Search results for: pipe turbulent flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5097

Search results for: pipe turbulent flow

2367 Study of the Hydrodynamic of Electrochemical Ion Pumping for Lithium Recovery

Authors: Maria Sofia Palagonia, Doriano Brogioli, Fabio La Mantia

Abstract:

In the last decade, lithium has become an important raw material in various sectors, in particular for rechargeable batteries. Its production is expected to grow more and more in the future, especially for mobile energy storage and electromobility. Until now it is mostly produced by the evaporation of water from salt lakes, which led to a huge water consumption, a large amount of waste produced and a strong environmental impact. A new, clean and faster electrochemical technique to recover lithium has been recently proposed: electrochemical ion pumping. It consists in capturing lithium ions from a feed solution by intercalation in a lithium-selective material, followed by releasing them into a recovery solution; both steps are driven by the passage of a current. In this work, a new configuration of the electrochemical cell is presented, used to study and optimize the process of the intercalation of lithium ions through the hydrodynamic condition. Lithium Manganese Oxide (LiMn₂O₄) was used as a cathode to intercalate lithium ions selectively during the reduction, while Nickel Hexacyano Ferrate (NiHCF), used as an anode, releases positive ion. The effect of hydrodynamics on the process has been studied by conducting the experiments at various fluxes of the electrolyte through the electrodes, in terms of charge circulated through the cell, captured lithium per unit mass of material and overvoltage. The result shows that flowing the electrolyte inside the cell improves the lithium capture, in particular at low lithium concentration. Indeed, in Atacama feed solution, at 40 mM of lithium, the amount of lithium captured does not increase considerably with the flux of the electrolyte. Instead, when the concentration of the lithium ions is 5 mM, the amount of captured lithium in a single capture cycle increases by increasing the flux, thus leading to the conclusion that the slowest step in the process is the transport of the lithium ion in the liquid phase. Furthermore, an influence of the concentration of other cations in solution on the process performance was observed. In particular, the capturing of the lithium using a different concentration of NaCl together with 5 mM of LiCl was performed, and the results show that the presence of NaCl limits the amount of the captured lithium. Further studies can be performed in order to understand why the full capacity of the material is not reached at the highest flow rate. This is probably due to the porous structure of the material since the liquid phase is likely not affected by the convection flow inside the pores. This work proves that electrochemical ion pumping, with a suitable hydrodynamic design, enables the recovery of lithium from feed solutions at the lower concentration than the sources that are currently exploited, down to 1 mM.

Keywords: desalination battery, electrochemical ion pumping, hydrodynamic, lithium

Procedia PDF Downloads 208
2366 Groundwater Numerical Modeling, an Application of Remote Sensing, and GIS Techniques in South Darb El Arbaieen, Western Desert, Egypt

Authors: Abdallah M. Fayed

Abstract:

The study area is located in south Darb El Arbaieen, western desert of Egypt. It occupies the area between latitudes 22° 00/ and 22° 30/ North and Longitudes 29° 30/ and 30° 00/ East, from southern border of Egypt to the area north Bir Kuraiym and from the area East of East Owienat to the area west Tushka district, its area about 2750 Km2. The famous features; southern part of Darb El Arbaieen road, G Baraqat El Scab El Qarra, Bir Dibis, Bir El Shab and Bir Kuraiym, Interpretation of soil stratification shows layers that are related to Quaternary and Upper-Lower Cretaceous eras. It is dissected by a series of NE-SW striking faults. The regional groundwater flow direction is in SW-NE direction with a hydraulic gradient is 1m / 2km. Mathematical model program has been applied for evaluation of groundwater potentials in the main Aquifer –Nubian Sandstone- in the area of study and Remote sensing technique is considered powerful, accurate and saving time in this respect. These techniques are widely used for illustrating and analysis different phenomenon such as the new development in the desert (land reclamation), residential development (new communities), urbanization, etc. The major issues concerning water development objective of this work is to determine the new development areas in western desert of Egypt during the period from 2003 to 2015 using remote sensing technique, the impacts of the present and future development have been evaluated by using the two-dimensional numerical groundwater flow Simulation Package (visual modflow 4.2). The package was used to construct and calibrate a numerical model that can be used to simulate the response of the aquifer in the study area under implementing different management alternatives in the form of changes in piezometric levels and salinity. Total period of simulation is 100 years. After steady state calibration, two different scenarios are simulated for groundwater development. 21 production wells are installed at the study area and used in the model, with the total discharge for the two scenarios were 105000 m3/d, 210000 m3/d. The drawdown was 11.8 m and 23.7 m for the two scenarios in the end of 100 year. Contour maps for water heads and drawdown and hydrographs for piezometric head are represented. The drawdown was less than the half of the saturated thickness (the safe yield case).

