Procedia PDF Downloads 337
2110 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity

Authors: Gizem İntepe, Eti Mizrahi

Abstract:

Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.

Keywords: economic activity, export trade data, import trade data, logistics indices

Procedia PDF Downloads 337
2109 An Examination of the Factors Affecting the Adoption of Cloud Enterprise Resource Planning Systems in Egyptian Companies

Authors: Mayar A. Omar, Ismail Gomaa, Heba Badawy, Hosam Moubarak

Abstract:

Enterprise resource planning (ERP) is an integrated system that helps companies in managing their resources. There are two types of ERP systems, traditional ERP systems and cloud ERP systems. Cloud ERP systems were introduced after the development of cloud computing technology. This research aims to identify the factors that affect the adoption of cloud ERP in Egyptian companies. Moreover, the aim of our study is to provide guidance to Egyptian companies in the cloud ERP adoption decision and to participate in increasing the number of cloud ERP studies that are conducted in the Middle East and in developing countries. There are many factors influencing the adoption of cloud ERP in Egyptian organizations, which are discussed and explained in the research. Those factors are examined by combining the diffusion of innovation theory (DOI) and technology-organization-environment framework (TOE). Data were collected through a survey that was developed using constructs from the existing studies of cloud computing and cloud ERP technologies and was then modified to fit our research. The analysis of the data was based on structural equation modeling (SEM) using Smart PLS software that was used for the empirical analysis of the research model.

Keywords: cloud computing, cloud ERP systems, DOI, Egypt, SEM, TOE

Procedia PDF Downloads 137
2108 Technology Maps in Energy Applications Based on Patent Trends: A Case Study

Authors: Juan David Sepulveda

Abstract:

This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: energy, technology mapping, patents, univariate analysis

Procedia PDF Downloads 476