Keywords: remote sensing, management of aquifer systems, simulation modeling, western desert, South Darb El Arbaieen

Procedia PDF Downloads 403
2365 Closed Mitral Valvotomy: A Safe and Promising Procedure

Authors: Sushil Kumar Singh, Kumar Rahul, Vivek Tewarson, Sarvesh Kumar, Shobhit Kumar

Abstract:

Objective: Rheumatic mitral stenosis continues to be a major public health problem in developing countries. When the left atrium (LA) is unable to fill the left ventricle (LV) at normal LA pressures due to impaired relaxation and impaired compliance, diastolic dysfunction occurs. The assessment of left ventricular (LV) diastolic function and filling pressures is of clinical importance to identify underlying cardiac disease, its treatment, and to assess prognosis. 2D echocardiography can detect diastolic dysfunction with excellent sensitivity and minimal risk when compared to the gold standard of invasive pressure-volume measurements. Material and Method: This was a one-year study consisting of twenty-nine patients of isolated rheumatic severe mitral stenosis. Data was analyzed preoperative and post operative (at one month follow-up). Transthoracic 2D echocardiographic parameters of the diastolic function are transmitral flow, pulmonary venous flow, mitral annular tissue doppler, and color M-mode doppler. In our study, mitral valve orifice area, ejection fraction, deceleration time, E/A-wave, E/E’-wave, myocardial performance index of left ventricle (Tei index ), and Mitral inflow propagation velocity were included for echocardiographic evaluation. The statistical analysis was performed on SPSS Version 15.0 statistical analysis software. Result: Twenty-nine patients underwent successful closed mitral commissurotomy for isolated mitral stenosis. The outcome measures were observed pre-operatively and at one-month follow-up. The majority of patients were in NYHA grade III (69.0%) in the preoperative period, which improved to NYHA grade I (48.3%) after closed mitral commissurotomy. Post-surgery mitral valve area increased from 0.77 ± 0.13 to 2.32 ± 0.26 cm, ejection fraction increased from 61.38 ± 4.61 to 64.79 ± 3.22. There was a decrease in deceleration time from 231.55 ± 49.31 to 168.28 ± 14.30 ms, E/A ratio from 1.70 ± 0.54 from 0.89 ± 0.39, E/E’ ratio from 14.59 ± 3.34 to 8.86 ± 3.03. In addition, there was improvement in TIE index from 0.50 ± 0.03 to 0.39 ± 0.06 and mitral inflow propagation velocity from 47.28 ± 3.71 to 57.86 ± 3.19 cm/sec. In peri-operative and follow-up, there was no incidence of severe mitral regurgitation (MR). There was no thromboembolic incident and no mortality.

Keywords: closed mitral valvotomy, mitral stenosis, open mitral commissurotomy, balloon mitral valvotomy

Procedia PDF Downloads 85
2364 Modeling of Landslide-Generated Tsunamis in Georgia Strait, Southern British Columbia

Authors: Fatemeh Nemati, Lucinda Leonard, Gwyn Lintern, Richard Thomson

Abstract:

In this study, we will use modern numerical modeling approaches to estimate tsunami risks to the southern coast of British Columbia from landslides. Wave generation is to be simulated using the NHWAVE model, which solves the Navier-Stokes equations due to the more complex behavior of flow near the landslide source; far-field wave propagation will be simulated using the simpler model FUNWAVE_TVD with high-order Boussinesq-type wave equations, with a focus on the accurate simulation of wave propagation and regional- or coastal-scale inundation predictions.

Keywords: FUNWAVE-TVD, landslide-generated tsunami, NHWAVE, tsunami risk

Procedia PDF Downloads 155
2363 Impact of Alternative Fuel Feeding on Fuel Cell Performance and Durability

Authors: S. Rodosik, J. P. Poirot-Crouvezier, Y. Bultel

Abstract:

With the expansion of the hydrogen economy, Proton Exchange Membrane Fuel Cell (PEMFC) systems are often presented as promising energy converters suitable for transport applications. However, reaching a durability of 5000 h recommended by the U.S. Department of Energy and decreasing system cost are still major hurdles to their development. In order to increase the system efficiency and simplify the system without affecting the fuel cell lifetime, an architecture called alternative fuel feeding has been developed. It consists in a fuel cell stack divided into two parts, alternatively fed, implemented on a 5-kW system for real scale testing. The operation strategy can be considered close to Dead End Anode (DEA) with specific modifications to avoid water and nitrogen accumulation in the cells. The two half-stacks are connected in series to enable each stack to be alternatively fed. Water and nitrogen accumulated can be shifted from one half-stack to the other one according to the alternative feeding frequency. Thanks to the homogenization of water vapor along the stack, water management was improved. The operating conditions obtained at system scale are close to recirculation without the need of a pump or an ejector. In a first part, a performance comparison with the DEA strategy has been performed. At high temperature and low pressure (80°C, 1.2 bar), performance of alternative fuel feeding was higher, and the system efficiency increased. In a second part, in order to highlight the benefits of the architecture on the fuel cell lifetime, two durability tests, lasting up to 1000h, have been conducted. A test on the 5-kW system has been compared to a reference test performed on a test bench with a shorter stack, conducted with well-controlled operating parameters and flow-through hydrogen strategy. The durability test is based upon the Fuel Cell Dynamic Load Cycle (FC-DLC) protocol but adapted to the system limitations: without OCV steps and a maximum current density of 0.4 A/cm². In situ local measurements with a segmented S++® plate performed all along the tests, showed a more homogeneous distribution of the current density with alternative fuel feeding than in flow-through strategy. Tests performed in this work enabled the understanding of this architecture advantages and drawbacks. Alternative fuel feeding architecture appeared to be a promising solution to ensure the humidification function at the anode side with a simplified fuel cell system.

Keywords: automotive conditions, durability, fuel cell system, proton exchange membrane fuel cell, stack architecture

Procedia PDF Downloads 142
2362 Assessment of ATC with Shunt FACTS Devices

Authors: Ashwani Kumar, Jitender Kumar

Abstract:

In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.

Keywords: available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model

Procedia PDF Downloads 601
2361 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection

Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger

Abstract:

Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.

Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor

Procedia PDF Downloads 399
2360 Dynamic Study of a Two Phase Thermosyphon Loop

Authors: Selva Georgena D., Videcoq Etienne, Caner Julien, Benselama Adel, Girault Manu

Abstract:

A Two-Phase Thermosyphon Loop (TPTL) is a passive cooling system which does not require a pump to function. Therefore, TPTL is a simple and robust device and its physics is complex to describe because of the coupled phenomena: heat flux, nucleation, fluid dynamics and gravitational effects. Moreover, the dynamic behavior of TPTL shows some physical instabilities and the actual occurrence of such a behavior remains unknown. The aim of this study is to propose a thermal balance of the TPTL to better identify the fundamental reasons for the appearance of the instabilities.

Keywords: Two-phase flow, passive cooling system, thermal reliability, thermal experimental study, liquid-vapor phase change

Procedia PDF Downloads 112
2359 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 450
2358 Definition of Aerodynamic Coefficients for Microgravity Unmanned Aerial System

Authors: Gamaliel Salazar, Adriana Chazaro, Oscar Madrigal

Abstract:

The evolution of Unmanned Aerial Systems (UAS) has made it possible to develop new vehicles capable to perform microgravity experiments which due its cost and complexity were beyond the reach for many institutions. In this study, the aerodynamic behavior of an UAS is studied through its deceleration stage after an initial free fall phase (where the microgravity effect is generated) using Computational Fluid Dynamics (CFD). Due to the fact that the payload would be analyzed under a microgravity environment and the nature of the payload itself, the speed of the UAS must be reduced in a smoothly way. Moreover, the terminal speed of the vehicle should be low enough to preserve the integrity of the payload and vehicle during the landing stage. The UAS model is made by a study pod, control surfaces with fixed and mobile sections, landing gear and two semicircular wing sections. The speed of the vehicle is decreased by increasing the angle of attack (AoA) of each wing section from 2° (where the airfoil S1091 has its greatest aerodynamic efficiency) to 80°, creating a circular wing geometry. Drag coefficients (Cd) and forces (Fd) are obtained employing CFD analysis. A simplified 3D model of the vehicle is analyzed using Ansys Workbench 16. The distance between the object of study and the walls of the control volume is eight times the length of the vehicle. The domain is discretized using an unstructured mesh based on tetrahedral elements. The refinement of the mesh is made by defining an element size of 0.004 m in the wing and control surfaces in order to figure out the fluid behavior in the most important zones, as well as accurate approximations of the Cd. The turbulent model k-epsilon is selected to solve the governing equations of the fluids while a couple of monitors are placed in both wing and all-body vehicle to visualize the variation of the coefficients along the simulation process. Employing a statistical approximation response surface methodology the case of study is parametrized considering the AoA of the wing as the input parameter and Cd and Fd as output parameters. Based on a Central Composite Design (CCD), the Design Points (DP) are generated so the Cd and Fd for each DP could be estimated. Applying a 2nd degree polynomial approximation the drag coefficients for every AoA were determined. Using this values, the terminal speed at each position is calculated considering a specific Cd. Additionally, the distance required to reach the terminal velocity at each AoA is calculated, so the minimum distance for the entire deceleration stage without comprising the payload could be determine. The Cd max of the vehicle is 1.18, so its maximum drag will be almost like the drag generated by a parachute. This guarantees that aerodynamically the vehicle can be braked, so it could be utilized for several missions allowing repeatability of microgravity experiments.

Keywords: microgravity effect, response surface, terminal speed, unmanned system

Procedia PDF Downloads 173
2357 Preparation and Characterizations of Natural Material Based Ceramic Membranes

Authors: In-Hyuck Song, Jang-Hoon Ha

Abstract:

Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.

Keywords: ceramic membrane, diatomite, water treatment, sintering

Procedia PDF Downloads 515
2356 Simulation Study on Polymer Flooding with Thermal Degradation in Elevated-Temperature Reservoirs

Authors: Lin Zhao, Hanqiao Jiang, Junjian Li

Abstract:

Polymers injected into elevated-temperature reservoirs inevitably suffer from thermal degradation, resulting in severe viscosity loss and poor flooding performance. However, for polymer flooding in such reservoirs, present simulators fail to provide accurate results for lack of description on thermal degradation. In light of this, the objectives of this paper are to provide a simulation model for polymer flooding with thermal degradation and study the effect of thermal degradation on polymer flooding in elevated-temperature reservoirs. Firstly, a thermal degradation experiment was conducted to obtain the degradation law of polymer concentration and viscosity. Different types of polymers degraded in the Thermo tank with elevated temperatures. Afterward, based on the obtained law, a streamline-assistant model was proposed to simulate the degradation process under in-situ flow conditions. Model validation was performed with field data from a well group of an offshore oilfield. Finally, the effect of thermal degradation on polymer flooding was studied using the proposed model. Experimental results showed that the polymer concentration remained unchanged, while the viscosity degraded exponentially with time after degradation. The polymer viscosity was functionally dependent on the polymer degradation time (PDT), which represented the elapsed time started from the polymer particle injection. Tracing the real flow path of polymer particle was required. Therefore, the presented simulation model was streamline-assistant. Equation of PDT vs. time of flight (TOF) along streamline was built by the law of polymer particle transport. Based on the field polymer sample and dynamic data, the new model proved its accuracy. Study of degradation effect on polymer flooding indicated: (1) the viscosity loss increased with TOF exponentially in the main body of polymer-slug and remained constant in the slug front; (2) the responding time of polymer flooding was delayed, but the effective time was prolonged; (3) the breakthrough of subsequent water was eased; (4) the capacity of polymer adjusting injection profile was diminished; (5) the incremental recovery was reduced significantly. In general, the effect of thermal degradation on polymer flooding performance was rather negative. This paper provides a more comprehensive insight into polymer thermal degradation in both the physical process and field application. The proposed simulation model offers an effective means for simulating the polymer flooding process with thermal degradation. The negative effect of thermal degradation suggests that the polymer thermal stability should be given full consideration when designing polymer flooding project in elevated-temperature reservoirs.

Keywords: polymer flooding, elevated-temperature reservoir, thermal degradation, numerical simulation

Procedia PDF Downloads 143
2355 Investigation of Fusion Zone Microstructures in Plasma Arc Welding of Austenitic Stainless Steel (SS-304L) with Low Carbon Steel (A-36) with or without Filler Alloy

Authors: Shan-e-Fatima, Mushtaq Khan, Syed Imran Hussian

Abstract:

Plasma arc welding technology is used for welding SS-304L with A-36. Two different optimize butt welded joints were produced by using austenitic filler alloy E-309L and with direct fusion at 45 A, 2mm/sec by keeping plasma gas flow rate at 0.5LPM. Microstructure analysis of the weld bead was carried out. The results reveal complex heterogeneous microstructure in austenitic base filler alloy sample where as full martensite was found in directly fused sample.

Keywords: fusion zone microstructure, stainless steel, low carbon steel, plasma arc welding

Procedia PDF Downloads 576
2354 Computation of Drag and Lift Coefficients on Submerged Vanes in Open Channels

Authors: Anshul Jain, P. Deepak Kumar, P. K. S. Dikshit

Abstract:

To stabilize the riverbanks in the curved reaches of alluvial channels due to erosion and to stop sediment transportation, many models and theories have been put forth. One among such methods is to install flat vanes on the channel bed in predetermined manner. In practical, a relatively small no of vanes can produce bend flows which are practically uniform across the channel. The objective of the present study is to measure the drag and lift on such submerged vanes in open channels. Experiments were performed and the data collected have been presented and analyzed. Using the data collected herein, predictors for the coefficients of drag and lift have been developed. Such predictors yield the value of these coefficients for the known fluid properties and flow characteristic of the channel.

Keywords: drag, lift, vanes, open channel

Procedia PDF Downloads 347
2353 Modelisation of a Full-Scale Closed Cement Grinding

Authors: D. Touil, L. Ouadah

Abstract:

An industrial model of cement grinding circuit is proposed on the basis of sampling surveys undertaken in the Meftah cement plant in Algiers, Algeria. The ball mill is described by a series of equal fully mixed stages that incorporates the effect of air sweeping. The kinetic parameters of this material in the energy normalized form obtained using the data of batch dry ball milling are taken into account in developing the present scale-up procedure. The dynamic separator is represented by the air classifier selectivity equation corrected by empirical factors. The model is incorporated in computer program that predict full size distributions and mass flow rates for all streams in a circuit under a particular set of operating conditions.

Keywords: grinding circuit, clinker, cement, modeling, population balance, energy

Procedia PDF Downloads 526
2352 Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor

Authors: Vanessa Romanovicz, Beatriz A. Berns, Stephen D. Carpenter, Deyse Carpenter

Abstract:

This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET = 3.691m,/g.

Keywords: carbon nanotubes, sugar cane, fuel cell, catalyst support

Procedia PDF Downloads 447
2351 The Effect of Water Droplets Size in Fire Fighting Systems

Authors: Tassadit Tabouche

Abstract:

Water sprays pattern, and water droplets size (different droplets diameter) are a key factors in the success of the suppression by water spray. The effects of the two important factors are investigated in this study. However, the fire extinguishing mechanism in such devices is not well understood due to the complexity of the physical and chemical interactions between water spray and fire plume. in this study, 3D, unsteady, two phase flow CFD simulation approach is introduced to provide a quantitative analysis of the complex interactions occurring between water spray and fire plume. Lagrangian Discrete Phase Model (DPM) was used for water droplets and a global one-step reaction mechanism in combustion model was used for fire plume.

Keywords: droplets, water spray, water droplets size, 3D

Procedia PDF Downloads 534
2350 Mixed Convective Heat Transfer in Water-Based Al2O3 Nanofluid in Horizontal Rectangular Duct

Authors: Nur Irmawati, H. A. Mohammed

Abstract:

In the present study, mixed convection in a horizontal rectangular duct using Al2O3 is numerically investigated. The effects of different Rayleigh number, Reynolds number and radiation on flow and heat transfer characteristics were studied in detail. This study covers Rayleigh number in the range of 2×106≤Ra≤2×107 and Reynolds number in the range of 100≤Re≤1100. Results reveal that the Nusselt number increases as Reynolds and Rayleigh numbers increase. It was also found that the dimensionless temperature distribution increases as Rayleigh number increases.

Keywords: numerical simulation, mixed convection, horizontal rectangular duct, nanofluids

Procedia PDF Downloads 376
2349 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets

Procedia PDF Downloads 169
2348 Competitive Advantages of Efficient Reverse Logistics: A Case Study Integrating Firms and Customers Perspectives

Authors: Adèle Oliva, Samuel Fosso Wamba

Abstract:

This study looks at how firms can create competitive advantages through effective reserve logistics strategies. Upon using data collected from reverse supply chain managers of electronic commerce companies, the study found that improved reverse logistics management can have a positive impact on companies’ business benefits. These include playing a role in the implementation of many factors that highly influence the decision to purchase, customers’ loyalty, as well as increasing companies’ turnover. As a result, through an efficient design and management of their reverse flow, companies can decrease the costs associated to returned products.

Keywords: reverse logistics, competitive advantage, case study, business value

Procedia PDF Downloads 456
2347 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD

Procedia PDF Downloads 140
2346 DSPIC30F6010A Control for 12/8 Switched Reluctance Motor

Authors: Yang Zhou, Chen Hao, Ma Xiaoping

Abstract:

This paper briefly mentions the micro controller unit, and then goes into details about the exact regulations for SRM. Firstly, it proposes the main driving state control for motor and the importance of the motor position sensor. For different speed, the controller will choice various styles such as voltage chopper control, angle position control and current chopper control for which owns its advantages and disadvantages. Combining the strengths of the three discrepant methods, the main control chip will intelligently select the best performing control depending on the load and speed demand. Then the exact flow diagram is showed in paper. At last, an experimental platform is established to verify the correctness of the proposed theory.

Keywords: switched reluctance motor, dspic microcontroller, current chopper

Procedia PDF Downloads 425
2345 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds

Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel

Abstract:

Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.

Keywords: biomaterial, chitosan, hybrid, plasma

Procedia PDF Downloads 276
2344 Optimizing Oil Production through 30-Inch Pipeline in Abu-Attifel Field

Authors: Ahmed Belgasem, Walid Ben Hussin, Emad Krekshi, Jamal Hashad

Abstract:

Waxy crude oil, characterized by its high paraffin wax content, poses significant challenges in the oil & gas industry due to its increased viscosity and semi-solid state at reduced temperatures. The wax formation process, which includes precipitation, crystallization, and deposition, becomes problematic when crude oil temperatures fall below the wax appearance temperature (WAT) or cloud point. Addressing these issues, this paper introduces a technical solution designed to mitigate the wax appearance and enhance the oil production process in Abu-Attifil Field via a 30-inch crude oil pipeline. A comprehensive flow assurance study validates the feasibility and performance of this solution across various production rates, temperatures, and operational scenarios. The study's findings indicate that maintaining the crude oil's temperature above a minimum threshold of 63°C is achievable through the strategic placement of two heating stations along the pipeline route. This approach effectively prevents wax deposition, gelling, and subsequent mobility complications, thereby bolstering the overall efficiency, reliability, safety, and economic viability of the production process. Moreover, this solution significantly curtails the environmental repercussions traditionally associated with wax deposition, which can accumulate up to 7,500kg. The research methodology involves a comprehensive flow assurance study to validate the feasibility and performance of the proposed solution. The study considers various production rates, temperatures, and operational scenarios. It includes crude oil analysis to determine the wax appearance temperature (WAT), as well as the evaluation and comparison of operating options for the heating stations. The study's findings indicate that the proposed solution effectively prevents wax deposition, gelling, and subsequent mobility complications. By maintaining the crude oil's temperature above the specified threshold, the solution improves the overall efficiency, reliability, safety, and economic viability of the oil production process. Additionally, the solution contributes to reducing environmental repercussions associated with wax deposition. The research conclusion presents a technical solution that optimizes oil production in the Abu-Attifil Field by addressing wax formation problems through the strategic placement of two heating stations. The solution effectively prevents wax deposition, improves overall operational efficiency, and contributes to environmental sustainability. Further research is suggested for field data validation and cost-benefit analysis exploration.

Keywords: oil production, wax depositions, solar cells, heating stations

Procedia PDF Downloads 73
2343 Optimal Operation of a Photovoltaic Induction Motor Drive Water Pumping System

Authors: Nelson K. Lujara

Abstract:

The performance characteristics of a photovoltaic induction motor drive water pumping system with and without maximum power tracker is analyzed and presented. The analysis is done through determination and assessment of critical loss components in the system using computer aided design (CAD) tools for optimal operation of the system. The results can be used to formulate a well-calibrated computer aided design package of photovoltaic water pumping systems based on the induction motor drive. The results allow the design engineer to pre-determine the flow rate and efficiency of the system to suit particular application.

Keywords: photovoltaic, water pumping, losses, induction motor

Procedia PDF Downloads 302
2342 Hedonic Motivations for Online Shopping

Authors: Pui-Lai To, E-Ping Sung

Abstract:

The purpose of this study is to investigate hedonic online shopping motivations. A qualitative analysis was conducted to explore the factors influencing online hedonic shopping motivations. The results of the study indicate that traditional hedonic values, consisting of social, role, self-gratification, learning trends, pleasure of bargaining, stimulation, diversion, status, and adventure, and dimensions of flow theory, consisting of control, curiosity, enjoyment, and telepresence, exist in the online shopping environment. Two hedonic motivations unique to Internet shopping, privacy and online shopping achievement, were found. It appears that the most important hedonic value to online shoppers is having the choice to interact or not interact with others while shopping on the Internet. This study serves as a basis for the future growth of Internet marketing.

Keywords: internet shopping, shopping motivation, hedonic motivation

Procedia PDF Downloads 476
2341 Environmental Contamination of Water Bodies by Waste Produced by Slaughterhouses and the Prevalence of Waterborne Diseases in Kumba Municipality

Authors: Maturin Désiré Sop Sop, Didien Njumba Besende, Samuel Fosso Wamba

Abstract:

This study seeks to examine the nexus between drinking water sources in the Kumba municipality and its related health implications vis-à-vis the recurrent incidences of waterborne diseases such as Typhoid, Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The study adopted a purposive sampling technique in which surveys were conducted between the months of June to December 2022. 150 questionnaires were retrieved from the 210 administered to the affected population of Kosala, Buea Road and Mambanda. Information for the study was collected using surveys, questionnaires, key informant interviews, the laboratory analysis of collected drinking water samples, the researcher’s direct observation as well and hospital reports on the prevalence of waterborne diseases. Water samples from the nearby streams and wells, which were communally used by the local population for drinking, and five slaughterhouses within the affected areas were laboratory tested to determine alterations in their chemical, physical and microbiological characteristics. The collected water samples from all the streams and wells used for drinking were tested for changes in properties such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. These results were then compared with the WHO regulations for water quality. The results from the laboratory analysis of drinking water sources, which were at the same time used by the surrounding abattoirs revealed significant alterations in the water quality parameters such as temperature, turbidity, EC, pH, TDS, TSS, Cl, SO42-, PO43-, NO3-, Fe, Na, BOD, COD, DO, E.coli and total coliform concentration. This is due to the channeling of untreated wastes into the different drinking water points as well as the inter-use of dirty utensils such as buckets from slaughterhouses to fetch water from the streams and wells that serve as drinking water sources for the local population. On the human health aspect, the results were later compared with hospital data, and they revealed that the consumption of such contaminated water in the localities of Kosala, Mambanda, and Buea road negatively affected the local population because of the high incidences of Typhoid Cholera, Diarrhea, Dysentery, Hepatitis A and malaria. The poor management of drinking water sources pollutes streams and significantly exposes the local population to lots of waterborne diseases. Efforts should be made to provide clean pipe-borne water to the affected localities of Kumba as well as to ensure the proper management of wastes.

Keywords: drinking water, diseases, Kumba, municipality

Procedia PDF Downloads 79
2340 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container

Authors: Mohammad R. Jalali

Abstract:

Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.

Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions

Procedia PDF Downloads 398
2339 An Overview of PFAS Treatment Technologies with an In-Depth Analysis of Two Case Studies

Authors: Arul Ayyaswami, Vidhya Ramalingam

Abstract:

Per- and polyfluoroalkyl substances (PFAS) have emerged as a significant environmental concern due to their ubiquity and persistence in the environment. Their chemical characteristics and adverse effects on human health demands more effective and sustainable solutions in remediation of the PFAS. The work presented here encompasses an overview of treatment technologies with two case studies that utilize effective approaches in addressing PFAS contaminated media. Currently the options for treatment of PFAS compounds include Activated carbon adsorption, Ion Exchange, Membrane Filtration, Advanced oxidation processes, Electrochemical treatment, and Precipitation and Coagulation. In the first case study, a pilot study application of colloidal activated carbon (CAC) was completed to address PFAS from aqueous film-forming foam (AFFF) used to extinguish a large fire. The pilot study was used to demonstrate the effectiveness of a CAC in situ permeable reactive barrier (PRB) in effectively stopping the migration of PFOS and PFOA, moving from the source area at high concentrations. Before the CAC PRB installation, an injection test using - fluorescein dye was conducted to determine the primary fracture-induced groundwater flow pathways. A straddle packer injection delivery system was used to isolate discrete intervals and gain resolution over the 70 feet saturated zone targeted for treatment. Flow rates were adjusted, and aquifer responses were recorded for each interval. The results from the injection test were used to design the pilot test injection plan using CAC PRB. Following the CAC PRB application, the combined initial concentration 91,400 ng/L of PFOS and PFOA were reduced to approximately 70 ng/L (99.9% reduction), after only one month following the injection event. The results demonstrate the remedy's effectiveness to quickly and safely contain high concentrations of PFAS in fractured bedrock, reducing the risk to downgradient receptors. The second study involves developing a reductive defluorination treatment process using UV and electron acceptor. This experiment indicates a significant potential in treatment of PFAS contaminated waste media such as landfill leachates. The technology also shows a promising way of tacking these contaminants without the need for secondary waste disposal or any additional pre-treatments.

Keywords: per- and polyfluoroalkyl substances (PFAS), colloidal activated carbon (CAC), destructive PFAS treatment technology, aqueous film-forming foam (AFFF)

Procedia PDF Downloads 60
2338 Future Optimization of the Xin’anjiang Hydropower

Authors: Muhammad Zaman, Guohua Fang, Muhammad Saifullah,

Abstract:

The presented study emphasize at an optimal model to compare past and future optimal hydropower generation. In order to get maximum benefits from the Xin’anjiang hydropower station a model is developed. A Particle Swarm Optimization (PSO) has purposed and past and future water flow is used to get the maximum benefits from future water resources in this study. The results revealed that the future hydropower generation is more than the past generation. This paper gives us idea that what could we get in the past using optimal method of electricity generation and what can we get in the future using this technique.

Keywords: PSO, future water resources, optimization, Xin’anjiang,

Procedia PDF Downloads 444